

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Detailo	
Product Status	Obsolete
Number of LABs/CLBs	-
Number of Logic Elements/Cells	10000
Total RAM Bits	221184
Number of I/O	188
Number of Gates	-
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	256-BGA
Supplier Device Package	256-FPBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lfxp10e-3f256i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

LatticeXP Family Data Sheet Introduction

July 2007

Features

■ Non-volatile, Infinitely Reconfigurable

- Instant-on powers up in microseconds
- No external configuration memory
- Excellent design security, no bit stream to intercept
- Reconfigure SRAM based logic in milliseconds
- SRAM and non-volatile memory programmable through system configuration and JTAG ports
- Sleep Mode
 - Allows up to 1000x static current reduction
- TransFR[™] Reconfiguration (TFR)
 In-field logic update while system operates
- Extensive Density and Package Options
 - 3.1K to 19.7K LUT4s
 - 62 to 340 I/Os
 - Density migration supported

Embedded and Distributed Memory

- 54 Kbits to 396 Kbits sysMEM[™] Embedded Block RAM
- Up to 79 Kbits distributed RAM
- Flexible memory resources:
 - Distributed and block memory

■ Flexible I/O Buffer

• Programmable sysIO[™] buffer supports wide range of interfaces:

Data Sheet DS1001

- LVCMOS 3.3/2.5/1.8/1.5/1.2
- LVTTL
- SSTL 18 Class I
- SSTL 3/2 Class I, II
- HSTL15 Class I, III
- HSTL 18 Class I, II, III
- PCI
- LVDS, Bus-LVDS, LVPECL, RSDS
- Dedicated DDR Memory Support
 - Implements interface up to DDR333 (166MHz)

■ sysCLOCK[™] PLLs

- Up to 4 analog PLLs per device
- Clock multiply, divide and phase shifting
- System Level Support
 - IEEE Standard 1149.1 Boundary Scan, plus ispTRACY™ internal logic analyzer capability
 - Onboard oscillator for configuration
 - Devices operate with 3.3V, 2.5V, 1.8V or 1.2V power supply

Device	LFXP3	LFXP6	LFXP10	LFXP15	LFXP20
PFU/PFF Rows	16	24	32	40	44
PFU/PFF Columns	24	30	38	48	56
PFU/PFF (Total)	384	720	1216	1932	2464
LUTs (K)	3	6	10	15	20
Distributed RAM (KBits)	12	23	39	61	79
EBR SRAM (KBits)	54	72	216	324	396
EBR SRAM Blocks	6	8	24	36	44
V _{CC} Voltage	1.2/1.8/2.5/3.3V	1.2/1.8/2.5/3.3V	1.2/1.8/2.5/3.3V	1.2/1.8/2.5/3.3V	1.2/1.8/2.5/3.3V
PLLs	2	2	4	4	4
Max. I/O	136	188	244	300	340
Packages and I/O Combination	ons:				
100-pin TQFP (14 x 14 mm)	62				
144-pin TQFP (20 x 20 mm)	100	100			
208-pin PQFP (28 x 28 mm)	136	142			
256-ball fpBGA (17 x 17 mm)		188	188	188	188
388-ball fpBGA (23 x 23 mm)			244	268	268
484-ball fpBGA (23 x 23 mm)				300	340

Table 1-1. LatticeXP Family Selection Guide

© 2007 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Introduction

The LatticeXP family of FPGA devices combine logic gates, embedded memory and high performance I/Os in a single architecture that is both non-volatile and infinitely reconfigurable to support cost-effective system designs.

The re-programmable non-volatile technology used in the LatticeXP family is the next generation ispXP[™] technology. With this technology, expensive external configuration memories are not required and designs are secured from unauthorized read-back. In addition, instant-on capability allows for easy interfacing in many applications.

The ispLEVER[®] design tool from Lattice allows large complex designs to be efficiently implemented using the LatticeXP family of FPGA devices. Synthesis library support for LatticeXP is available for popular logic synthesis tools. The ispLEVER tool uses the synthesis tool output along with the constraints from its floor planning tools to place and route the design in the LatticeXP device. The ispLEVER tool extracts the timing from the routing and backannotates it into the design for timing verification.

Lattice provides many pre-designed IP (Intellectual Property) ispLeverCORE[™] modules for the LatticeXP family. By using these IPs as standardized blocks, designers are free to concentrate on the unique aspects of their design, increasing their productivity.

Table 2-6. sysMEM Block Configurations

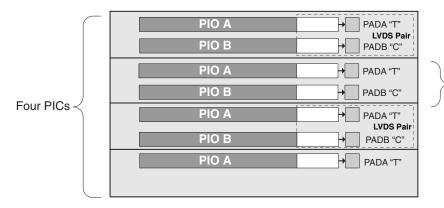
Memory Mode	Configurations
Single Port	8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9 512 x 18 256 x 36
True Dual Port	8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9 512 x 18
Pseudo Dual Port	8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9 512 x 18 256 x 36

Bus Size Matching

All of the multi-port memory modes support different widths on each of the ports. The RAM bits are mapped LSB word 0 to MSB word 0, LSB word 1 to MSB word 1 and so on. Although the word size and number of words for each port varies, this mapping scheme applies to each port.

RAM Initialization and ROM Operation

If desired, the contents of the RAM can be pre-loaded during device configuration. By preloading the RAM block during the chip configuration cycle and disabling the write controls, the sysMEM block can also be utilized as a ROM.


Memory Cascading

Larger and deeper blocks of RAMs can be created using EBR sysMEM Blocks. Typically, the Lattice design tools cascade memory transparently, based on specific design inputs.

Single, Dual and Pseudo-Dual Port Modes

Figure 2-14 shows the four basic memory configurations and their input/output names. In all the sysMEM RAM modes the input data and address for the ports are registered at the input of the memory array. The output data of the memory is optionally registered at the output.

