

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	-
Number of Logic Elements/Cells	10000
Total RAM Bits	221184
Number of I/O	244
Number of Gates	-
Voltage - Supply	1.71V ~ 3.465V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	388-BBGA
Supplier Device Package	388-FPBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lfxp10c-3f388i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 2-5. Primary Clock Sources

Note: Smaller devices have two PLLs.

Secondary Clock Sources

LatticeXP devices have four secondary clock resources per quadrant. The secondary clock branches are tapped at every PFU. These secondary clock networks can also be used for controls and high fanout data. These secondary clocks are derived from four clock input pads and 16 routing signals as shown in Figure 2-6.

Figure 2-10. PLL Diagram

Figure 2-11 shows the available macros for the PLL. Table 2-11 provides signal description of the PLL Block.

Figure 2-11. PLL Primitive

Table 2-5.	PLL	Signal	Descri	ptions
------------	-----	--------	--------	--------

Signal	I/O	Description
CLKI	I	Clock input from external pin or routing
CLKFB	I	PLL feedback input from CLKOP (PLL internal), from clock net (CLKOP) or from a user clock (PIN or logic)
RST	I	"1" to reset input clock divider
CLKOS	0	PLL output clock to clock tree (phase shifted/duty cycle changed)
CLKOP	0	PLL output clock to clock tree (No phase shift)
CLKOK	0	PLL output to clock tree through secondary clock divider
LOCK	0	"1" indicates PLL LOCK to CLKI
DDAMODE	I	Dynamic Delay Enable. "1" Pin control (dynamic), "0": Fuse Control (static)
DDAIZR	I	Dynamic Delay Zero. "1": delay = 0, "0": delay = on
DDAILAG	I	Dynamic Delay Lag/Lead. "1": Lag, "0": Lead
DDAIDEL[2:0]	I	Dynamic Delay Input
DDAOZR	0	Dynamic Delay Zero Output
DDAOLAG	0	Dynamic Delay Lag/Lead Output
DDAODEL[2:0]	0	Dynamic Delay Output

For more information on the PLL, please see details of additional technical documentation at the end of this data sheet.

Dynamic Clock Select (DCS)

The DCS is a global clock buffer with smart multiplexer functions. It takes two independent input clock sources and outputs a clock signal without any glitches or runt pulses. This is achieved irrespective of where the select signal is toggled. There are eight DCS blocks per device, located in pairs at the center of each side. Figure 2-12 illustrates the DCS Block Macro.

Figure 2-12. DCS Block Primitive

Figure 2-13 shows timing waveforms of the default DCS operating mode. The DCS block can be programmed to other modes. For more information on the DCS, please see details of additional technical documentation at the end of this data sheet.

Figure 2-13. DCS Waveforms

sysMEM Memory

The LatticeXP family of devices contain a number of sysMEM Embedded Block RAM (EBR). The EBR consists of a 9-Kbit RAM, with dedicated input and output registers.

sysMEM Memory Block

The sysMEM block can implement single port, dual port or pseudo dual port memories. Each block can be used in a variety of depths and widths as shown in Table 2-6.

Figure 2-22. INDDRXB Primitive

Output Register Block

The output register block provides the ability to register signals from the core of the device before they are passed to the sysIO buffers. The block contains a register for SDR operation that is combined with an additional latch for DDR operation. Figure 2-23 shows the diagram of the Output Register Block.

In SDR mode, ONEG0 feeds one of the flip-flops that then feeds the output. The flip-flop can be configured as a Dtype or as a latch. In DDR mode, ONEG0 is fed into one register on the positive edge of the clock and OPOS0 is latched. A multiplexer running off the same clock selects the correct register for feeding to the output (D0).

Figure 2-24 shows the design tool DDR primitives. The SDR output register has reset and clock enable available. The additional register for DDR operation does not have reset or clock enable available.

Figure 2-23. Output Register Block

*Latch is transparent when input is low.

Figure 2-24. ODDRXB Primitive

Tristate Register Block

The tristate register block provides the ability to register tri-state control signals from the core of the device before they are passed to the sysIO buffers. The block contains a register for SDR operation and an additional latch for DDR operation. Figure 2-25 shows the diagram of the Tristate Register Block.

In SDR mode, ONEG1 feeds one of the flip-flops that then feeds the output. The flip-flop can be configured a Dtype or latch. In DDR mode, ONEG1 is fed into one register on the positive edge of the clock and OPOS1 is latched. A multiplexer running off the same clock selects the correct register for feeding to the output (D0).

LatticeXP Family Data Sheet DC and Switching Characteristics

November 2007

Data Sheet DS1001

Absolute Maximum Ratings^{1, 2, 3, 4}

	XPE (1.2V)	XPC (1.8V/2.5V/3.3V)
Supply Voltage V _{CC}	0.5 to 1.32V	0.5 to 3.75V
Supply Voltage V _{CCP}	0.5 to 1.32V	0.5 to 3.75V
Supply Voltage V _{CCAUX}	0.5 to 3.75V	0.5 to 3.75V
Supply Voltage V _{CCJ}	0.5 to 3.75V	0.5 to 3.75V
Output Supply Voltage V _{CCIO}	0.5 to 3.75V	0.5 to 3.75V
I/O Tristate Voltage Applied ⁵	0.5 to 3.75V	0.5 to 3.75V
Dedicated Input Voltage Applied ⁵	0.5 to 3.75V	0.5 to 4.25V
Storage Temperature (Ambient)	65 to 150°C	65 to 150°C
Junction Temp. (Ti)	+125°C	+125°C

1. Stress above those listed under the "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation of the device at these or any other conditions outside of those indicated in the operational sections of this specification is not implied.

