

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	8051
Core Size	8-Bit
Speed	67MHz
Connectivity	CANbus, EBI/EMI, I ² C, LINbus, SPI, UART/USART
Peripherals	CapSense, DMA, POR, PWM, WDT
Number of I/O	25
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 5.5V
Data Converters	A/D 16x12b; D/A 4x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-BSSOP (0.295", 7.50mm Width)
Supplier Device Package	48-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c3666pva-180

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Program branching instructions

4.3.1 Instruction Set Summary

4.3.1.1 Arithmetic Instructions

Arithmetic instructions support the direct, indirect, register, immediate constant, and register-specific instructions. Arithmetic modes are used for addition, subtraction, multiplication, division, increment, and decrement operations. Table 4-1 lists the different arithmetic instructions.

Mnemonic	Description	Bytes	Cycles
ADD A,Rn	Add register to accumulator	1	1
ADD A,Direct	Add direct byte to accumulator	2	2
ADD A,@Ri	Add indirect RAM to accumulator	1	2
ADD A,#data	Add immediate data to accumulator	2	2
ADDC A,Rn	Add register to accumulator with carry	1	1
ADDC A, Direct	Add direct byte to accumulator with carry	2	2
ADDC A,@Ri	Add indirect RAM to accumulator with carry	1	2
ADDC A,#data	Add immediate data to accumulator with carry	2	2
SUBB A,Rn	Subtract register from accumulator with borrow	1	1
SUBB A, Direct	Subtract direct byte from accumulator with borrow	2	2
SUBB A,@Ri	Subtract indirect RAM from accumulator with borrow	1	2
SUBB A,#data	Subtract immediate data from accumulator with borrow	2	2
INC A	Increment accumulator	1	1
INC Rn	Increment register	1	2
INC Direct	Increment direct byte	2	3
INC @Ri	Increment indirect RAM	1	3
DEC A	Decrement accumulator	1	1
DEC Rn	Decrement register	1	2
DEC Direct	Decrement direct byte	2	3
DEC @Ri	Decrement indirect RAM	1	3
INC DPTR	Increment data pointer	1	1
MUL	Multiply accumulator and B	1	2
DIV	Divide accumulator by B	1	6
DAA	Decimal adjust accumulator	1	3

Table 4-1. Arithmetic Instructions

5. Memory

5.1 Static RAM

CY8C36 SRAM is used for temporary data storage. Up to 8 KB of SRAM is provided and can be accessed by the 8051 or the DMA controller. See Memory Map on page 24. Simultaneous access of SRAM by the 8051 and the DMA controller is possible if different 4-KB blocks are accessed.

5.2 Flash Program Memory

Flash memory in PSoC devices provides nonvolatile storage for user firmware, user configuration data, bulk data storage, and optional ECC data. The main flash memory area contains up to 64 KB of user program space.

Up to an additional 8 KB of flash space is available for ECC. If ECC is not used this space can store device configuration data and bulk user data. User code may not be run out of the ECC flash memory section. ECC can correct one bit error and detect two bit errors per 8 bytes of firmware memory; an interrupt can be generated when an error is detected.

The CPU reads instructions located in flash through a cache controller. This improves instruction execution rate and reduces system power consumption by requiring less frequent flash access. The cache has 8 lines at 64 bytes per line for a total of 512 bytes. It is fully associative, automatically controls flash power, and can be enabled or disabled. If ECC is enabled, the cache controller also performs error checking and correction, and interrupt generation.

Flash programming is performed through a special interface and preempts code execution out of flash. The flash programming interface performs flash erasing, programming and setting code protection levels. Flash in-system serial programming (ISSP), typically used for production programming, is possible through both the SWD and JTAG interfaces. In-system programming, typically used for bootloaders, is also possible using serial interfaces such as I^2C , USB, UART, and SPI, or any communications protocol.

5.3 Flash Security

All PSoC devices include a flexible flash-protection model that prevents access and visibility to on-chip flash memory. This prevents duplication or reverse engineering of proprietary code. Flash memory is organized in blocks, where each block contains 256 bytes of program or data and 32 bytes of ECC or configuration data. A total of up to 256 blocks is provided on 64-KB flash devices.

The device offers the ability to assign one of four protection levels to each row of flash. Table 5-1 lists the protection modes available. Flash protection levels can only be changed by performing a complete flash erase. The Full Protection and Field Upgrade settings disable external access (through a debugging tool such as PSoC Creator, for example). If your application requires code update through a bootloader, then use the Field Upgrade setting. Use the Unprotected setting only when no security is needed in your application. The PSoC device also offers an advanced security feature called Device Security which permanently disables all test, programming, and debug ports, protecting your application from external access (see the "Device Security" section on page 63). For more information about how to take full advantage of the security features in PSoC, see the PSoC 3 TRM.

Table 5-1. Flash Protection

Protection Setting	Allowed	Not Allowed
Unprotected	External read and write + internal read and write	-
Factory Upgrade	External write + internal read and write	External read
Field Upgrade	Internal read and write	External read and write
Full Protection	Internal read	External read and write + internal write

Disclaimer

Note the following details of the flash code protection features on Cypress devices.

Cypress products meet the specifications contained in their particular Cypress data sheets. Cypress believes that its family of products is one of the most secure families of its kind on the market today, regardless of how they are used. There may be methods, unknown to Cypress, that can breach the code protection features. Any of these methods, to our knowledge, would be dishonest and possibly illegal. Neither Cypress nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as 'unbreakable'. Cypress is willing to work with the customer who is concerned about the integrity of their code. Code protection is constantly evolving. We at Cypress are committed to continuously improving the code protection features of our products.

5.4 EEPROM

PSoC EEPROM memory is a byte-addressable nonvolatile memory. The CY8C36 has up to 2 KB of EEPROM memory to store user data. Reads from EEPROM are random access at the byte level. Reads are done directly; writes are done by sending write commands to an EEPROM programming interface. CPU code execution can continue from flash during EEPROM writes. EEPROM is erasable and writeable at the row level. The EEPROM is divided into 128 rows of 16 bytes each. The CPU can not execute out of EEPROM. There is no ECC hardware associated with EEPROM. If ECC is required it must be handled in firmware.

It can take as much as 20 milliseconds to write to EEPROM or flash. During this time the device should not be reset, or unexpected changes may be made to portions of EEPROM or flash. Reset sources (see Section 6.3.1) include XRES pin, software reset, and watchdog; care should be taken to make sure that these are not inadvertently activated. Also, the low voltage detect circuits should be configured to generate an interrupt instead of a reset.