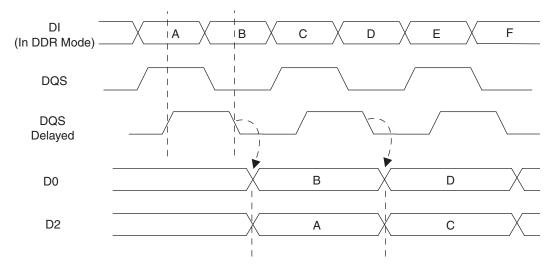
Figure 2-18. Group of Seven PIOs

One PIO Pair

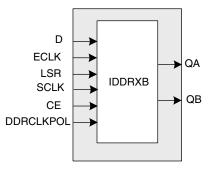
Figure 2-19. DQS Routing

	PIO A PIO B		PADA "T" LVDS Pair PADB "C"
	PIO A	`	PADA "T"
→	PIO B	←	PADB "C"
	PIO A		PADA "T" LVDS Pair
	PIO B	<u> </u>	PADB "C"
	PIO A	F.	PADA "T"
→	PIO B	►	PADB "C"
→	PIO A	sysIO Buffer Delay	signed DQS Pin PADA "T" LVDS Pair
→	PIO B	•	PADB "C"
→	PIO A	+	PADA "T"
→	PIO B		PADB "C"
		 → PIO B → PIO A → PIO B → PIO B → PIO A → PIO B → PIO A 	$ \begin{array}{c} \rightarrow & \text{PIO B} \\ \hline & \text{PIO A} \\ \hline & \text{PIO B} \\ \hline & \text{PIO A} \\ \hline & \text{PIO B} \\ \hline & \text{PIO B} \\ \hline & \text{PIO A} \\ \hline & \text{PIO A} \\ \hline & \text{PIO A} \\ \hline & \text{PIO B} \\ \hline & \text{PIO B} \\ \hline & \text{PIO B} \\ \hline & \text{PIO A} \\ \hline \end{array} $

ΡΙΟ


The PIO contains four blocks: an input register block, output register block, tristate register block and a control logic block. These blocks contain registers for both single data rate (SDR) and double data rate (DDR) operation along with the necessary clock and selection logic. Programmable delay lines used to shift incoming clock and data signals are also included in these blocks.

Input Register Block


The input register block contains delay elements and registers that can be used to condition signals before they are passed to the device core. Figure 2-20 shows the diagram of the input register block.

Input signals are fed from the sysIO buffer to the input register block (as signal DI). If desired the input signal can bypass the register and delay elements and be used directly as a combinatorial signal (INDD), a clock (INCK) and

Figure 2-22. INDDRXB Primitive

Output Register Block

The output register block provides the ability to register signals from the core of the device before they are passed to the sysIO buffers. The block contains a register for SDR operation that is combined with an additional latch for DDR operation. Figure 2-23 shows the diagram of the Output Register Block.

In SDR mode, ONEG0 feeds one of the flip-flops that then feeds the output. The flip-flop can be configured as a Dtype or as a latch. In DDR mode, ONEG0 is fed into one register on the positive edge of the clock and OPOS0 is latched. A multiplexer running off the same clock selects the correct register for feeding to the output (D0).

Figure 2-24 shows the design tool DDR primitives. The SDR output register has reset and clock enable available. The additional register for DDR operation does not have reset or clock enable available.

Polarity Control Logic

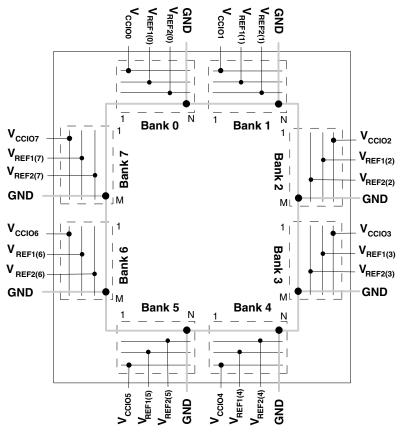
In a typical DDR Memory interface design, the phase relation between the incoming delayed DQS strobe and the internal system Clock (during the READ cycle) is unknown.

The LatticeXP family contains dedicated circuits to transfer data between these domains. To prevent setup and hold violations at the domain transfer between DQS (delayed) and the system Clock a clock polarity selector is used. This changes the edge on which the data is registered in the synchronizing registers in the input register block. This requires evaluation at the start of the each READ cycle for the correct clock polarity.

Prior to the READ operation in DDR memories DQS is in tristate (pulled by termination). The DDR memory device drives DQS low at the start of the preamble state. A dedicated circuit detects this transition. This signal is used to control the polarity of the clock to the synchronizing registers.

sysIO Buffer

Each I/O is associated with a flexible buffer referred to as a sysIO buffer. These buffers are arranged around the periphery of the device in eight groups referred to as Banks. The sysIO buffers allow users to implement the wide variety of standards that are found in today's systems including LVCMOS, SSTL, HSTL, LVDS and LVPECL.


sysIO Buffer Banks

LatticeXP devices have eight sysIO buffer banks; each is capable of supporting multiple I/O standards. Each sysIO bank has its own I/O supply voltage (V_{CCIO}), and two voltage references V_{REF1} and V_{REF2} resources allowing each bank to be completely independent from each other. Figure 2-28 shows the eight banks and their associated supplies.

In the LatticeXP devices, single-ended output buffers and ratioed input buffers (LVTTL, LVCMOS, PCI and PCI-X) are powered using V_{CCIO} . LVTTL, LVCMOS33, LVCMOS25 and LVCMOS12 can also be set as a fixed threshold input independent of V_{CCIO} . In addition to the bank V_{CCIO} supplies, the LatticeXP devices have a V_{CC} core logic power supply, and a V_{CCAUX} supply that power all differential and referenced buffers.

Each bank can support up to two separate VREF voltages, VREF1 and VREF2 that set the threshold for the referenced input buffers. In the LatticeXP devices, a dedicated pin in a bank can be configured to be a reference voltage supply pin. Each I/O is individually configurable based on the bank's supply and reference voltages.

Figure 2-28. LatticeXP Banks

Note: N and M are the maximum number of I/Os per bank.

LatticeXP devices contain two types of sysIO buffer pairs.

1. Top and Bottom sysIO Buffer Pair (Single-Ended Outputs Only)

The sysIO buffer pairs in the top and bottom banks of the device consist of two single-ended output drivers and two sets of single-ended input buffers (both ratioed and referenced). The referenced input buffer can also be configured as a differential input.