2. Compliance with the Lattice Thermal Management document is required.

3. All voltages referenced to GND.

4. All chip grounds are connected together to a common package GND plane.

5. Overshoot and undershoot of -2V to $(V_{IHMAX} + 2)$ volts is permitted for a duration of <20ns.

Recommended Operating Conditions³

Symbol	Parameter	Min.	Max.	Units
M.	Core Supply Voltage for 1.2V Devices	1.14	1.26	V
VCC	Core Supply Voltage for 1.8V/2.5V/3.3V Devices	1.71	3.465	V
V	Supply Voltage for PLL for 1.2V Devices	1.14	1.26	V
VCCP	Supply Voltage for PLL for 1.8V/2.5V/3.3V Devices	1.71	3.465	V
V _{CCAUX} ⁴	Auxiliary Supply Voltage	3.135	3.465	V
V _{CCIO} ^{1, 2}	I/O Driver Supply Voltage	1.14	3.465	V
V _{CCJ} ¹	Supply Voltage for IEEE 1149.1 Test Access Port	1.14	3.465	V
t _{JCOM}	Junction Temperature, Commercial Operation	0	85	С
t _{JIND}	Junction Temperature, Industrial Operation	-40	100	С
t _{JFLASHCOM}	Junction Temperature, Flash Programming, Commercial	0	85	С
t _{JFLASHIND}	Junction Temperature, Flash Programming, Industrial	0	85	С

If V_{CCIO} or V_{CCJ} is set to 3.3V, they must be connected to the same power supply as V_{CCAUX}. For the XPE devices (1.2V V_{CC}), if V_{CCIO} or V_{CCJ} is set to 1.2V, they must be connected to the same power supply as V_{CC}.

2. See recommended voltages by I/O standard in subsequent table.

3. The system designer must ensure that the FPGA design stays within the specified junction temperature and package thermal capabilities of the device based on the expected operating frequency, activity factor and environment conditions of the system.

4. V_{CCAUX} ramp rate must not exceed 30mV/µs during power up when transitioning between 0V and 3.3V.

^{© 2007} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Hot Socketing Specifications^{1, 2, 3, 4, 5, 6}

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
I _{DK}	Input or I/O Leakage Current	$0 \le V_{IN} \le V_{IH}$ (MAX.)	-		+/-1000	μΑ

1. Insensitive to sequence of V_{CC} , V_{CCAUX} and V_{CCIO} . However, assumes monotonic rise/fall rates for V_{CC} , V_{CCAUX} and V_{CCIO} . 2. $0 \le V_{CC} \le V_{CC}$ (MAX) or $0 \le V_{CCAUX} \le V_{CCAUX}$ (MAX). 3. $0 \le V_{CCIO} \le V_{CCIO}$ (MAX) for top and bottom I/O banks. 4. $0.2 \le V_{CCIO} \le V_{CCIO}$ (MAX) for left and right I/O banks. 5. I_{DK} is additive to I_{PU} , I_{PW} or I_{BH} . 6. LVCMOS and LVTTL only.

LVPECL

The LatticeXP devices support differential LVPECL standard. This standard is emulated using complementary LVCMOS outputs in conjunction with a parallel resistor across the driver outputs. The LVPECL input standard is supported by the LVDS differential input buffer. The scheme shown in Figure 3-3 is one possible solution for point-to-point signals.

Figure 3-3. Differential LVPECL

	Table 3-3.	LVPECL	DC Condi	tions¹
--	------------	--------	----------	--------

Symbol	Description	Typical	Units
Z _{OUT}	Output impedance	100	ohms
R _P	Driver parallel resistor	187	ohms
R _S	Driver series resistor	100	ohms
R _T	Receiver termination	100	ohms
V _{OH}	Output high voltage	2.03	V
V _{OL}	Output low voltage	1.27	V
V _{OD}	Output differential voltage	0.76	V
V _{CM}	Output common mode voltage	1.65	V
Z _{BACK}	Back impedance	85.7	ohms
I _{DC}	DC output current	12.7	mA

Over Recommended Operating Conditions

1. For input buffer, see LVDS table.

For further information on LVPECL, BLVDS and other differential interfaces please see details of additional technical documentation at the end of the data sheet.

RSDS

The LatticeXP devices support differential RSDS standard. This standard is emulated using complementary LVC-MOS outputs in conjunction with a parallel resistor across the driver outputs. The RSDS input standard is supported by the LVDS differential input buffer. The scheme shown in Figure 3-4 is one possible solution for RSDS standard implementation. Use LVDS25E mode with suggested resistors for RSDS operation. Resistor values in Figure 3-4 are industry standard values for 1% resistors.

Derating Logic Timing

Logic timing provided in the following sections of this data sheet and in the ispLEVER design tools are worst case numbers in the operating range. Actual delays at nominal temperature and voltage for best-case process can be much better than the values given in the tables. The ispLEVER design tool from Lattice can provide logic timing numbers at a particular temperature and voltage.