5.5 Nonvolatile Latches (NVLs)

PSoC has a 4-byte array of nonvolatile latches (NVLs) that are used to configure the device at reset. The NVL register map is shown in Table 5-2.

 Table 5-2. Device Configuration NVL Register Map

Register Address	7	6	5 4		5 4 3 2		3 2		1	0		
0x00	PRT3RE	DM[1:0]	PRT2RDM[1:0] PRT1RDM[1:0]		PRT2RDM[1:0]		PRT2RDM[1:0]		PRT2RDM[1:0]		PRT0	RDM[1:0]
0x01	PRT12R	DM[1:0]	PRT6RDM[1:0] PRT5RDM[1:0]		PRT6RDM[1:0]		PRT5RDM[1:0]		0] PRT4RDM[1:0]			
0x02	XRESMEN	DBGEN				PRT15	5RDM[1:0]					
0x03		DIG_PHS_I	DLY[3:0] ECO		ECCEN	EN DPS[1:0]		CFGSPEED				

The details for individual fields and their factory default settings are shown in Table 5-3:.

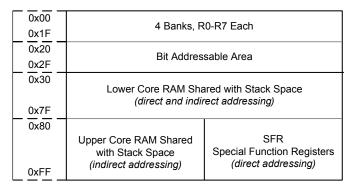
Table 5-3. Fields and Factory Default Settings

Field	Description	Settings
PRTxRDM[1:0]	Controls reset drive mode of the corresponding IO port. See "Reset Configuration" on page 39. All pins of the port are set to the same mode.	00b (default) - high impedance analog 01b - high impedance digital 10b - resistive pull up 11b - resistive pull down
XRESMEN	Controls whether pin P1[2] is used as a GPIO or as an external reset. See "Pin Descriptions" on page 9, XRES description.	0 (default for 68-pin and 100-pin parts) - GPIO 1 (default for 48-pin parts) - external reset
DBGEN	Debug Enable allows access to the debug system, for third-party programmers.	0 - access disabled 1 (default) - access enabled
DPS{1:0]	Controls the usage of various P1 pins as a debug port. See "Programming, Debug Interfaces, Resources" on page 60.	00b - 5-wire JTAG 01b (default) - 4-wire JTAG 10b - SWD 11b - debug ports disabled
ECCEN	Controls whether ECC flash is used for ECC or for general configuration and data storage. See "Flash Program Memory" on page 21.	0 - ECC disabled 1 (default) - ECC enabled
DIG_PHS_DLY[3:0]	Selects the digital clock phase delay.	See the TRM for details.

Although PSoC Creator provides support for modifying the device configuration NVLs, the number of NVL erase / write cycles is limited – see Nonvolatile Latches (NVL) on page 120.

5.7 Memory Map

The CY8C36 8051 memory map is very similar to the MCS-51 memory map.


5.7.1 Code Space

The CY8C36 8051 code space is 64 KB. Only main flash exists in this space. See the Flash Program Memory on page 21.

5.7.2 Internal Data Space

The CY8C36 8051 internal data space is 384 bytes, compressed within a 256-byte space. This space consists of 256 bytes of RAM (in addition to the SRAM mentioned in Static RAM on page 21) and a 128-byte space for special function registers (SFR). See Figure 5-2. The lowest 32 bytes are used for 4 banks of registers R0-R7. The next 16 bytes are bit-addressable.

Figure 5-2. 8051 Internal Data Space

In addition to the register or bit address modes used with the lower 48 bytes, the lower 128 bytes can be accessed with direct or indirect addressing. With direct addressing mode, the upper 128 bytes map to the SFRs. With indirect addressing mode, the upper 128 bytes map to RAM. Stack operations use indirect addressing; the 8051 stack space is 256 bytes. See the "Addressing Modes" section on page 10.

5.7.3 SFRs

The SFR space provides access to frequently accessed registers. The memory map for the SFR memory space is shown in Table 5-4.

Address	0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F
0×F8	SFRPRT15DR	SFRPRT15PS	SFRPRT15SEL	-	-	-	_	-
0×F0	В	-	SFRPRT12SEL	-	-	-	_	-
0×E8	SFRPRT12DR	SFRPRT12PS	MXAX	-	-	-	-	-
0×E0	ACC	-	-	-	-	-	-	-
0×D8	SFRPRT6DR	SFRPRT6PS	SFRPRT6SEL	-	-	-	_	-
0×D0	PSW	-	-	-	-	-	-	-
0×C8	SFRPRT5DR	SFRPRT5PS	SFRPRT5SEL	-	-	-	-	-
0×C0	SFRPRT4DR	SFRPRT4PS	SFRPRT4SEL	-	-	-	-	-
0×B8				-	-	-	-	-
0×B0	SFRPRT3DR	SFRPRT3PS	SFRPRT3SEL	-	-	-	-	-
0×A8	IE	-	-	-	-	-	-	-
0×A0	P2AX	-	SFRPRT1SEL	-	-	-	-	-
0×98	SFRPRT2DR	SFRPRT2PS	SFRPRT2SEL	-	-	-	-	-
0×90	SFRPRT1DR	SFRPRT1PS	-	DPX0	-	DPX1	-	-
0×88	-	SFRPRT0PS	SFRPRT0SEL	-	-	-	-	-
0×80	SFRPRT0DR	SP	DPL0	DPH0	DPL1	DPH1	DPS	-

Table 5-4. SFR Map

The CY8C36 family provides the standard set of registers found on industry standard 8051 devices. In addition, the CY8C36 devices add SFRs to provide direct access to the I/O ports on the device. The following sections describe the SFRs added to the CY8C36 family.

7.1.3 Example System Function Components

The following is a sample of the system function components available in PSoC Creator for the CY8C36 family. The exact amount of hardware resources (UDBs, DFB taps, SC/CT blocks, routing, RAM, flash) used by a component varies with the features selected in PSoC Creator for the component.

- CapSense
- LCD drive
- LCD control
- Filters

7.1.4 Designing with PSoC Creator

7.1.4.1 More Than a Typical IDE

A successful design tool allows for the rapid development and deployment of both simple and complex designs. It reduces or eliminates any learning curve. It makes the integration of a new design into the production stream straightforward.

PSoC Creator is that design tool.

PSoC Creator is a full featured Integrated Development Environment (IDE) for hardware and software design. It is optimized specifically for PSoC devices and combines a modern, powerful software development platform with a sophisticated graphical design tool. This unique combination of tools makes PSoC Creator the most flexible embedded design platform available.