The two pads in the pair are described as "true" and "comp", where the true pad is associated with the positive side of the differential input buffer and the comp (complementary) pad is associated with the negative side of the differential input buffer.

Only the I/Os on the top and bottom banks have PCI clamps. Note that the PCI clamp is enabled after $V_{CC,}$ V_{CCAUX} and V_{CCIO} are at valid operating levels and the device has been configured.

2. Left and Right sysIO Buffer Pair (Differential and Single-Ended Outputs)

The sysIO buffer pairs in the left and right banks of the device consist of two single-ended output drivers, two sets of single-ended input buffers (both ratioed and referenced) and one differential output driver. The referenced input buffer can also be configured as a differential input. In these banks the two pads in the pair are described as "true" and "comp", where the true pad is associated with the positive side of the differential I/O, and the comp (complementary) pad is associated with the negative side of the differential I/O.

Select I/Os in the left and right banks have LVDS differential output drivers. Refer to the Logic Signal Connections tables for more information.

LatticeXP Family Timing Adders¹ (Continued)

Buffer Type	Description	-5	-4	-3	Units
HSTL15_I	HSTL_15 class I	0.2	0.2	0.2	ns
HSTL15_III	HSTL_15 class III	0.2	0.2	0.2	ns
HSTL15D_I	Differential HSTL 15 class I	0.2	0.2	0.2	ns
HSTL15D_III	Differential HSTL 15 class III	0.2	0.2	0.2	ns
SSTL33_I	SSTL_3 class I	0.1	0.1	0.1	ns
SSTL33_II	SSTL_3 class II	0.3	0.3	0.3	ns
SSTL33D_I	Differential SSTL_3 class I	0.1	0.1	0.1	ns
SSTL33D_II	Differential SSTL_3 class II	0.3	0.3	0.3	ns
SSTL25_I	SSTL_2 class I	-0.1	-0.1	-0.1	ns
SSTL25_II	SSTL_2 class II	0.3	0.3	0.3	ns
SSTL25D_I	Differential SSTL_2 class I	-0.1	-0.1	-0.1	ns
SSTL25D_II	Differential SSTL_2 class II	0.3	0.3	0.3	ns
SSTL18_I	SSTL_1.8 class I	0.1	0.1	0.1	ns
SSTL18D_I	Differential SSTL_1.8 class I	0.1	0.1	0.1	ns
VTTL33_4mA	LVTTL 4mA drive	0.8	0.8	0.8	ns
VTTL33_8mA	LVTTL 8mA drive	0.5	0.5	0.5	ns
VTTL33_12mA	LVTTL 12mA drive	0.3	0.3	0.3	ns
VTTL33_16mA	LVTTL 16mA drive	0.4	0.4	0.4	ns
VTTL33_20mA	LVTTL 20mA drive	0.3	0.3	0.3	ns
VCMOS33_2mA	LVCMOS 3.3 2mA drive	0.8	0.8	0.8	ns
VCMOS33_4mA	LVCMOS 3.3 4mA drive	0.8	0.8	0.8	ns
VCMOS33_8mA	LVCMOS 3.3 8mA drive	0.5	0.5	0.5	ns
VCMOS33_12mA	LVCMOS 3.3 12mA drive	0.3	0.3	0.3	ns
LVCMOS33_16mA	LVCMOS 3.3 16mA drive	0.4	0.4	0.4	ns
LVCMOS33_20mA	LVCMOS 3.3 20mA drive	0.3	0.3	0.3	ns
LVCMOS25_2mA	LVCMOS 2.5 2mA drive	0.7	0.7	0.7	ns
LVCMOS25_4mA	LVCMOS 2.5 4mA drive	0.7	0.7	0.7	ns
VCMOS25_8mA	LVCMOS 2.5 8mA drive	0.4	0.4	0.4	ns
VCMOS25_12mA	LVCMOS 2.5 12mA drive	0.0	0.0	0.0	ns
VCMOS25_16mA	LVCMOS 2.5 16mA drive	0.2	0.2	0.2	ns
VCMOS25_20mA	LVCMOS 2.5 20mA drive	0.4	0.4	0.4	ns
VCMOS18_2mA	LVCMOS 1.8 2mA drive	0.6	0.6	0.6	ns
VCMOS18_4mA	LVCMOS 1.8 4mA drive	0.6	0.6	0.6	ns
	LVCMOS 1.8 8mA drive	0.4	0.4	0.4	ns
VCMOS18_12mA	LVCMOS 1.8 12mA drive	0.2	0.2	0.2	ns
VCMOS18_16mA	LVCMOS 1.8 16mA drive	0.2	0.2	0.2	ns
	LVCMOS 1.5 2mA drive	0.6	0.6	0.6	ns
	LVCMOS 1.5 4mA drive	0.6	0.6	0.6	ns
	LVCMOS 1.5 8mA drive	0.2	0.2	0.2	ns
VCMOS12_2mA	LVCMOS 1.2 2mA drive	0.4	0.4	0.4	ns
LVCMOS12_6mA	LVCMOS 1.2 6mA drive	0.4	0.4	0.4	ns
PCI33	PCI33	0.3	0.3	0.3	ns