LatticeXP Internal Timing Parameters¹

		-5		-4		-3		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
PFU/PFF Logic	Mode Timing							
t _{LUT4_PFU}	LUT4 Delay (A to D Inputs to F Output)	—	0.28		0.34		0.40	ns
t _{LUT6_PFU}	LUT6 Delay (A to D Inputs to OFX Output)		0.44		0.53		0.63	ns
t _{LSR_PFU}	Set/Reset to Output of PFU		0.90		1.08		1.29	ns
t _{SUM_PFU}	Clock to Mux (M0,M1) Input Setup Time	0.13		0.15		0.19	_	ns
t _{HM_PFU}	Clock to Mux (M0,M1) Input Hold Time	-0.04		-0.03	—	-0.03	_	ns
t _{SUD_PFU}	Clock to D Input Setup Time	0.13		0.16		0.19	_	ns
t _{HD_PFU}	Clock to D Input Hold Time	-0.03		-0.02	—	-0.02		ns
t _{CK2Q_PFU}	Clock to Q Delay, D-type Register Configuration		0.40		0.48		0.58	ns
t _{LE2Q_PFU}	Clock to Q Delay Latch Configuration		0.53		0.64		0.76	ns
t _{LD2Q_PFU}	D to Q Throughput Delay when Latch is Enabled	—	0.55	—	0.66		0.79	ns
PFU Dual Port M	Nemory Mode Timing							
t _{CORAM_PFU}	Clock to Output		0.40		0.48		0.58	ns
t _{SUDATA_PFU}	Data Setup Time	-0.18		-0.14	—	-0.11	_	ns
t _{HDATA_PFU}	Data Hold Time	0.28		0.34	—	0.40	_	ns
t _{SUADDR_PFU}	Address Setup Time	-0.46		-0.37	—	-0.30	_	ns
t _{HADDR_PFU}	Address Hold Time			0.85	—	1.02	_	ns
t _{SUWREN_PFU}	Write/Read Enable Setup Time			-0.17	—	-0.14	_	ns
t _{HWREN_PFU}	N PFU Write/Read Enable Hold Time			0.40	—	0.48	_	ns
PIC Timing								
PIO Input/Outpu	It Buffer Timing							
t _{IN_PIO}	Input Buffer Delay		0.62		0.72		0.85	ns
t _{OUT_PIO}	Output Buffer Delay	—	2.12		2.54		3.05	ns
IOLOGIC Input/	Output Timing							
t _{SUI_PIO}	Input Register Setup Time (Data Before Clock)	1.35		1.83		2.37	_	ns
t _{HI_PIO}	Input Register Hold Time (Data After Clock)	0.05		0.05	—	0.05		ns
t _{COO_PIO}	Output Register Clock to Output Delay		0.36		0.44		0.52	ns
t _{SUCE_PIO}	Input Register Clock Enable Setup Time	-0.09	—	-0.07	—	-0.06	_	ns
t _{HCE_PIO}	Input Register Clock Enable Hold Time	0.13		0.16	—	0.19	_	ns
t _{SULSR_PIO}	Set/Reset Setup Time	0.19		0.23	—	0.28	_	ns
t _{HLSR_PIO}	Set/Reset Hold Time	-0.14	—	-0.11	—	-0.09	_	ns
EBR Timing								
t _{CO_EBR}	Clock to Output from Address or Data		4.01		4.81		5.78	ns
t _{COO_EBR}	Clock to Output from EBR Output Register		0.81		0.97		1.17	ns
t _{SUDATA_EBR}	Setup Data to EBR Memory	-0.26		-0.21	—	-0.17	_	ns
t _{HDATA_EBR}	Hold Data to EBR Memory	0.41		0.49	—	0.59	_	ns
t _{SUADDR_EBR}	Setup Address to EBR Memory	-0.26		-0.21	—	-0.17	_	ns
t _{HADDR_EBR}	Hold Address to EBR Memory	0.41	—	0.49	—	0.59	—	ns
t _{SUWREN_EBR}	Setup Write/Read Enable to EBR Memory	-0.17	—	-0.13	—	-0.11	—	ns
t _{HWREN_EBR}	Hold Write/Read Enable to EBR Memory	0.26	—	0.31	—	0.37	—	ns
t _{SUCE_EBR}	Clock Enable Setup Time to EBR Output Register	0.19	—	0.23	—	0.28	—	ns
t _{HCE EBR}	Clock Enable Hold Time to EBR Output Register	-0.13	—	-0.10	—	-0.08	—	ns

Over Recommended Operating Conditions

LatticeXP Internal Timing Parameters¹ (Continued)

Over Recommended Operating Conditions

		-	5	-	4	-	3	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{RSTO_EBR}	Reset To Output Delay Time from EBR Output Register	_	1.61	_	1.94	_	2.32	ns
PLL Parameters								
t _{RSTREC}	Reset Recovery to Rising Clock	1.00	_	1.00	-	1.00	—	ns
t _{RSTSU}	Reset Signal Setup Time	1.00	-	1.00	_	1.00	—	ns

1. Internal parameters are characterized but not tested on every device. Timing v.F0.11

LatticeXP Family Timing Adders¹

Over Recommended Opera	ating Conditions
------------------------	------------------