Graphical design entry simplifies the task of configuring a particular part. You can select the required functionality from an extensive catalog of components and place it in your design. All components are parameterized and have an editor dialog that allows you to tailor functionality to your needs.

PSoC Creator automatically configures clocks and routes the I/O to the selected pins and then generates APIs to give the application complete control over the hardware. Changing the PSoC device configuration is as simple as adding a new component, setting its parameters, and rebuilding the project.

At any stage of development you are free to change the hardware configuration and even the target processor. To retarget your application (hardware and software) to new devices, even from 8- to 32-bit families, just select the new device and rebuild.

You also have the ability to change the C compiler and evaluate an alternative. Components are designed for portability and are validated against all devices, from all families, and against all supported tool chains. Switching compilers is as easy as editing the from the project options and rebuilding the application with no errors from the generated APIs or boot code.

7.1.4.2 Component Catalog

The component catalog is a repository of reusable design elements that select device functionality and customize your PSoC device. It is populated with an impressive selection of content; from simple primitives such as logic gates and device registers, through the digital timers, counters and PWMs, plus analog components such as ADC, DACs, and filters, and communication protocols, such as I²C, USB, and CAN. See **Example Peripherals** on page 40 for more details about available peripherals. All content is fully characterized and carefully documented in data sheets with code examples, AC/DC specifications, and user code ready APIs.

7.1.4.3 Design Reuse

The symbol editor gives you the ability to develop reusable components that can significantly reduce future design time. Just draw a symbol and associate that symbol with your proven design. PSoC Creator allows for the placement of the new symbol anywhere in the component catalog along with the content provided by Cypress. You can then reuse your content as many times as you want, and in any number of projects, without ever having to revisit the details of the implementation.

7.1.4.4 Software Development

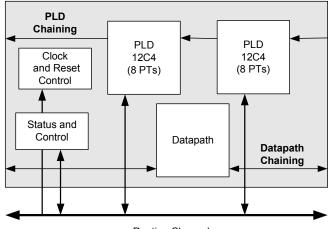
Anchoring the tool is a modern, highly customizable user interface. It includes project management and integrated editors for C and assembler source code, as well the design entry tools.

Project build control leverages compiler technology from top commercial vendors such as ARM[®] Limited, Keil[™], and CodeSourcery (GNU). Free versions of Keil C51 and GNU C Compiler (GCC) for ARM, with no restrictions on code size or end product distribution, are included with the tool distribution. Upgrading to more optimizing compilers is a snap with support for the professional Keil C51 product and ARM RealView[™] compiler.

7.1.4.5 Nonintrusive Debugging

With JTAG (4-wire) and SWD (2-wire) debug connectivity available on all devices, the PSoC Creator debugger offers full control over the target device with minimum intrusion. Breakpoints and code execution commands are all readily available from toolbar buttons and an impressive lineup of windows—register, locals, watch, call stack, memory and peripherals—make for an unparalleled level of visibility into the system.

PSoC Creator contains all the tools necessary to complete a design, and then to maintain and extend that design for years to come. All steps of the design flow are carefully integrated and optimized for ease-of-use and to maximize productivity.



7.2 Universal Digital Block

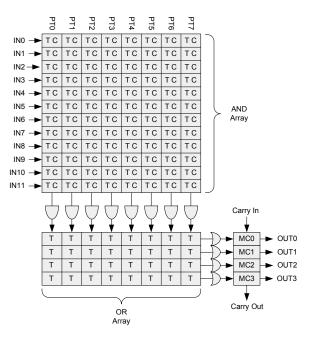
The UDB represents an evolutionary step to the next generation of PSoC embedded digital peripheral functionality. The architecture in first generation PSoC digital blocks provides coarse programmability in which a few fixed functions with a small number of options are available. The new UDB architecture is the optimal balance between configuration granularity and efficient implementation. A cornerstone of this approach is to provide the ability to customize the devices digital operation to match application requirements.

To achieve this, UDBs consist of a combination of uncommitted logic (PLD), structured logic (Datapath), and a flexible routing scheme to provide interconnect between these elements, I/O connections, and other peripherals. UDB functionality ranges from simple self contained functions that are implemented in one UDB, or even a portion of a UDB (unused resources are available for other functions), to more complex functions that require multiple UDBs. Examples of basic functions are timers, counters, CRC generators, PWMs, dead band generators, and communications functions, such as UARTs, SPI, and I²C. Also, the PLD blocks and connectivity provide full featured general purpose programmable logic within the limits of the available resources.

Figure 7-2. UDB Block Diagram

Routing Channel

The main component blocks of the UDB are:


- PLD blocks There are two small PLDs per UDB. These blocks take inputs from the routing array and form registered or combinational sum-of-products logic. PLDs are used to implement state machines, state bits, and combinational logic equations. PLD configuration is automatically generated from graphical primitives.
- Datapath module This 8-bit wide datapath contains structured logic to implement a dynamically configurable ALU, a variety of compare configurations and condition generation. This block also contains input/output FIFOs, which are the primary parallel data interface between the CPU/DMA system and the UDB.

- Status and control module The primary role of this block is to provide a way for CPU firmware to interact and synchronize with UDB operation.
- Clock and reset module This block provides the UDB clocks and reset selection and control.

7.2.1 PLD Module

The primary purpose of the PLD blocks is to implement logic expressions, state machines, sequencers, lookup tables, and decoders. In the simplest use model, consider the PLD blocks as a standalone resource onto which general purpose RTL is synthesized and mapped. The more common and efficient use model is to create digital functions from a combination of PLD and datapath blocks, where the PLD implements only the random logic and state portion of the function while the datapath (ALU) implements the more structured elements.

Figure 7-3. PLD 12C4 Structure



One 12C4 PLD block is shown in Figure 7-3. This PLD has 12 inputs, which feed across eight product terms. Each product term (AND function) can be from 1 to 12 inputs wide, and in a given product term, the true (T) or complement (C) of each input can be selected. The product terms are summed (OR function) to create the PLD outputs. A sum can be from 1 to 8 product terms wide. The 'C' in 12C4 indicates that the width of the OR gate (in this case 8) is constant across all outputs (rather than variable as in a 22V10 device). This PLA like structure gives maximum flexibility and insures that all inputs and outputs are permutable for ease of allocation by the software tools. There are two 12C4 PLDs in each UDB.

7.2.2 Datapath Module

The datapath contains an 8-bit single cycle ALU, with associated compare and condition generation logic. This datapath block is optimized to implement embedded functions, such as timers, counters, integrators, PWMs, PRS, CRC, shifters and dead band generators and many others.