1. General timing numbers based on LVCMOS 2.5, 12mA.

Timing v.F0.11

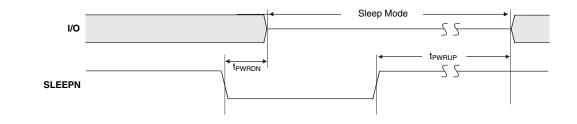
sysCLOCK PLL Timing

Parameter	Descriptions	Conditions	Min.	Тур.	Max.	Units
f _{IN}	Input Clock Frequency (CLKI, CLKFB)		25	—	375	MHz
f _{OUT}	Output Clock Frequency (CLKOP, CLKOS)		25	—	375	MHz
f _{OUT2}	K-Divider Output Frequency (CLKOK)		0.195	_	187.5	MHz
f _{VCO}	PLL VCO Frequency		375	—	750	MHz
f _{PFD}	Phase Detector Input Frequency		25		_	MHz
AC Characte	eristics					
t _{DT}	Output Clock Duty Cycle	Default duty cycle elected ³	45	50	55	%
t _{PH} ⁴	Output Phase Accuracy		—	—	0.05	UI
• 1	Output Clock Pariod litter	f _{OUT} Š 100MHz	—	—	+/- 125	ps
t _{OPJIT} ¹	Output Clock Period Jitter	f _{OUT} < 100MHz	—	—	0.02	UIPP
t _{SK}	Input Clock to Output Clock Skew	Divider ratio = integer	—	—	+/- 200	ps
t _W	Output Clock Pulse Width	At 90% or 10% ³	1	—	—	ns
t _{LOCK} ²	PLL Lock-in Time		—	—	150	us
t _{PA}	Programmable Delay Unit		100	250	400	ps
t _{IPJIT}	Input Clock Period Jitter		—	—	+/- 200	ps
t _{FBKDLY}	External Feedback Delay		—	—	10	ns
t _{HI}	Input Clock High Time	90% to 90%	0.5	—	—	ns
t _{LO}	Input Clock Low Time	10% to 10%	0.5	—	—	ns
t _{RST}	RST Pulse Width		10	—	—	ns

Over Recommended Operating Conditions

1. Jitter sample is taken over 10,000 samples of the primary PLL output with clean reference clock.

2. Output clock is valid after t_{LOCK} for PLL reset and dynamic delay adjustment.


3. Using LVDS output buffers.

4. As compared to CLKOP output.

Timing v.F0.11

LatticeXP "C" Sleep Mode Timing

Parameter	Descriptions		Min.	Тур.	Max.	Units
t _{PWRDN}	SLEEPN Low to I/O Tristate	O Tristate		20	32	ns
		LFXP3	—	1.4	2.1	ms
t _{PWRUP} SLEEPN High to Power Up	LFXP6	—	1.7	2.4	ms	
	LFXP10	—	1.1	1.8	ms	
	LFXP15	—	1.4	2.1	ms	
		LFXP20	—	1.7	2.4	ms
t _{WSLEEPN}	SLEEPN Pulse Width to Initiate Sleep Mode		400	—	—	ns
t _{WAWAKE}	SLEEPN Pulse Rejection		—	—	120	ns

LatticeXP Family Data Sheet Pinout Information

November 2007

Data Sheet DS1001

Signal Descriptions

Signal Name	I/O	Descriptions
General Purpose		
		[Edge] indicates the edge of the device on which the pad is located. Valid edge designations are L (Left), B (Bottom), R (Right), T (Top).
		[Row/Column Number] indicates the PFU row or the column of the device on which the PIC exists. When Edge is T (Top) or (Bottom), only need to specify Row Number. When Edge is L (Left) or R (Right), only need to specify Column Number.
P[Edge] [Row/Column Number*]_[A/B]	I/O	[A/B] indicates the PIO within the PIC to which the pad is connected.
		Some of these user programmable pins are shared with special function pins. These pin when not used as special purpose pins can be programmed as I/Os for user logic.
		During configuration, the user-programmable I/Os are tri-stated with an inter- nal pull-up resistor enabled. If any pin is not used (or not bonded to a pack- age pin), it is also tri-stated with an internal pull-up resistor enabled after configuration.
GSRN	I	Global RESET signal. (Active low). Any I/O pin can be configured to be GSRN.
NC		No connect.
GND	_	GND - Ground. Dedicated Pins.
V _{CC}		VCC - The power supply pins for core logic. Dedicated Pins.
V _{CCAUX}	—	V_{CCAUX} - The Auxiliary power supply pin. It powers all the differential and referenced input buffers. Dedicated Pins.
V _{CCP0}		Voltage supply pins for ULM0PLL (and LLM1PLL ¹).
V _{CCP1}		Voltage supply pins for URM0PLL (and LRM1PLL ¹).
GNDP0	_	Ground pins for ULM0PLL (and LLM1PLL ¹).
GNDP1		Ground pins for URM0PLL (and LRM1PLL ¹).
V _{CCIOx}	_	V _{CCIO} - The power supply pins for I/O bank x. Dedicated Pins.
V _{REF1(x)} , V _{REF2(x)}	—	Reference supply pins for I/O bank x. Pre-determined pins in each bank are assigned as V_{REF} inputs. When not used, they may be used as I/O pins.
PLL and Clock Functions (Used as user	progra	ammable I/O pins when not in use for PLL or clock pins)
[LOC][num]_PLL[T, C]_IN_A	_	Reference clock (PLL) input Pads: ULM, LLM, URM, LRM, num = row from center, $T =$ true and $C =$ complement, index A, B, Cat each side.
[LOC][num]_PLL[T, C]_FB_A	_	Optional feedback (PLL) input Pads: ULM, LLM, URM, LRM, num = row from center, $T =$ true and $C =$ complement, index A, B, Cat each side.
PCLK[T, C]_[n:0]_[3:0]	_	Primary Clock Pads, T = true and C = complement, n per side, indexed by bank and 0,1, 2, 3 within bank.
[LOC]DQS[num]	_	DQS input Pads: T (Top), R (Right), B (Bottom), L (Left), DQS, num = Ball function number. Any pad can be configured to be DQS output.

^{© 2007} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

PICs and DDR Data (DQ) Pins Associated with the DDR Strobe (DQS) Pin

PICs Associated with DQS Strobe	PIO within PIC	Polarity	DDR Strobe (DQS) and Data (DQ) Pins
D[Edge] [p. 4]	А	True	DQ
P[Edge] [n-4]	В	Complement	DQ
D[Edgo] [n 2]	А	True	DQ
P[Edge] [n-3]	В	Complement	DQ
P[Edgo] [n 2]	А	True	DQ
P[Edge] [n-2]	В	Complement	DQ
P[Edge] [n-1]	A	True	DQ
P[Edge] [n]	В	Complement	DQ
	A	True	[Edge]DQSn
P[Edge] [n+1]	В	Complement	DQ
	А	True	DQ
P[Edge] [n+2]	В	Complement	DQ
D[Edgo] [n , 2]	А	True	DQ
P[Edge] [n+3]	В	Complement	DQ

Notes:

1. "n" is a row/column PIC number.

2. The DDR interface is designed for memories that support one DQS strobe per eight bits of data. In some packages, all the potential DDR data (DQ) pins may not be available.