Buffer Type	Description	-5	-4	-3	Units
Input Adjusters	•				
LVDS25E	LVDS 2.5 Emulated	0.5	0.5	0.5	ns
LVDS25	LVDS	0.4	0.4	0.4	ns
BLVDS25	BLVDS	0.5	0.5	0.5	ns
LVPECL33	LVPECL	0.6	0.6	0.6	ns
HSTL18_I	HSTL_18 class I	0.4	0.4	0.4	ns
HSTL18_II	HSTL_18 class II	0.4	0.4	0.4	ns
HSTL18_III	HSTL_18 class III	0.4	0.4	0.4	ns
HSTL18D_I	Differential HSTL 18 class I	0.4	0.4	0.4	ns
HSTL18D_II	Differential HSTL 18 class II	0.4	0.4	0.4	ns
HSTL18D_III	Differential HSTL 18 class III	0.4	0.4	0.4	ns
HSTL15_I	HSTL_15 class I	0.5	0.5	0.5	ns
HSTL15_III	HSTL_15 class III	0.5	0.5	0.5	ns
HSTL15D_I	Differential HSTL 15 class I	0.5	0.5	0.5	ns
HSTL15D_III	Differential HSTL 15 class III	0.5	0.5	0.5	ns
SSTL33_I	SSTL_3 class I	0.6	0.6	0.6	ns
SSTL33_II	SSTL_3 class II	0.6	0.6	0.6	ns
SSTL33D_I	Differential SSTL_3 class I	0.6	0.6	0.6	ns
SSTL33D_II	Differential SSTL_3 class II	0.6	0.6	0.6	ns
SSTL25_I	SSTL_2 class I	0.5	0.5	0.5	ns
SSTL25_II	SSTL_2 class II	0.5	0.5	0.5	ns
SSTL25D_I	Differential SSTL_2 class I	0.5	0.5	0.5	ns
SSTL25D_II	Differential SSTL_2 class II	0.5	0.5	0.5	ns
SSTL18_I	SSTL_18 class I	0.5	0.5	0.5	ns
SSTL18D_I	Differential SSTL_18 class I	0.5	0.5	0.5	ns
LVTTL33	LVTTL	0.2	0.2	0.2	ns
LVCMOS33	LVCMOS 3.3	0.2	0.2	0.2	ns
LVCMOS25	LVCMOS 2.5	0.0	0.0	0.0	ns
LVCMOS18	LVCMOS 1.8	0.1	0.1	0.1	ns
LVCMOS15	LVCMOS 1.5	0.1	0.1	0.1	ns
LVCMOS12	LVCMOS 1.2	0.1	0.1	0.1	ns
PCI33	PCI	0.2	0.2	0.2	ns
Output Adjusters	•				
LVDS25E	LVDS 2.5 Emulated	0.3	0.3	0.3	ns
LVDS25	LVDS 2.5	0.3	0.3	0.3	ns
BLVDS25	BLVDS 2.5	0.3	0.3	0.3	ns
LVPECL33	LVPECL 3.3	0.1	0.1	0.1	ns
HSTL18_I	HSTL_18 class I	0.1	0.1	0.1	ns
HSTL18_II	HSTL_18 class II	0.1	0.1	0.1	ns
HSTL18_III	HSTL_18 class III	0.2	0.2	0.2	ns
HSTL18D_I	Differential HSTL 18 class I	0.1	0.1	0.1	ns
HSTL18D_II	Differential HSTL 18 class II	-0.1	-0.1	-0.1	ns
HSTL18D_III	Differential HSTL 18 class III	0.2	0.2	0.2	ns

LatticeXP Family Timing Adders¹ (Continued)

Over Recommended O	perating Conditions
--------------------	---------------------

Buffer Type	Description	-5	-4	-3	Units
HSTL15_I	HSTL_15 class I	0.2	0.2	0.2	ns
HSTL15_III	HSTL_15 class III	0.2	0.2	0.2	ns
HSTL15D_I	Differential HSTL 15 class I	0.2	0.2	0.2	ns
HSTL15D_III	Differential HSTL 15 class III	0.2	0.2	0.2	ns
SSTL33_I	SSTL_3 class I	0.1	0.1	0.1	ns
SSTL33_II	SSTL_3 class II	0.3	0.3	0.3	ns
SSTL33D_I	Differential SSTL_3 class I	0.1	0.1	0.1	ns
SSTL33D_II	Differential SSTL_3 class II	0.3	0.3	0.3	ns
SSTL25_I	SSTL_2 class I	-0.1	-0.1	-0.1	ns
SSTL25_II	SSTL_2 class II	0.3	0.3	0.3	ns
SSTL25D_I	Differential SSTL_2 class I	-0.1	-0.1	-0.1	ns
SSTL25D_II	Differential SSTL_2 class II	0.3	0.3	0.3	ns
SSTL18_I	SSTL_1.8 class I	0.1	0.1	0.1	ns
SSTL18D_I	Differential SSTL_1.8 class I	0.1	0.1	0.1	ns
LVTTL33_4mA	LVTTL 4mA drive	0.8	0.8	0.8	ns
LVTTL33_8mA	LVTTL 8mA drive	0.5	0.5	0.5	ns
LVTTL33_12mA	LVTTL 12mA drive	0.3	0.3	0.3	ns
LVTTL33_16mA	LVTTL 16mA drive	0.4	0.4	0.4	ns
LVTTL33_20mA	LVTTL 20mA drive	0.3	0.3	0.3	ns
LVCMOS33_2mA	LVCMOS 3.3 2mA drive	0.8	0.8	0.8	ns
LVCMOS33_4mA	LVCMOS 3.3 4mA drive	0.8	0.8	0.8	ns
LVCMOS33_8mA	LVCMOS 3.3 8mA drive	0.5	0.5	0.5	ns
LVCMOS33_12mA	LVCMOS 3.3 12mA drive	0.3	0.3	0.3	ns
LVCMOS33_16mA	LVCMOS 3.3 16mA drive	0.4	0.4	0.4	ns
LVCMOS33_20mA	LVCMOS 3.3 20mA drive	0.3	0.3	0.3	ns
LVCMOS25_2mA	LVCMOS 2.5 2mA drive	0.7	0.7	0.7	ns
LVCMOS25_4mA	LVCMOS 2.5 4mA drive	0.7	0.7	0.7	ns
LVCMOS25_8mA	LVCMOS 2.5 8mA drive	0.4	0.4	0.4	ns
LVCMOS25_12mA	LVCMOS 2.5 12mA drive	0.0	0.0	0.0	ns
LVCMOS25_16mA	LVCMOS 2.5 16mA drive	0.2	0.2	0.2	ns
LVCMOS25_20mA	LVCMOS 2.5 20mA drive	0.4	0.4	0.4	ns
LVCMOS18_2mA	LVCMOS 1.8 2mA drive	0.6	0.6	0.6	ns
LVCMOS18_4mA	LVCMOS 1.8 4mA drive	0.6	0.6	0.6	ns
LVCMOS18_8mA	LVCMOS 1.8 8mA drive	0.4	0.4	0.4	ns
LVCMOS18_12mA	LVCMOS 1.8 12mA drive	0.2	0.2	0.2	ns
LVCMOS18_16mA	LVCMOS 1.8 16mA drive	0.2	0.2	0.2	ns
LVCMOS15_2mA	LVCMOS 1.5 2mA drive	0.6	0.6	0.6	ns
LVCMOS15_4mA	LVCMOS 1.5 4mA drive	0.6	0.6	0.6	ns
LVCMOS15_8mA	LVCMOS 1.5 8mA drive	0.2	0.2	0.2	ns
LVCMOS12_2mA	LVCMOS 1.2 2mA drive	0.4	0.4	0.4	ns
LVCMOS12_6mA	LVCMOS 1.2 6mA drive	0.4	0.4	0.4	ns
PCI33	PCI33	0.3	0.3	0.3	ns