7.2.2.1 Working Registers

The datapath contains six primary working registers, which are accessed by CPU firmware or DMA during normal operation.

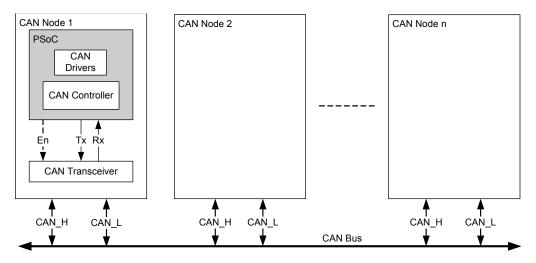
Table 7-1.	Working	Datapath	Registers
------------	---------	----------	-----------

Name	Function	Description
A0 and A1	Accumulators	These are sources and sinks for the ALU and also sources for the compares.
D0 and D1	Data Registers	These are sources for the ALU and sources for the compares.
F0 and F1	FIFOs	These are the primary interface to the system bus. They can be a data source for the data registers and accumulators or they can capture data from the accumulators or ALU. Each FIFO is four bytes deep.

7.2.2.2 Dynamic Datapath Configuration RAM

Dynamic configuration is the ability to change the datapath function and internal configuration on a cycle-by-cycle basis, under sequencer control. This is implemented using the 8-word × 16-bit configuration RAM, which stores eight unique 16-bit wide configurations. The address input to this RAM controls the sequence, and can be routed from any block connected to the UDB routing matrix, most typically PLD logic, I/O pins, or from the outputs of this or other datapath blocks.

ALU


The ALU performs eight general purpose functions. They are: Increment

- Decrement
- Add
- Subtract
- Logical AND
- Logical OR
- Logical XOR
- Pass, used to pass a value through the ALU to the shift register, mask, or another UDB register.

7.5 CAN

The CAN peripheral is a fully functional controller area network (CAN) supporting communication baud rates up to 1 Mbps. The CAN controller implements the CAN2.0A and CAN2.0B specifications as defined in the Bosch specification and conforms to the ISO-11898-1 standard. The CAN protocol was originally designed for automotive applications with a focus on a high level of fault detection. This ensures high communication reliability at a low cost. Because of its success in automotive applications, CAN is used as a standard communication protocol for motion oriented machine control networks (CANOpen) and factory automation applications (DeviceNet). The CAN controller features allow the efficient implementation of higher level protocols without affecting the performance of the microcontroller CPU. Full configuration support is provided in PSoC Creator.

Figure 7-14. CAN Bus System Implementation

7.5.1 CAN Features

- CAN2.0A/B protocol implementation ISO 11898 compliant
 Standard and extended frames with up to 8 bytes of data per frame
 - Message filter capabilities
 - □ Remote Transmission Request (RTR) support
 - Programmable bit rate up to 1 Mbps
- Listen Only mode
- SW readable error counter and indicator
- Sleep mode: Wake the device from sleep with activity on the Rx pin
- Supports two or three wire interface to external transceiver (Tx, Rx, and Enable). The three-wire interface is compatible with the Philips PHY; the PHY is not included on-chip. The three wires can be routed to any I/O
- Enhanced interrupt controller
 CAN receive and transmit buffers status
 - CAN controller error status including BusOff

- Receive path
 - □ 16 receive buffers each with its own message filter
 - Enhanced hardware message filter implementation that covers the ID, IDE, and RTR
 - DeviceNet addressing support
 - Multiple receive buffers linkable to build a larger receive message array
 - a Automatic transmission request (RTR) response handler
 - Lost received message notification
- Transmit path
 - Eight transmit buffers
 - Programmable transmit priority
 - Round robin
 - Fixed priority
 - Message transmissions abort capability

7.5.2 Software Tools Support

- CAN Controller configuration integrated into PSoC Creator:
- CAN Configuration walkthrough with bit timing analyzer
- Receive filter setup

8.2.2.3 Multi Sample

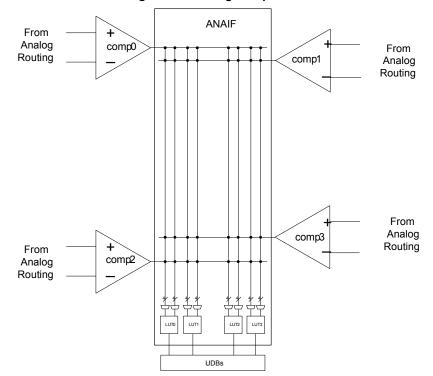
Multi sample mode is similar to continuous mode except that the ADC is reset between samples. This mode is useful when the input is switched between multiple signals. The decimator is re-primed between each sample so that previous samples do not affect the current conversion. Upon completion of a sample, the next sample is automatically initiated. The results can be transferred using either firmware polling, interrupt, or DMA.

8.2.3 Start of Conversion Input

The SoC signal is used to start an ADC conversion. A digital clock or UDB output can be used to drive this input. It can be used when the sampling period must be longer than the ADC conversion time or when the ADC must be synchronized to other hardware. This signal is optional and does not need to be connected if ADC is running in a continuous mode.

8.2.4 End of Conversion Output

The EoC signal goes high at the end of each ADC conversion. This signal may be used to trigger either an interrupt or DMA request.


8.3 Comparators

The CY8C36 family of devices contains four comparators in a device. Comparators have these features:

- Input offset factory trimmed to less than 5 mV
- Rail-to-rail common mode input range (VSSA to VDDA)
- Speed and power can be traded off by using one of three modes: fast, slow, or ultra low-power
- Comparator outputs can be routed to lookup tables to perform simple logic functions and then can also be routed to digital blocks
- The positive input of the comparators may be optionally passed through a low pass filter. Two filters are provided
- Comparator inputs can be connections to GPIO, DAC outputs and SC block outputs

8.3.1 Input and Output Interface

The positive and negative inputs to the comparators come from the analog global buses, the analog mux line, the analog local bus and precision reference through multiplexers. The output from each comparator could be routed to any of the two input LUTs. The output of that LUT is routed to the UDB DSI.

Figure 8-5. Analog Comparator

The opamp and resistor array is programmable to perform various analog functions including

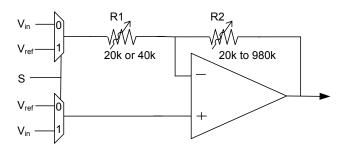
- Naked operational amplifier Continuous mode
- Unity-gain buffer Continuous mode
- PGA Continuous mode
- Transimpedance amplifier (TIA) Continuous mode
- Up/down mixer Continuous mode
- Sample and hold mixer (NRZ S/H) Switched cap mode
- First order analog to digital modulator Switched cap mode

8.5.1 Naked Opamp

The Naked Opamp presents both inputs and the output for connection to internal or external signals. The opamp has a unity gain bandwidth greater than 6.0 MHz and output drive current up to 650 μ A. This is sufficient for buffering internal signals (such as DAC outputs) and driving external loads greater than 7.5 kohms.