3. The definition of the PIC numbering is provided in the Signal Names column of the Signal Descriptions table in this data sheet.

Pin Information Summary¹

			XP3		XP6			
Pin Type		100 TQFP	144 TQFP	208 PQFP	144 TQFP	208 PQFP	256 fpBGA	
Single Ended User I/O		62	100	136	100	142	188	
Differential Pair User I/O ²		19	35	56	35	58	80	
Configuration	Dedicated	11	11	11	11	11	11	
Conliguration	Muxed	14	14	14	14	14	14	
ТАР		5	5	5	5	5	5	
Dedicated (total without s	upplies)	6	6	6	6	6	6	
V _{CC}		2	4	8	4	8	8	
V _{CCAUX}		2	2	2	2	2	4	
V _{CCPLL}		2	2	2	2	2	2	
	Bank0	1	1	2	1	2	2	
	Bank1	1	1	2	1	2	2	
	Bank2	1	1	2	1	2	2	
M	Bank3	1	1	2	1	2	2	
V _{CCIO}	Bank4	1	2	2	2	2	2	
	Bank5	1	1	2	1	2	2	
	Bank6	1	1	2	1	2	2	
	Bank7	1	1	2	1	2	2	
GND		10	13	24	13	24	24	
GND _{PLL}		2	2	2	2	2	2	
NC		0	0	6	0	0	0	
	Bank0	8/2	12/3	20/8	12/3	20/8	26/11	
	Bank1	9/0	12/2	18/6	12/2	18/6	26/11	
	Bank2	8/3	12/5	14/6	12/5	17/7	21/9	
Single Ended/Differential	Bank3	6/2	13/5	14/6	13/5	14/6	21/9	
I/O per Bank ²	Bank4	5/2	14/6	21/9	14/6	21/9	26/11	
	Bank5	12/4	12/4	21/9	12/4	21/9	26/11	
	Bank6	4/2	13/5	14/6	13/5	17/7	21/9	
	Bank7	10/4	12/5	14/6	12/5	14/6	21/9	
V _{CCJ}		1	1	1	1	1	1	

1. During configuration the user-programmable I/Os are tri-stated with an internal pull-up resistor enabled. If any pin is not used (or not bonded to a package pin), it is also tri-stated with an internal pull-up resistor enabled after configuration.

2. The differential I/O per bank includes both dedicated LVDS and emulated LVDS pin pairs. Please see the Logic Signal Connections table for more information.

LFXP3 Logic Signal Connections: 100 TQFP (Cont.)

Pin Number	Pin Function	Bank	Differential	Dual Function
88	PT14B	1	-	D7
89	PT13B	0	С	BUSY
90	GNDIO0	0	-	-
91	PT13A	0	Т	CS1N
92	PT12B	0	С	PCLKC0_0
93	PT12A	0	Т	PCLKT0_0
94	VCCIO0	0	-	-
95	PT9A	0	-	DOUT
96	PT8A	0	-	WRITEN
97	PT6A	0	-	DI
98	PT5A	0	-	CSN
99	GND	-	-	-
100	CFG0	0	-	-

Applies to LFXP "C" only.
 Applies to LFXP "E" only.
 Supports dedicated LVDS outputs.

LFXP3 & LFXP6 Logic Signal Connections: 144 TQFP (Cont.)

Pin			LFXP3		LFXP6					
Number	Pin Function	Bank	Differential	Dual Function	Pin Function	Bank	Differential	Dual Function		
47	PB11A	5	Т	DQS	PB14A	5	Т	DQS		
48	PB11B	5	С	-	PB14B	5	С	-		
49	VCCIO5	5	-	-	VCCIO5	5	-	-		
50	PB12A	5	Т	-	PB15A	5	Т	-		
51	PB12B	5	С	-	PB15B	5	С	-		
52	PB13A	5	Т	-	PB16A	5	Т	-		
53	PB13B	5	С	-	PB16B	5	С	-		
54	GND	-	-	-	GND	-	-	-		
55	PB14A	4	Т	-	PB17A	4	Т	-		
56	GNDIO4	4	-	-	GNDIO4	4	-	-		
57	PB14B	4	C	-	PB17B	4	С	-		
58	PB15A	4	Т	PCLKT4_0	PB18A	4	Т	PCLKT4_0		
59	PB15B	4	С	PCLKC4_0	PB18B	4	С	PCLKC4_0		
60	PB16A	4	Т	-	PB19A	4	Т	-		
61	VCCIO4	4	-	-	VCCIO4	4	-	-		
62	PB16B	4	С	-	PB19B	4	С	-		
63	PB19A	4	Т	DQS	PB22A	4	Т	DQS		
64	GNDIO4	4	-	-	GNDIO4	4	-	-		
65	PB19B	4	С	VREF1_4	PB22B	4	С	VREF1_4		
66	PB20A	4	Т	-	PB23A	4	Т	-		
67	PB20B	4	С	-	PB23B	4	С	-		
68	VCCIO4	4	-	-	VCCIO4	4	-	-		
69	PB22A	4	-	-	PB25A	4	-	-		
70	PB24A	4	Т	VREF2_4	PB27A	4	Т	VREF2_4		
71	PB24B	4	С	-	PB27B	4	С	-		
72	PB25A	4	-	-	PB28A	4	-	-		
73	VCC	-	-	-	VCC	-	-	-		
74	PR18B	3	C ³	-	PR26B	3	C ³	-		
75	GNDIO3	3	-	-	GNDIO3	3	-	-		
76	PR18A	3	T ³	-	PR26A	3	T ³	-		
77	PR17B	3	С	-	PR25B	3	С	-		
78	PR17A	3	Т	-	PR25A	3	Т	-		
79	PR16B	3	C ³	-	PR24B	3	C ³	-		
80	PR16A	3	T ³	DQS	PR24A	3	T ³	DQS		
81	PR15B	3	-	VREF1_3	PR23B	3	-	VREF1_3		
82	PR14A	3	-	VREF2_3	PR22A	3	-	VREF2_3		
83	PR13B	3	С	-	PR21B	3	C ³	-		
84	PR13A	3	Т	-	PR21A	3	T ³	-		
85	GND	-	-	-	GND	-	-	-		
86	PR12A	3	-	-	PR20A	3	-	-		
87	PR11B	3	С	-	PR19B	3	C ³	-		
88	VCCIO3	3	-	-	VCCIO3	3	-	-		
89	PR11A	3	Т	-	PR19A	3	T ³	-		
90	GNDP1	-	-	-	GNDP1	-	-	-		
91	VCCP1	-	-	-	VCCP1	-	-	-		
92	PR9B	2	С	PCLKC2_0	PR12B	2	С	PCLKC2_0		

LFXP3 & LFXP6 Logic Signal Connections: 144 TQFP (Cont.)