1. General timing numbers based on LVCMOS 2.5, 12mA.

Timing v.F0.11

PICs and DDR Data (DQ) Pins Associated with the DDR Strobe (DQS) Pin

PICs Associated with DQS Strobe	PIO within PIC	Polarity	DDR Strobe (DQS) and Data (DQ) Pins
P[Edge] [n_4]	A	True	DQ
	В	Complement	DQ
P[Edge] [p_3]	A	True	DQ
	В	Complement	DQ
P[Edge] [p_2]	A	True	DQ
	В	Complement	DQ
P[Edge] [p-1]	A	True	DQ
P[Edge] [n]			
	В	Complement	DQ
P[Edge] [n+1]	A	True	[Edge]DQSn
	В	Complement	DQ
P[Edge] [n 2]	A	True	DQ
	В	Complement	DQ
P[Edge] [n 3]	A	True	DQ
	В	Complement	DQ

Notes:

1. "n" is a row/column PIC number.

2. The DDR interface is designed for memories that support one DQS strobe per eight bits of data. In some packages, all the potential DDR data (DQ) pins may not be available.

3. The definition of the PIC numbering is provided in the Signal Names column of the Signal Descriptions table in this data sheet.

LFXP3 & LFXP6 Logic Signal Connections: 144 TQFP (Cont.)

Pin			LFXP3		LFXP6				
Number	Pin Function	Bank Differential Dual Function		Dual Function	Pin Function Bank		Differential	Dual Function	
139	PT6A	0	-	DI	PT9A	0	-	DI	
140	PT5A	0	-	CSN	PT8A	0	-	CSN	
141	PT3B	0	-	VREF2_0	PT6B	0	-	VREF2_0	
142	CFG0	0	-	-	CFG0	0	-	-	
143	CFG1	0	-	-	CFG1	0	-	-	
144	DONE	0	-	-	DONE	0	-	-	

1. Applies to LFXP "C" only.

2. Applies to LFXP "E" only.

3. Supports dedicated LVDS outputs.

LFXP6 & LFXP10 Logic Signal Connections: 256 fpBGA (Cont.)

			LFXP6					
Ball Number	Ball Function	Bank	Differential	Dual Function	Ball Function	Bank	Differential	Dual Function
R8	PB16A	5	Т	-	PB20A	5	Т	-
Т9	PB16B	5	С	-	PB20B	5	С	-
R9	PB17A	4	Т	-	PB21A	4	Т	-
-	GNDIO4	4	-	-	GNDIO4	4	-	-
P9	PB17B	4	С	-	PB21B	4	С	-
T10	PB18A	4	Т	PCLKT4_0	PB22A	4	Т	PCLKT4_0
T11	PB18B	4	С	PCLKC4_0	PB22B	4	С	PCLKC4_0
R10	PB19A	4	Т	-	PB23A	4	Т	-
P10	PB19B	4	С	-	PB23B	4	С	-
N9	PB20A	4	-	-	PB24A	4	-	-
M9	PB21B	4	-	-	PB25B	4	-	-
R12	PB22A	4	Т	DQS	PB26A	4	Т	DQS
-	GNDIO4	4	-	-	GNDIO4	4	-	-
T12	PB22B	4	С	VREF1_4	PB26B	4	С	VREF1_4
P13	PB23A	4	Т	-	PB27A	4	Т	-
R13	PB23B	4	С	-	PB27B	4	С	-
M11	PB24A	4	Т	-	PB28A	4	Т	-
N11	PB24B	4	С	-	PB28B	4	С	-
N10	PB25A	4	Т	-	PB29A	4	Т	-
M10	PB25B	4	С	-	PB29B	4	С	-
T13	PB26A	4	Т	-	PB30A	4	Т	-
-	GNDIO4	4	-	-	GNDIO4	4	-	-
P14	PB26B	4	С	-	PB30B	4	С	-
R11	PB27A	4	Т	VREF2_4	PB31A	4	Т	VREF2_4
P12	PB27B	4	С	-	PB31B	4	С	-
T14	PB28A	4	-	-	PB32A	4	-	-
R14	PB29B	4	-	-	PB33B	4	-	-
P11	PB30A	4	Т	DQS	PB34A	4	Т	DQS
N12	PB30B	4	С	-	PB34B	4	С	-
T15	PB31A	4	Т	-	PB35A	4	Т	-
-	GNDIO4	4	-	-	GNDIO4	4	-	-
R15	PB31B	4	С	-	PB35B	4	С	-
-	GNDIO3	3	-	-	GNDIO3	3	-	-
P15	PR26B	3	C ³	-	PR34B	3	С	RLM0_PLLC_FB_A
N15	PR26A	3	T ³	-	PR34A	3	Т	RLM0_PLLT_FB_A
P16	PR24B	3	C³	-	PR33B	3	C ³	-
R16	PR24A	3	T ³	DQS	PR33A	3	T ³	DQS
M15	PR15B	3	-	-	PR32B	3	-	-
N14	PR23B	3	-	VREF1_3	PR31A	3	-	VREF1_3
-	GNDIO3	3	-	-	GNDIO3	3	-	-
M14	PR25B	3	С	-	PR29B	3	С	-
L13	PR25A	3	Т	-	PR29A	3	Т	-