8.5.2 Unity Gain

The Unity Gain buffer is a Naked Opamp with the output directly connected to the inverting input for a gain of 1.00. It has a -3 dB bandwidth greater than 6.0 MHz.


8.5.3 PGA

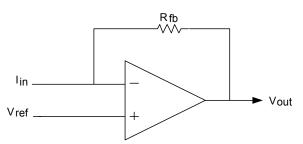
The PGA amplifies an external or internal signal. The PGA can be configured to operate in inverting mode or noninverting mode. The PGA function may be configured for both positive and negative gains as high as 50 and 49 respectively. The gain is adjusted by changing the values of R1 and R2 as illustrated in Figure 8-8. The schematic in Figure 8-8 shows the configuration and possible resistor settings for the PGA. The gain is switched from inverting and non inverting by changing the shared select value of the both the input muxes. The bandwidth for each gain case is listed in Table 8-3.

Table 8-3. Bandwidth

Gain	Bandwidth
1	5.5 MHz
24	340 kHz
48	220 kHz
50	215 kHz

Figure 8-8. PGA Resistor Settings

The PGA is used in applications where the input signal may not be large enough to achieve the desired resolution in the ADC, or dynamic range of another SC/CT block such as a mixer. The gain is adjustable at runtime, including changing the gain of the PGA prior to each ADC sample.


8.5.4 TIA

The Transimpedance Amplifier (TIA) converts an internal or external current to an output voltage. The TIA uses an internal feedback resistor in a continuous time configuration to convert input current to output voltage. For an input current I_{in}, the output voltage is V_{REF} - I_{in} x R_{fb}, where V_{REF} is the value placed on the non inverting input. The feedback resistor Rfb is programmable between 20 K Ω and 1 M Ω through a configuration register. Table 8-4 shows the possible values of Rfb and associated configuration settings.

Table 8-4. Feedback Resistor Settings

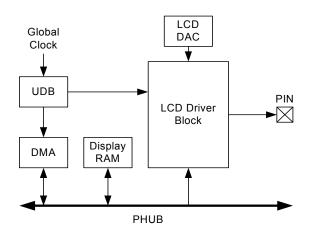
Configuration Word	Nominal R_{fb} (K Ω)
000b	20
001b	30
010b	40
011b	60
100b	120
101b	250
110b	500
111b	1000

Figure 8-9. Continuous Time TIA Schematic

The TIA configuration is used for applications where an external sensor's output is current as a function of some type of stimulus such as temperature, light, magnetic flux etc. In a common application, the voltage DAC output can be connected to the V_{REF} TIA input to allow calibration of the external sensor bias current by adjusting the voltage DAC output voltage.

8.6 LCD Direct Drive

The PSoC LCD driver system is a highly configurable peripheral designed to allow PSoC to directly drive a broad range of LCD glass. All voltages are generated on chip, eliminating the need for external components. With a high multiplex ratio of up to 1/16, the CY8C36 family LCD driver system can drive a maximum of 736 segments. The PSoC LCD driver module was also designed with the conservative power budget of portable devices in mind, enabling different LCD drive modes and power down modes to conserve power.



PSoC Creator provides an LCD segment drive component. The component wizard provides easy and flexible configuration of LCD resources. You can specify pins for segments and commons along with other options. The software configures the device to meet the required specifications. This is possible because of the programmability inherent to PSoC devices.

Key features of the PSoC LCD segment system are:

- LCD panel direct driving
- Type A (standard) and Type B (low-power) waveform support
- Wide operating voltage range support (2 V to 5 V) for LCD panels
- Static, 1/2, 1/3, 1/4, 1/5 bias voltage levels
- Internal bias voltage generation through internal resistor ladder
- Up to 62 total common and segment outputs
- Up to 1/16 multiplex for a maximum of 16 backplane/common outputs
- Up to 62 front plane/segment outputs for direct drive
- Drives up to 736 total segments (16 backplane × 46 front plane)
- Up to 64 levels of software controlled contrast
- Ability to move display data from memory buffer to LCD driver through DMA (without CPU intervention)
- Adjustable LCD refresh rate from 10 Hz to 150 Hz
- Ability to invert LCD display for negative image
- Three LCD driver drive modes, allowing power optimization

Figure 8-10. LCD System

8.6.1 LCD Segment Pin Driver

Each GPIO pin contains an LCD driver circuit. The LCD driver buffers the appropriate output of the LCD DAC to directly drive the glass of the LCD. A register setting determines whether the pin is a common or segment. The pin's LCD driver then selects one of the six bias voltages to drive the I/O pin, as appropriate for the display data.

8.6.2 Display Data Flow

The LCD segment driver system reads display data and generates the proper output voltages to the LCD glass to produce the desired image. Display data resides in a memory buffer in the system SRAM. Each time you need to change the common and segment driver voltages, the next set of pixel data moves from the memory buffer into the Port Data Registers through the DMA.

8.6.3 UDB and LCD Segment Control

A UDB is configured to generate the global LCD control signals and clocking. This set of signals is routed to each LCD pin driver through a set of dedicated LCD global routing channels. In addition to generating the global LCD control signals, the UDB also produces a DMA request to initiate the transfer of the next frame of LCD data.

8.6.4 LCD DAC

The LCD DAC generates the contrast control and bias voltage for the LCD system. The LCD DAC produces up to five LCD drive voltages plus ground, based on the selected bias ratio. The bias voltages are driven out to GPIO pins on a dedicated LCD bias bus, as required.

8.7 CapSense

The CapSense system provides a versatile and efficient means for measuring capacitance in applications such as touch sense buttons, sliders, proximity detection, etc. The CapSense system uses a configuration of system resources, including a few hardware functions primarily targeted for CapSense. Specific resource usage is detailed in the CapSense component in PSoC Creator.

A capacitive sensing method using a Delta-sigma Modulator (CSD) is used. It provides capacitance sensing using a switched capacitor technique with a delta-sigma modulator to convert the sensing current to a digital code.

8.8 Temp Sensor

Die temperature is used to establish programming parameters for writing flash. Die temperature is measured using a dedicated sensor based on a forward biased transistor. The temperature sensor has its own auxiliary ADC.