Pin			LFXP3		LFXP6				
Number	Pin Function	Bank	Differential	Dual Function	Pin Function	Bank	Differential	Dual Function	
139	PT6A	0	-	DI	PT9A	0	-	DI	
140	PT5A	0	-	CSN	PT8A	0	-	CSN	
141	PT3B	0	-	VREF2_0	PT6B	0	-	VREF2_0	
142	CFG0	0	-	-	CFG0	0	-	-	
143	CFG1	0	-	-	CFG1	0	-	-	
144	DONE	0	-	-	DONE	0	-	-	

1. Applies to LFXP "C" only.

2. Applies to LFXP "E" only.

3. Supports dedicated LVDS outputs.

LFXP6 & LFXP10 Logic Signal Connections: 256 fpBGA (Cont.)

			LFXP6		LFXP10				
Ball Number	Ball Function	Bank	Differential	Dual Function	Ball Function	Bank	Differential	Dual Function	
K10	GND	-	-	-	GND	-	-	-	
K7	GND	-	-	-	GND	-	-	-	
K8	GND	-	-	-	GND	-	-	-	
K9	GND	-	-	-	GND	-	-	-	
L11	GND	-	-	-	GND	-	-	-	
L6	GND	-	-	-	GND	-	-	-	
T1	GND	-	-	-	GND	-	-	-	
T16	GND	-	-	-	GND	-	-	-	
D13	VCC	-	-	-	VCC	-	-	-	
D4	VCC	-	-	-	VCC	-	-	-	
E12	VCC	-	-	-	VCC	-	-	-	
E5	VCC	-	-	-	VCC	-	-	-	
M12	VCC	-	-	-	VCC	-	-	-	
M5	VCC	-	-	-	VCC	-	-	-	
N13	VCC	-	-	-	VCC	-	-	-	
N4	VCC	-	-	-	VCC	-	-	-	
E13	VCCAUX	-	-	-	VCCAUX	-	-	-	
E4	VCCAUX	-	-	-	VCCAUX	-	-	-	
M13	VCCAUX	-	-	-	VCCAUX	-	-	-	
M4	VCCAUX	-	-	-	VCCAUX	-	-	-	
F7	VCCIO0	0	-	-	VCCIO0	0	-	-	
F8	VCCIO0	0	-	-	VCCIO0	0	-	-	
F10	VCCIO1	1	-	-	VCCIO1	1	-	-	
F9	VCCIO1	1	-	-	VCCIO1	1	-	-	
G11	VCCIO2	2	-	-	VCCIO2	2	-	-	
H11	VCCIO2	2	-	-	VCCIO2	2	-	-	
J11	VCCIO3	3	-	-	VCCIO3	3	-	-	
K11	VCCIO3	3	-	-	VCCIO3	3	-	-	
L10	VCCIO4	4	-	-	VCCIO4	4	-	-	
L9	VCCIO4	4	-	-	VCCIO4	4	-	-	
L7	VCCIO5	5	-	-	VCCIO5	5	-	-	
L8	VCCIO5	5	-	-	VCCIO5	5	-	-	
J6	VCCIO6	6	-	-	VCCIO6	6	-	-	
K6	VCCIO6	6	-	-	VCCIO6	6	-	-	
G6	VCCI07	7	-	-	VCCI07	7	-	-	
H6	VCCI07	7	-	-	VCCIO7	7	-	-	

1. Applies to LFXP "C" only.

2. Applies to LFXP "E" only.

3. Supports dedicated LVDS outputs.

LFXP10, LFXP15 & LFXP20 Logic Signal Connections: 388 fpBGA (Cont.)