LFXP10, LFXP15 & LFXP20 Logic Signal Connections: 388 fpBGA

		I	FXP1)		L	_FXP1	5		L	FXP2)
Ball Number	Ball Function	Bank	Diff.	Dual Function	Ball Function	Bank	Diff.	Dual Function	Ball Function	Bank	Diff.	Dual Function
F4	PROGRAMN	7	-	-	PROGRAMN	7	-	-	PROGRAMN	7	-	-
G4	CCLK	7	-	-	CCLK	7	-	-	CCLK	7	-	-
-	GNDIO7	7	-	-	GNDIO7	7	-	-	GNDIO7	7	-	-
D2	PL2A	7	T ³	-	PL6A	7	T ³	-	PL6A	7	T ³	-
D1	PL2B	7	C ³	-	PL6B	7	C ³	-	PL6B	7	C ³	-
-	GNDIO7	7	-	-	GNDIO7	7	-	-	GNDIO7	7	-	-
E2	PL3A	7	Т	LUM0_PLLT_FB_A	PL7A	7	Т	LUM0_PLLT_FB_A	PL7A	7	Т	LUM0_PLLT_FB_A
E3	PL3B	7	С	LUM0_PLLC_FB_A	PL7B	7	С	LUM0_PLLC_FB_A	PL7B	7	С	LUM0_PLLC_FB_A
F3	PL4A	7	T ³	-	PL8A	7	T ³	-	PL8A	7	T ³	-
F2	PL4B	7	C ³	-	PL8B	7	C ³	-	PL8B	7	C ³	-
H4	PL5A	7	-	-	PL9A	7	-	-	PL9A	7	-	-
H3	PL6B	7	-	VREF1_7	PL10B	7	-	VREF1_7	PL10B	7	-	VREF1_7
G3	PL7A	7	T ³	DQS	PL11A	7	T ³	DQS	PL11A	7	T ³	DQS
G2	PL7B	7	C ³	-	PL11B	7	C ³	-	PL11B	7	C ³	-
-	GNDIO7	7	-	-	GNDIO7	7	-	-	GNDIO7	7	-	-
F1	PL8A	7	Т	-	PL12A	7	Т	-	PL12A	7	Т	-
E1	PL8B	7	С	-	PL12B	7	С	-	PL12B	7	С	-
J4	PL9A	7	T ³	-	PL13A	7	T ³	-	PL13A	7	T ³	-
K4	PL9B	7	C ³	-	PL13B	7	C ³	-	PL13B	7	C ³	-
G1	PL11A	7	T ³	-	PL15A	7	T ³	-	PL15A	7	T ³	-
H2	PL11B	7	C ³	-	PL15B	7	C ³	-	PL15B	7	C ³	-
-	GNDIO7	7	-	-	GNDIO7	7	-	-	GNDIO7	7	-	-
J2	PL12A	7	т	LUM0 PLLT IN A	PL16A	7	т	LUM0 PLLT IN A	PL16A	7	т	LUM0 PLLT IN A
H1	PL12B	7	С	LUM0 PLLC IN A	PL16B	7	С	LUM0 PLLC IN A	PL16B	7	С	LUM0 PLLC IN A
J1	PL13A	7	T ³		PL17A	7	T ³		PL17A	7	T ³	
K2	PL13B	7	C ³	-	PL17B	7	C ³	-	PL17B	7	C ³	-
КЗ	PL14A	7	_	VREF2 7	PL18A	7	-	VREF2 7	PL18A	7	-	VREF2 7
J3	PL15B	7	-	-	PL19B	7	-	-	PL19B	7	-	-
K1	PL16A	7	T ³	DQS	PL20A	7	T ³	DQS	PL20A	7	T ³	DQS
-	GNDIO7	7	-		GNDIO7	7	-		GNDIO7	7	-	
L2	PL16B	7	C ³	-	PL20B	7	C ³	-	PL20B	7	C ³	-
13	PI 17A	7	T	-	PI 21A	7	Т	-	PI 21A	7	T	-
14	PI 17B	7	C	-	PI 21B	7	C	-	PI 21B	7	C	-
11	PI 18A	7	T ³	-	PI 22A	7	т ³	-	PI 22A	7	T ³	-
 M1	PI 18B	7	C ³	-	PI 22B	7	C ³	-	PI 22B	7	C ³	-
M2	VCCP0	-	-	-	VCCP0	-	-	-	VCCP0	-	-	_
N1	GNDP0	-	-	-	GNDP0	-	-	-	GNDP0	-	-	_
M3	PI 19A	6	T ³	_	PI 23A	6	T ³	_	PI 27A	6	T ³	_
M4	PI 19B	6	С ³	_	PL23B	6	C ³	_	PI 27B	6	C ³	_
P1		6	т	PCI KT6 0	PI 24A	6	т	PCI KT6 0	PI 284	6	т	PCLKT6 0
	GNDIO6	6		-		6		-	GNDIO6	6	-	-
N2	PI 20B	6	C C			6	C C		PI 28B	6		
R1		6	т ³	-	PI 25A	6	т ³			6	т ³	
P2	PL 21B	6	- C ³		PL 25B	6	- C ³	_	PI 20B	6	C ³	_
N2	PI 2210	6	-		PI 26A	6	-	-	PI 204	6	-	-
N/A		6	-	VREE1 6		6				6	-	
T1		6	- Т ³			6	- т ³		DI 22A	6	- Т ³	
- 11 - D0		6	C ³	000		6	∩ ³	003	PLOZA	6	C ³	000
n2		0	<u> </u>	-		6	U.	-		6	U.	-
-	GINDIO6	6	-	-	GINDIO6	0	-	-	GINDIO6	0	-	-

LFXP10, LFXP15 & LFXP20 Logic Signal Connections: 388 fpBGA (Cont.)