11. Electrical Specifications

Specifications are valid for $-40^{\circ}C \le Ta \le 125^{\circ}C$ and Tj $\le 150^{\circ}C$, except where noted. Specifications are valid for 1.71 V to 5.5 V, except where noted. The unique flexibility of the PSoC UDBs and analog blocks enable many functions to be implemented in PSoC Creator components, see the component data sheets for full AC/DC specifications of individual functions. See the Example Peripherals on page 40 for further explanation of PSoC Creator components.

11.1 Absolute Maximum Ratings

Table 11-1. Absolute Maximum Ratings DC Specifications ^[17]	Table 11-1.	Absolute	Maximum	Ratings	DC	Specifications	[17]
--	-------------	----------	---------	---------	----	----------------	------

Parameter	Description	Conditions	Min	Тур	Max	Units
Tstorag	Storage temperature	Recommended storage temperature is 0 °C–50 °C. Exposure to storage temperatures above 125 °C for extended periods may affect device reliability	-55	25	125	°C
Vdda	Analog supply voltage relative to Vssd		-0.5	_	6	V
Vddd	Digital supply voltage relative to Vssd		-0.5	-	6	V
Vddio	I/O supply voltage relative to Vssd		-0.5	_	6	V
Vcca	Direct analog core voltage input		-0.5	_	1.95	V
Vccd	Direct digital core voltage input		-0.5	_	1.95	V
Vssa	Analog ground voltage		Vssd – 0.5	_	Vssd + 0.5	V
Vgpio ^[18]	DC input voltage on GPIO	Includes signals sourced by Vdda and routed internal to the pin	Vssd – 0.5	-	Vddio + 0.5	V
Vsio	DC input voltage on SIO	Output disabled	Vssd – 0.5	-	7	V
		Output enabled	Vssd – 0.5	-	6	V
Ivddio ^[19]	Current per Vddio supply pin	–40 °C to +85 °C	_	_	100	mA
		–40 °C to +125 °C	_	_	40	
I _{GPIO}	GPIO current		-30	-	41	mA
I _{SIO}	SIO current		-49	_	28	mA
I _{USBIO}	USBIO current		-56	-	59	mA
V _{EXTREF}	ADC external reference inputs	Pins P0[3], P3[2]	_	_	2	V
LU	Latch up current ^[20]		-140	_	140	mA
	Electrostatic discharge voltage,	V _{SSA} tied to V _{SSD}	2200	-	-	V
ESD _{HBM}	Human body model	V _{SSA} not tied to V _{SSD}	750	-	-	V
ESD _{CDM}	Electro-static discharge voltage	Charge Device Model	500	_	_	V

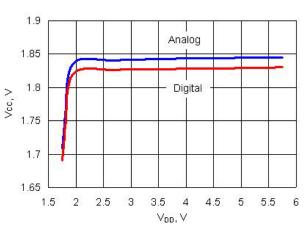
Note Usage above the absolute maximum conditions listed in Table 11-1 may cause permanent damage to the device. Exposure to maximum conditions for extended periods of time may affect device reliability. When used below maximum conditions but above normal operating conditions the device may not operate to specification.

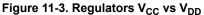
Notes

18. The Vddio supply voltage must be greater than the maximum analog voltage on the associated GPIO pins. Maximum analog voltage on GPIO pin \leq Vddio \leq Vdda. 19. Maximum value 100 mA of Iddio applies only to -40 °C to +85 °C range and the limit of Iddio parameter for the -40 °C to +125 °C range is 40 mA.

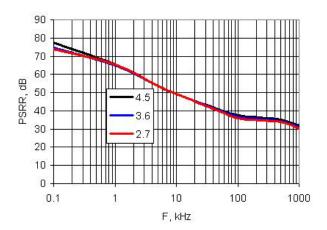
20. Meets or exceeds JEDEC Spec EIA/JESD78 IC Latch-up Test.

^{17.} Usage above the absolute maximum conditions listed in Table 11-1 may cause permanent damage to the device. Exposure to Absolute Maximum conditions for extended periods of time may affect device reliability. The Maximum Storage Temperature is 150 °C in compliance with JEDEC Standard JESD22-A103, High Temperature Storage Life. When used below Absolute Maximum conditions but above normal operating conditions, the device may not operate to specification.


11.3 Power Regulators


Specifications are valid for -40°C \leq Ta \leq 125°C and Tj \leq 150°C, except where noted. Specifications are valid for 1.71 V to 5.5 V, except where noted.

11.3.1 Digital Core Regulator


Table 11-4. Digital Core Regulator DC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
Vddd	Input voltage		1.8	-	5.5	V
Vccd	Output voltage		-	1.80	-	V
	Regulator output capacitance	Total capacitance on the two Vccd pins. Each capacitor is ±10%, X5R ceramic or better, see Power System on page 29	-	1	-	μF

Figure 11-4. Digital Regulator PSRR vs Frequency and V_{DD}

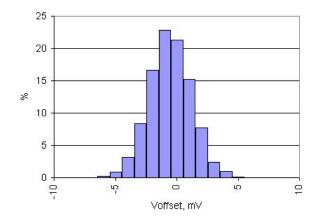

11.4.3 USBIO

Table 11-10. USBIO DC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
Rusbi	USB D+ pull up resistance	With idle bus	0.900	-	1.575	kΩ
Rusba	USB D+ pull up resistance	While receiving traffic	1.425	-	3.090	kΩ
Vohusb	Static output high	15 k Ω ±5% to Vss, internal pull up enabled	2.8	-	3.6	V
Volusb	Static output low	15 k Ω ±5% to Vss, internal pull up enabled	-	-	0.3	V
Vihgpio	Input voltage high, GPIO mode	$V_{DDD} \ge 3 V$	2	-	-	V
Vilgpio	Input voltage low, GPIO mode	$V_{DDD} \ge 3 V$	_	-	0.8	V
Vohgpio	Output voltage high, GPIO mode	Ioh = 4 mA, Vddio \ge 3 V	2.4	-	-	V
Volgpio	Output voltage low, GPIO mode	IoI = 4 mA, Vddio \ge 3 V	-	-	0.3	V
Vdi	Differential input sensitivity	(D+)-(D-)	-	-	0.2	V
Vcm	Differential input common mode range		0.8	-	2.5	V
Vse	Single ended receiver threshold		0.8	-	2	V
Rps2	PS/2 pull up resistance	In PS/2 mode, with PS/2 pull up enabled	3	-	7	kΩ
Rext External USB series resistor		In series with each USB pin	21.78 (-1%)	22	22.22 (+1%)	Ω
70	USB driver output impedance	Including Rext, -40°C \leq Ta \leq 85°C and Tj \leq 100°C	28	-	44	Ω
Zo		Including Rext, -40°C \leq Ta \leq 125°C and Tj \leq 150°C	28	-	46	Ω
Cin	USB transceiver input capacitance		-	-	20	pF
lil ^[34]	Input leakage current (absolute value)	25°C, Vddio = 3.0 V	-	-	2	nA