	LFXP10				5		I	FXP2)			
Ball Number	Ball Function	Bank Diff. Dual Function		Ball	Ball Function Bank Diff. Dual Function				Bank	Diff.	Dual Function	
M21	VCCP1	Dalik	-	Dual Function	VCCP1	Dalik	Din.	Dual Function	Function VCCP1	Dalik	Dill.	Dual Function
-	GNDIO2	2	-	-	GNDIO2	2	-	-	GNDIO2	2	-	-
M22	PR18B	2	C ³	-	PR22B	2	C ³	-	PR22B	2	C ³	-
L22	PR18A	2	С Т ³	_	PR22A	2	T ³	-	PR22A	2	T ³	-
K22	PR17B	2	C	PCLKC2_0	PR21B	2	C	PCLKC2_0	PR21B	2	C	PCLKC2_0
K21	PR17B	2	Т	PCLKC2_0	PR21B	2	Т	PCLK02_0	PR21B	2	Т	PCLKT2_0
L19	PR16B	2	C ³	FOLKI2_0	PR20B	2	C ³	FULKI2_U	PR20B	2	C ³	FOLKIZ_U
K20	PR16A	2	T ³	- DQS	PR20B	2	T ³	- DQS	PR20B	2	T ³	DQS
L20	PR15B	2	-	DQS	PR19B	2	-	DQS	PR19B	2	-	DQS
L20	PR13B PR14A	2	-	- VREF1_2	PR19B PR18A	2	-	- VREF1_2	PR18A	2	-	- VREF1_2
- L2 I	GNDIO2	2	-	VNEF1_2		2	-	-		2	-	VNEFI_2
- J22	PR13B	2	- C ³	-	GNDIO2	2	- C ³	-	GNDIO2 PR17B	2	- C ³	-
	PR13B PR13A		U ³	-	PR17B PR17A		T ³	-	PR17B PR17A		C ³	-
J21	PR13A PR12B	2	C	- RUM0 PLLC IN A	PR17A PR16B	2	C		PR17A PR16B	2	C	
H22	PR12B PR12A	2	Т			2		RUM0_PLLC_IN_A		2		RUM0_PLLC_IN_A
H21		2	C ³	RUM0_PLLT_IN_A	PR16A	2	T C ³	RUM0_PLLT_IN_A	PR16A	2	T C ³	RUM0_PLLT_IN_A
K19	PR11B	2	C° T ³	-	PR15B	2	C° T ³	-	PR15B	2	C ^o T ³	-
J19	PR11A	2		-	PR15A	2		-	PR15A	2		-
-	GNDIO2	2	-	-	GNDIO2	2	-	-	GNDIO2	2	-	-
J20	PR9B	2	C ³	-	PR13B	2	C ³	-	PR13B	2	C ³	-
H20	PR9A	2	T ³	-	PR13A	2	T ³	-	PR13A	2	T ³	-
H19	PR8B	2	C T	-	PR12B	2	C T	-	PR12B	2	C T	-
G19	PR8A	2	T	-	PR12A	2	T	-	PR12A	2	T	-
G22	PR7B	2	C ³	-	PR11B	2	C ³	-	PR11B	2	C ³	-
G21	PR7A	2	T ³	DQS	PR11A	2	T ³	DQS	PR11A	2	T ³	DQS
-	GNDIO2	2	-	-	GNDIO2	2	-	-	GNDIO2	2	-	-
F20	PR6B	2	-	-	PR10B	2	-	-	PR10B	2	-	-
G20	PR5A	2	-	VREF2_2	PR9A	2	-	VREF2_2	PR9A	2	-	VREF2_2
F22	PR4B	2	C ³	-	PR8B	2	C ³	-	PR8B	2	C ³	-
F21	PR4A	2	T ³	-	PR8A	2	T ³	-	PR8A	2	T ³	-
E22	PR3B	2	С	RUM0_PLLC_FB_A	PR7B	2	С	RUM0_PLLC_FB_A	PR7B	2	С	RUM0_PLLC_FB_A
E21	PR3A	2	Т	RUM0_PLLT_FB_A	PR7A	2	Т	RUM0_PLLT_FB_A	PR7A	2	Т	RUM0_PLLT_FB_A
D22	PR2B	2	C ³	-	PR6B	2	C ³	-	PR6B	2	C ³	-
D21	PR2A	2	T ³	-	PR6A	2	T ³	-	PR6A	2	T ³	-
-	GNDIO2	2	-	-	GNDIO2	2	-	-	GNDIO2	2	-	-
F19	TDO	-	-	-	TDO	-	-	-	TDO	-	-	-
E20	VCCJ	-	-	-	VCCJ	-	-	-	VCCJ	-	-	-
D20	TDI	-	-	-	TDI	-	-	-	TDI	-	-	-
D19	TMS	-	-	-	TMS	-	-	-	TMS	-	-	-
D18	TCK	-	-	-	TCK	-	-	-	TCK	-	-	-
-	GNDIO1	1	-	-	GNDIO1	1	-	-	GNDIO1	1	-	-
E19	-	-	-	-	PT48A	1	-	-	PT52A	1	-	-
D17	-	-	-	-	PT47B	1	С	-	PT51B	1	С	-
D16	-	-	-	-	PT47A	1	Т	DQS	PT51A	1	Т	DQS
C16	-	-	-	-	PT46B	1	-	-	PT50B	1	-	-
C15	-	-	-	-	PT45A	1	-	-	PT49A	1	-	-
C17	-	-	-	-	PT44B	1	С	-	PT48B	1	С	-
C18	PT39A	1	-	-	PT44A	1	Т	-	PT48A	1	Т	-
C19	PT38B	1	С	-	PT43B	1	С	-	PT47B	1	С	-
-	GNDIO1	1	-	-	GNDIO1	1	-	-	GNDIO1	1	-	-

LFXP15 & LFXP20 Logic Signal Connections: 484 fpBGA (Cont.)

			LFXP15			LFXP20				
Ball Number	Ball Function	Bank	Differential	Dual Function	Ball Function	Bank	Differential	Dual Function		
T6	PL41A	6	Т	-	PL45A	6	Т	-		
T5	PL41B	6	С	-	PL45B	6	С	-		
-	GNDIO6	6	-	-	GNDIO6	6	-	-		
U3	PL42A	6	T ³	-	PL46A	6	T ³	-		
U4	PL42B	6	C ³	-	PL46B	6	C ³	-		
V4	PL43A	6	-	-	PL47A	6	-	-		
W4	SLEEPN ¹ / TOE ²	-	-	-	SLEEPN ¹ / TOE ²	-	-	-		
W5	INITN	5	-	-	INITN	5	-	-		
Y3	-	-	-	-	PB3B	5	-	-		
-	GNDIO5	5	-	-	GNDIO5	5	-	-		
U5	-	-	-	-	PB4A	5	Т	-		
V5	-	-	-	-	PB4B	5	С	-		
Y4	-	-	-	-	PB5A	5	Т	-		
Y5	-	-	-	-	PB5B	5	С	-		
V6	-	-	-	-	PB6A	5	Т	-		
-	GNDIO5	5	-	-	GNDIO5	5	-	-		
U6	-	-	-	-	PB6B	5	С	-		
W6	PB3A	5	Т	-	PB7A	5	Т	-		
Y6	PB3B	5	С	-	PB7B	5	С	-		
AA2	PB4A	5	Т	-	PB8A	5	Т	-		
AA3	PB4B	5	С	-	PB8B	5	С	-		
V7	PB5A	5	-	-	PB9A	5	-	-		
U7	PB6B	5	-	-	PB10B	5	-	-		
Y7	PB7A	5	Т	DQS	PB11A	5	Т	DQS		
W7	PB7B	5	С	-	PB11B	5	С	-		
AA4	PB8A	5	Т	-	PB12A	5	Т	-		
-	GNDIO5	5	-	-	GNDIO5	5	-	-		
AA5	PB8B	5	С	-	PB12B	5	С	-		
AB3	PB9A	5	Т	-	PB13A	5	Т	-		
AB4	PB9B	5	С	-	PB13B	5	С	-		
AA6	PB10A	5	Т	-	PB14A	5	Т	-		
AA7	PB10B	5	С	-	PB14B	5	С	-		
U8	PB11A	5	Т	-	PB15A	5	Т	-		
V8	PB11B	5	С	-	PB15B	5	С	-		
Y8	PB12A	5	Т	VREF1_5	PB16A	5	Т	VREF1_5		
-	GNDIO5	5	-	-	GNDIO5	5	-	-		
W8	PB12B	5	С	-	PB16B	5	С	-		
V9	PB13A	5	-	-	PB17A	5	-	-		
U9	PB14B	5	-	-	PB18B	5	-	-		
Y9	PB15A	5	Т	DQS	PB19A	5	Т	DQS		
W9	PB15B	5	С	-	PB19B	5	С	-		