		I	LFXP10)		I	FXP15	5		L	FXP20)
Ball Number	Ball Function	Bank	Diff.	Dual Function	Ball Function	Bank	Diff.	Dual Function	Ball Function	Bank	Diff.	Dual Function
Y10	PB11B	5	С	-	PB16B	5	С	-	PB20B	5	С	-
AA7	PB12A	5	Т	-	PB17A	5	Т	-	PB21A	5	Т	-
AB7	PB12B	5	С	VREF2_5	PB17B	5	С	VREF2_5	PB21B	5	С	VREF2_5
Y7	PB13A	5	Т	-	PB18A	5	Т	-	PB22A	5	Т	-
-	GNDIO5	5	-	-	GNDIO5	5	-	-	GNDIO5	5	-	-
AA8	PB13B	5	С	-	PB18B	5	С	-	PB22B	5	С	-
AB8	PB14A	5	Т	-	PB19A	5	Т	-	PB23A	5	Т	-
Y8	PB14B	5	С	-	PB19B	5	С	-	PB23B	5	С	-
AB9	PB15A	5	Т	-	PB20A	5	Т	-	PB24A	5	Т	-
AA9	PB15B	5	С	-	PB20B	5	С	-	PB24B	5	С	-
W10	PB16A	5	-	-	PB21A	5	-	-	PB25A	5	-	-
W11	PB17B	5	-	-	PB22B	5	-	-	PB26B	5	-	-
AB10	PB18A	5	Т	DQS	PB23A	5	Т	DQS	PB27A	5	Т	DQS
AA10	PB18B	5	С	-	PB23B	5	С	-	PB27B	5	С	-
-	GNDIO5	5	-	-	GNDIO5	5	-	-	GNDIO5	5	-	-
AA11	PB19A	5	Т	-	PB24A	5	Т	-	PB28A	5	Т	-
AB11	PB19B	5	С	-	PB24B	5	С	-	PB28B	5	С	-
Y11	PB20A	5	Т	-	PB25A	5	Т	-	PB29A	5	Т	-
Y12	PB20B	5	С	-	PB25B	5	С	-	PB29B	5	С	-
AB12	PB21A	4	т	-	PB26A	4	Т	-	PB30A	4	Т	-
AA12	PB21B	4	С	-	PB26B	4	С	-	PB30B	4	С	-
AB13	PB22A	4	т	PCLKT4 0	PB27A	4	Т	PCLKT4 0	PB31A	4	Т	PCLKT4 0
AA13	PB22B	4	С	PCLKC4 0	PB27B	4	С	PCLKC4 0	PB31B	4	С	PCLKC4 0
-	GNDIO4	4	-	-	GNDIO4	4	-	-	GNDIO4	4	-	-
AA14	PB23A	4	т	-	PB28A	4	т	-	PB32A	4	т	-
AB14	PB23B	4	C	-	PB28B	4	C	-	PB32B	4	C	-
W12	PB24A	4	-	-	PB29A	4	-	-	PB33A	4	-	-
W13	PB25B	4	-	_	PB30B	4	-	_	PB34B	4	-	_
AA15	PB26A	4	т	DOS	PB31A	4	т	DOS	PB35A	4	т	DOS
AB15	PB26B	4	C .	VBEE1 4	PB31B	4	C	VBEE1 4	PB35B	4	C	VBEE1 4
AA16	PB27A	4	т	-	PB32A	4	т	-	PB36A	4	т	-
AB16	PB27B	4	C .	_	PB32B	4	C		PB36B	4	C	_
V17	PB284	4	т		PB33A	4	т		PB374	4	т	-
		4	-			4		_	GNDIOA	4		_
۵۵17	PR28R	4	C		PB33B	4	C	_	PB37B	4	0	_
V13	PB20A	4	т		PB34A	4	т		PB38A	4	т	-
V14	PB20B	4			PB3/B	4	Ċ		PB38B	4	· ·	-
ΔB17	PB30A	4	т		PB35A	4	т		PB30A	4	т	-
V19	DB20B	4	- -	_	DB25B	4	· C	_	DB20B	4	- -	_
110	P D J D	4	т		PD35D	4	т		PD39D	4	т	
AA IO	PD31A	4		VNEF2_4	PD30A	4	-	VNEF2_4	FD40A	4		VNEF2_4
AB18	PD31D	4	C	-	PD30D	4	U	-	PD40D	4	U	-
119	PD32A	4	-	-	PD3/A	4	-	-	PD41A	4	-	-
AB19	PDJJD	4	-	-		4	-	-		4	-	-
-		4	-	-		4	-	-		4	-	-
AA19	PB34A	4		DQS	PB39A	4		DQS	PB43A	4		DQS
Y20	PB34B	4	С -	-	PB39B	4	С —	-	PB43B	4	с -	-
W14	PB35A	4	T	-	PB40A	4	ſ	-	PB44A	4	T	-
W15	PB35B	4	С	-	PB40B	4	С	-	PB44B	4	С	-
AB20	PB36A	4	Т	-	PB41A	4	Т	-	PB45A	4	Т	-

LFXP15 & LFXP20 Logic Signal Connections: 484 fpBGA (Cont.)