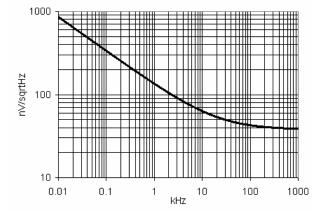

Figure 11-53. PGA Voffset Histogram, 4096 samples / 1024 parts

Table 11-33. PGA AC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
BW1	–3 dB bandwidth	Power mode = high, gain = 1, input = 100 mV peak-to-peak, Cl = 40 pF	5.5	8	-	MHz
SR1	Slew rate	Power mode = high, gain = 1, 20% to 80%	3	_	_	V/µs
e _n	Input noise density	Power mode = high, Vdda = 5 V, at 100 kHz	-	43	_	nV/sqrtHz

Figure 11-54. Noise vs. Frequency, Vdda = 5 V, Power Mode = High

11.5.11 Temperature Sensor

Table 11-34. Temperature Sensor Specifications

	Parameter	Description	Conditions	Min	Тур	Мах	Units
ĺ		Temp sensor accuracy	Range: –40 °C to +150 °C	-	±5	-	°C

11.6 Digital Peripherals

Specifications are valid for -40°C \leq Ta \leq 125°C and Tj \leq 150°C, except where noted. Specifications are valid for 1.71 V to 5.5 V, except where noted.

11.6.1 Timer

Table 11-37. Timer DC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
	Block current consumption	16-bit timer, at listed input clock frequency	-	_	-	μA
	3 MHz		-	15	_	μA
	12 MHz		-	60	-	μA
	50 MHz		-	260	-	μA
	67 MHz		_	350	_	μA

Table 11-38. Timer AC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
	Operating frequency	-40°C \leq Ta \leq 85°C and Tj \leq 100°C	DC	-	67 ^[46]	MHz
		-40°C \leq Ta \leq 125°C and Tj \leq 150°C	DC	-	50	MHz
	Capture pulse width (Internal)	-40°C \leq Ta \leq 85°C and Tj \leq 100°C	15	-	-	ns
		-40°C \leq Ta \leq 125°C and Tj \leq 150°C	21	-	-	ns
	Capture pulse width (external)	-40°C \leq Ta \leq 85°C and Tj \leq 100°C	30	-	-	ns
		-40°C \leq Ta \leq 125°C and Tj \leq 150°C	42	-	-	ns
	Timer resolution	-40°C \leq Ta \leq 85°C and Tj \leq 100°C	15	-	-	ns
		-40°C \leq Ta \leq 125°C and Tj \leq 150°C	21	-	-	ns
	Enable pulse width	-40°C \leq Ta \leq 85°C and Tj \leq 100°C	15	-	-	ns
		-40°C \leq Ta \leq 125°C and Tj \leq 150°C	21	-	-	ns
	Enable pulse width (external)	-40°C \leq Ta \leq 85°C and Tj \leq 100°C	30	-	-	ns
		-40°C \leq Ta \leq 125°C and Tj \leq 150°C	42	-	-	ns
	Reset pulse width	-40°C \leq Ta \leq 85°C and Tj \leq 100°C	15	-	-	ns
		-40°C \leq Ta \leq 125°C and Tj \leq 150°C	21	-	-	ns
	Reset pulse width (external)	-40°C \leq Ta \leq 85°C and Tj \leq 100°C	30	-	-	ns
		-40°C \leq Ta \leq 125°C and Tj \leq 150°C	42	-	-	ns

Note

46. Applicable at -40°C to 85°C; 50 MHz at -40°C to 125°C.

11.7 Memory

Specifications are valid for -40°C \leq Ta \leq 125°C and Tj \leq 150°C, except where noted. Specifications are valid for 1.71 V to 5.5 V, except where noted.

11.7.1 Flash

Table 11-51. Flash DC Specifications

Parameter	Description	Conditions	Min	Тур	Мах	Units
	Erase and program voltage	Vddd pin		-	5.5	V

Table 11-52. Flash AC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
Twrite	Block write time (erase + program)	-40°C \leq Ta \leq 85°C and Tj \leq 100°C	-	-	15	ms
		-40°C \leq Ta \leq 125°C and Tj \leq 140°C	-	-	15	ms
Terase	Block erase time	-40°C \leq Ta \leq 85°C and Tj \leq 100°C	-	-	10	ms
		-40°C \leq Ta \leq 125°C and Tj \leq 140°C	-	-	10	ms
	Block program time	-40°C \leq Ta \leq 85°C and Tj \leq 100°C	-	-	5	ms
		-40°C \leq Ta \leq 125°C and Tj \leq 140°C	-	-	5	ms
Tbulk	Bulk erase time (16 KB to 64 KB) ^[52]	-40°C \leq Ta \leq 85°C and Tj \leq 100°C	-	-	35	ms
		-40°C \leq Ta \leq 125°C and Tj \leq 140°C	-	-	TBD	ms
	Sector erase time (8 KB to 16 KB) ^[52]	-40°C \leq Ta \leq 85°C and Tj \leq 100°C	-	-	15	ms
		-40°C \leq Ta \leq 125°C and Tj \leq 140°C	-	-	15	ms
	Total device program time (including JTAG, etc.)	No overhead ^[53]	-	-	5	seconds
	Flash data retention time, retention period measured from last erase cycle ^[54]	Average ambient temp. $T_A \le 55$ °C, 100 K erase/program cycles	20	-	-	years
		Retention period measured from last erase cycle after 100k progra/erase cycles at $T_A \le 85$ °C	10	_	_	

Notes

52. ECC not included.

53. See PSoC[®] 3 Device Programming Specifications for a description of a low-overhead method of programming PSoC 3 flash. (Please take care of Foot note numbers) 54. Cypress provides a retention calculate the retention lifetime based on customers' individual temperature profiles for operation over the –40 °C to +125 °C ambient temperature range. Contact customercare@cypress.com.