Conventional Packaging

Commercial							
Part Number	I/Os	Voltage	Grade	Package	Pins	Temp.	LUTs
LFXP3C-3Q208C	136	1.8/2.5/3.3V	-3	PQFP	208	COM	3.1K
LFXP3C-4Q208C	136	1.8/2.5/3.3V	-4	PQFP	208	COM	3.1K
LFXP3C-5Q208C	136	1.8/2.5/3.3V	-5	PQFP	208	COM	3.1K
LFXP3C-3T144C	100	1.8/2.5/3.3V	-3	TQFP	144	COM	3.1K
LFXP3C-4T144C	100	1.8/2.5/3.3V	-4	TQFP	144	COM	3.1K
LFXP3C-5T144C	100	1.8/2.5/3.3V	-5	TQFP	144	COM	3.1K
LFXP3C-3T100C	62	1.8/2.5/3.3V	-3	TQFP	100	COM	3.1K
LFXP3C-4T100C	62	1.8/2.5/3.3V	-4	TQFP	100	COM	3.1K
LFXP3C-5T100C	62	1.8/2.5/3.3V	-5	TQFP	100	COM	3.1K

Part Number	I/Os	Voltage	Grade	Package	Pins	Temp.	LUTs
LFXP6C-3F256C	188	1.8/2.5/3.3V	-3	fpBGA	256	COM	5.8K
LFXP6C-4F256C	188	1.8/2.5/3.3V	-4	fpBGA	256	COM	5.8K
LFXP6C-5F256C	188	1.8/2.5/3.3V	-5	fpBGA	256	COM	5.8K
LFXP6C-3Q208C	142	1.8/2.5/3.3V	-3	PQFP	208	COM	5.8K
LFXP6C-4Q208C	142	1.8/2.5/3.3V	-4	PQFP	208	COM	5.8K
LFXP6C-5Q208C	142	1.8/2.5/3.3V	-5	PQFP	208	COM	5.8K
LFXP6C-3T144C	100	1.8/2.5/3.3V	-3	TQFP	144	COM	5.8K
LFXP6C-4T144C	100	1.8/2.5/3.3V	-4	TQFP	144	COM	5.8K
LFXP6C-5T144C	100	1.8/2.5/3.3V	-5	TQFP	144	COM	5.8K

Part Number	I/Os	Voltage	Grade	Package	Pins	Temp.	LUTs
LFXP10C-3F388C	244	1.8/2.5/3.3V	-3	fpBGA	388	COM	9.7K
LFXP10C-4F388C	244	1.8/2.5/3.3V	-4	fpBGA	388	COM	9.7K
LFXP10C-5F388C	244	1.8/2.5/3.3V	-5	fpBGA	388	COM	9.7K
LFXP10C-3F256C	188	1.8/2.5/3.3V	-3	fpBGA	256	COM	9.7K
LFXP10C-4F256C	188	1.8/2.5/3.3V	-4	fpBGA	256	COM	9.7K
LFXP10C-5F256C	188	1.8/2.5/3.3V	-5	fpBGA	256	COM	9.7K

LatticeXP Family Data Sheet Revision History

November 2007

Revision History

Data Sheet DS1001

Date	Version	Section	Change Summary
February 2005	01.0	—	Initial release.
April 2005	01.1	Architecture	EBR memory support section updated with clarification.
May 2005	01.2	Introduction	Added TransFR Reconfiguration to Features section.
		Architecture	Added TransFR section.
June 2005	01.3	Pinout Information	Added pinout information for LFXP3, LFXP6, LFXP15 and LFXP20.
July 2005	02.0	Introduction	Updated XP6, XP15 and XP20 EBR SRAM Bits and Block numbers.
		Architecture	Updated Per Quadrant Primary Clock Selection figure.
			Added Typical I/O Behavior During Power-up section.
			Updated Device Configuration section under Configuration and Testing.
		DC and Switching	Clarified Hot Socketing Specification
		Characteristics	Updated Supply Current (Standby) Table
			Updated Initialization Supply Current Table
			Added Programming and Erase Flash Supply Current table
			Added LVDS Emulation section. Updated LVDS25E Output Termination Example figure and LVDS25E DC Conditions table.
			Updated Differential LVPECL diagram and LVPECL DC Conditions table.
l			Deleted 5V Tolerant Input Buffer section. Updated RSDS figure and RSDS DC Conditions table.
			Updated sysCONFIG Port Timing Specifications
			Updated JTAG Port Timing Specifications. Added Flash Download Time table.
		Pinout Information	Updated Signal Descriptions table.
			Updated Logic Signal Connections Dual Function column.
		Ordering Information	Added lead-free ordering part numbers.
July 2005	02.1	DC and Switching Characteristics	Clarification of Flash Programming Junction Temperature
August 2005	02.2	Introduction	Added Sleep Mode feature.
		Architecture	Added Sleep Mode section.
		DC and Switching	Added Sleep Mode Supply Current Table
		Characteristics	Added Sleep Mode Timing section
		Pinout Information	Added SLEEPN and TOE signal names, descriptions and footnotes.
			Added SLEEPN and TOE to pinout information and footnotes.
			Added footnote 3 to Logic Signal Connections tables for clarification on emulated LVDS output.
September 2005	03.0	Architecture	Added clarification of PCI clamp.
			Added clarification to SLEEPN Pin Characteristics section.
		DC and Switching Characteristics	DC Characteristics, added footnote 4 for clarification. Updated Supply Current (Sleep Mode), Supply Current (Standby), Initialization Supply Current, and Programming and Erase Flash Supply Current typical numbers.

© 2007 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.