			LFXP15		LFXP20			
Ball Number	Ball Function	Bank	Differential	Dual Function	Ball Function	Bank	Differential	Dual Function
T6	PL41A	6	Т	-	PL45A	6	Т	-
T5	PL41B	6	С	-	PL45B	6	С	-
-	GNDIO6	6	-	-	GNDIO6	6	-	-
U3	PL42A	6	T ³	-	PL46A	6	T ³	-
U4	PL42B	6	C ³	-	PL46B	6	C ³	-
V4	PL43A	6	-	-	PL47A	6	-	-
W4	SLEEPN ¹ / TOE ²	-	-	-	SLEEPN ¹ / TOE ²	-	-	-
W5	INITN	5	-	-	INITN	5	-	-
Y3	-	-	-	-	PB3B	5	-	-
-	GNDIO5	5	-	-	GNDIO5	5	-	-
U5	-	-	-	-	PB4A	5	Т	-
V5	-	-	-	-	PB4B	5	С	-
Y4	-	-	-	-	PB5A	5	Т	-
Y5	-	-	-	-	PB5B	5	С	-
V6	-	-	-	-	PB6A	5	Т	-
-	GNDIO5	5	-	-	GNDIO5	5	-	-
U6	-	-	-	-	PB6B	5	С	-
W6	PB3A	5	Т	-	PB7A	5	Т	-
Y6	PB3B	5	С	-	PB7B	5	С	-
AA2	PB4A	5	Т	-	PB8A	5	Т	-
AA3	PB4B	5	С	-	PB8B	5	С	-
V7	PB5A	5	-	-	PB9A	5	-	-
U7	PB6B	5	-	-	PB10B	5	-	-
Y7	PB7A	5	Т	DQS	PB11A	5	Т	DQS
W7	PB7B	5	С	-	PB11B	5	С	-
AA4	PB8A	5	Т	-	PB12A	5	Т	-
-	GNDIO5	5	-	-	GNDIO5	5	-	-
AA5	PB8B	5	С	-	PB12B	5	С	-
AB3	PB9A	5	Т	-	PB13A	5	Т	-
AB4	PB9B	5	С	-	PB13B	5	С	-
AA6	PB10A	5	Т	-	PB14A	5	Т	-
AA7	PB10B	5	С	-	PB14B	5	С	-
U8	PB11A	5	Т	-	PB15A	5	Т	-
V8	PB11B	5	С	-	PB15B	5	С	-
Y8	PB12A	5	Т	VREF1_5	PB16A	5	Т	VREF1_5
-	GNDIO5	5	-	-	GNDIO5	5	-	-
W8	PB12B	5	С	-	PB16B	5	С	-
V9	PB13A	5	-	-	PB17A	5	-	-
U9	PB14B	5	-	-	PB18B	5	-	-
Y9	PB15A	5	Т	DQS	PB19A	5	Т	DQS
W9	PB15B	5	С	-	PB19B	5	С	-

			•	,			
Part Number	I/Os	Voltage	Grade	Package	Pins	Temp.	LUTs
LFXP15C-3F484I	300	1.8/2.5/3.3V	-3	fpBGA	484	IND	15.5K
LFXP15C-4F484I	300	1.8/2.5/3.3V	-4	fpBGA	484	IND	15.5K
LFXP15C-3F388I	268	1.8/2.5/3.3V	-3	fpBGA	388	IND	15.5K
LFXP15C-4F388I	268	1.8/2.5/3.3V	-4	fpBGA	388	IND	15.5K
LFXP15C-3F256I	188	1.8/2.5/3.3V	-3	fpBGA	256	IND	15.5K
LFXP15C-4F256I	188	1.8/2.5/3.3V	-4	fpBGA	256	IND	15.5K

Industrial (Cont.)

Part Number	l/Os	Voltage	Grade	Package	Pins	Temp.	LUTs
LFXP20C-3F484I	340	1.8/2.5/3.3V	-3	fpBGA	484	IND	19.7K
LFXP20C-4F484I	340	1.8/2.5/3.3V	-4	fpBGA	484	IND	19.7K
LFXP20C-3F388I	268	1.8/2.5/3.3V	-3	fpBGA	388	IND	19.7K
LFXP20C-4F388I	268	1.8/2.5/3.3V	-4	fpBGA	388	IND	19.7K
LFXP20C-3F256I	188	1.8/2.5/3.3V	-3	fpBGA	256	IND	19.7K
LFXP20C-4F256I	188	1.8/2.5/3.3V	-4	fpBGA	256	IND	19.7K

Part Number	l/Os	Voltage	Grade	Package	Pins	Temp.	LUTs
LFXP3E-3Q208I	136	1.2V	-3	PQFP	208	IND	3.1K
LFXP3E-4Q208I	136	1.2V	-4	PQFP	208	IND	3.1K
LFXP3E-3T144I	100	1.2V	-3	TQFP	144	IND	3.1K
LFXP3E-4T144I	100	1.2V	-4	TQFP	144	IND	3.1K
LFXP3E-3T100I	62	1.2V	-3	TQFP	100	IND	3.1K
LFXP3E-4T100I	62	1.2V	-4	TQFP	100	IND	3.1K

Part Number	I/Os	Voltage	Grade	Package	Pins	Temp.	LUTs
LFXP6E-3F256I	188	1.2V	-3	fpBGA	256	IND	5.8K
LFXP6E-4F256I	188	1.2V	-4	fpBGA	256	IND	5.8K
LFXP6E-3Q208I	142	1.2V	-3	PQFP	208	IND	5.8K
LFXP6E-4Q208I	142	1.2V	-4	PQFP	208	IND	5.8K
LFXP6E-3T144I	100	1.2V	-3	TQFP	144	IND	5.8K
LFXP6E-4T144I	100	1.2V	-4	TQFP	144	IND	5.8K

Part Number	I/Os	Voltage	Grade	Package	Pins	Temp.	LUTs
LFXP10E-3F388I	244	1.2V	-3	fpBGA	388	IND	9.7K
LFXP10E-4F388I	244	1.2V	-4	fpBGA	388	IND	9.7K
LFXP10E-3F256I	188	1.2V	-3	fpBGA	256	IND	9.7K
LFXP10E-4F256I	188	1.2V	-4	fpBGA	256	IND	9.7K