Table 11-72. IMO AC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
	IMO frequency stability (with factory trir	n)			•	•
	62.6 MHz		-7	-	7	%
	48 MHz		-5	-	5	%
F _{IMO} ^[61]	24 MHz – Non USB mode		-4	-	4	%
LINO	24 MHz – USB mode	With oscillator locking to USB bus	-0.25	-	0.25	%
	12 MHz		-3	-	3	%
	6 MHz		-2	-	2	%
	3 MHz		-2	-	2	%
	3 MHz frequency stability after typical PCB assembly post-reflow.	Typical (non-optimized) board layout and 250 °C solder reflow. Device may be calibrated after assembly to improve performance.	-	±2	-	%
	Startup time ^[62]	From enable (during normal system operation)	_	-	13	μs
	Jitter (peak to peak) ^[62]	•				
Јр–р	F = 24 MHz		-	0.9	-	ns
	F = 3 MHz		-	1.6	-	ns
	Jitter (long term) ^[62]			1	1	
Jperiod	F = 24 MHz		-	0.9	-	ns
	F = 3 MHz		_	12	_	ns

Notes

61. F_{IMO} is measured after packaging, and thus accounts for substrate and die attach stresses.
 62. Based on device characterization (Not production tested).

14. Acronyms

Table 14-1. Acronyms Used in this Document

Acronym	Description
abus	analog local bus
ADC	analog-to-digital converter
AG	analog global
АНВ	AMBA (advanced microcontroller bus archi- tecture) high-performance bus, an ARM data transfer bus
ALU	arithmetic logic unit
AMUXBUS	analog multiplexer bus
API	application programming interface
APSR	application program status register
ARM®	advanced RISC machine, a CPU architecture
ATM	automatic thump mode
BW	bandwidth
CAN	Controller Area Network, a communications protocol
CMRR	common-mode rejection ratio
CPU	central processing unit
CRC cyclic redundancy check, an error-checking protocol	
DAC	digital-to-analog converter, see also IDAC, VDAC
DFB	digital filter block
DIO	digital input/output, GPIO with only digital capabilities, no analog. See GPIO.
DMA	direct memory access, see also TD
DNL	differential nonlinearity, see also INL
DNU	do not use
DR	port write data registers
DSI	digital system interconnect
DWT	data watchpoint and trace
ECC	error correcting code
ECO	external crystal oscillator
EEPROM	electrically erasable programmable read-only memory
EMI	electromagnetic interference
EMIF	external memory interface
EOC	end of conversion
EOF	end of frame
EPSR	execution program status register
ESD	electrostatic discharge
ETM	embedded trace macrocell

Table 14-1. Acronyms Used in this Document (continued)

Acronym	Description
FIR	finite impulse response, see also IIR
FPB	flash patch and breakpoint
FS	full-speed
GPIO	general-purpose input/output, applies to a PSoC pin
HVI	high-voltage interrupt, see also LVI, LVD
IC	integrated circuit
IDAC	current DAC, see also DAC, VDAC
IDE	integrated development environment
I ² C, or IIC	Inter-Integrated Circuit, a communications protocol
lir	infinite impulse response, see also FIR
ILO	internal low-speed oscillator, see also IMO
IMO	internal main oscillator, see also ILO
INL	integral nonlinearity, see also DNL
I/O	input/output, see also GPIO, DIO, SIO, USBIO
IPOR	initial power-on reset
IPSR	interrupt program status register
IRQ	interrupt request
ITM	instrumentation trace macrocell
LCD	liquid crystal display
LIN	Local Interconnect Network, a communications protocol.
LR	link register
LUT	lookup table
LVD	low-voltage detect, see also LVI
LVI	low-voltage interrupt, see also HVI
LVTTL	low-voltage transistor-transistor logic
MAC	multiply-accumulate
MCU	microcontroller unit
MISO	master-in slave-out
NC	no connect
NMI	nonmaskable interrupt
NRZ	non-return-to-zero
NVIC	nested vectored interrupt controller
NVL	nonvolatile latch, see also WOL
opamp	operational amplifier
PAL	programmable array logic, see also PLD
PC	program counter
РСВ	printed circuit board
PGA	programmable gain amplifier

17. Revision History

Revision	ECN	Submission Date	Orig. of Change	Description of Change
**	2800070	01/05/10	SECA	New data sheet
*A	2921624	04/26/2010	MKEA	Updated Active Mode Idd values in Table 11-2 Updated Boost AC and DC specifications Updated Solder paste reflow temperature (Table 11-3) Moved Filo spec from ILO DC to ILO AC table Updated Figure 7-14, Interrupt and DMA processing Added Bytes column in Tables 4-1 and 4-5 Updated Figure 6-3, Power mode transitions Updated Interrupt Vector table Updated Interrupt Vector table Updated Sales links Updated PCB Schematic Updated VDBs subsection under 11.6 Digital Peripherals Updated VDBs subsection under 11.6 Digital Peripherals Updated Interrupt Vector table Added UDBs subsection under 11.6 Digital Peripherals Updated footnote in PLL AC Specification table Added footnote in PLL AC Specification table Added Load regulation and Line regulation parameters to Inductive Boost Regulator DC Specifications table Updated ICC parameter in LCD Direct Drive DC Specs table Updated ICC parameter in AC Specifications table Updated ICC parameter in AC Specifications table Updated ICC parameter in AC Specifications table Updated ICVD in Tables 6-2 and 6-3 In page 1, updated internal oscillator range under Precision programmable clocking to start from 3 MHz Updated Plin Descriptions section and modified Figures 6-6, 6-8, 6-9 Added PLL intermediate frequency row with footnote in PLL AC Specs table Added bullets on CapSense in page 1; added CapSense column in Section Updated Figure 2-6 (PCB Layout) Updated IMO frequency Updated IMO frequency Updated IMO frequency Updated IMO frequency Updated IDAC uncompensated gain error in Table 11-25. Updated Tresp, high and low power modes, in Table 11-24. Updated Jelay from Interrupt signal input to ISR code execution from ISR code in Table 72. Updated Seep wakeup time in Table 6-3 and Tsleep in Table 11-3. Updated SNR condition in Table 11-20
*B	3490494	01/11/2012	GIR	Updated Figure 6-7 on page 34
*C	3994809	05/08/2013	KPAT	Updated all tables in Electrical Specifications. Updated Ordering Information (Updated part numbers, JTAG ID). Removed all references of Vboost across the document.
*D	4047900	07/02/2013	RASB	Changed status from Preliminary to Final. Updated Features. Updated Architectural Overview. Updated Memory. Updated Analog Subsystem. Updated Electrical Specifications.