

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	-
Number of Logic Elements/Cells	10000
Total RAM Bits	221184
Number of I/O	188
Number of Gates	-
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	256-BGA
Supplier Device Package	256-FPBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lfxp10e-3fn256i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 2-4. PFU Modes of Operation

Logic	Ripple	RAM ¹	ROM
LUT 4x8 or MUX 2x1 x 8	2-bit Add x 4	SPR16x2 x 4 DPR16x2 x 2	ROM16x1 x 8
LUT 5x4 or MUX 4x1 x 4	2-bit Sub x 4	SPR16x4 x 2 DPR16x4 x 1	ROM16x2 x 4
LUT 6x 2 or MUX 8x1 x 2	2-bit Counter x 4	SPR16x8 x 1	ROM16x4 x 2
LUT 7x1 or MUX 16x1 x 1	2-bit Comp x 4		ROM16x8 x 1

1. These modes are not available in PFF blocks

Routing

There are many resources provided in the LatticeXP devices to route signals individually or as buses with related control signals. The routing resources consist of switching circuitry, buffers and metal interconnect (routing) segments.

The inter-PFU connections are made with x1 (spans two PFU), x2 (spans three PFU) and x6 (spans seven PFU). The x1 and x2 connections provide fast and efficient connections in horizontal, vertical and diagonal directions. The x2 and x6 resources are buffered allowing both short and long connections routing between PFUs.

The ispLEVER design tool takes the output of the synthesis tool and places and routes the design. Generally, the place and route tool is completely automatic, although an interactive routing editor is available to optimize the design.

Clock Distribution Network

The clock inputs are selected from external I/O, the sysCLOCK[™] PLLs or routing. These clock inputs are fed through the chip via a clock distribution system.

Primary Clock Sources

LatticeXP devices derive clocks from three primary sources: PLL outputs, dedicated clock inputs and routing. LatticeXP devices have two to four sysCLOCK PLLs, located on the left and right sides of the device. There are four dedicated clock inputs, one on each side of the device. Figure 2-5 shows the 20 primary clock sources.

The EBR memory supports three forms of write behavior for single port or dual port operation:

- 1. **Normal** data on the output appears only during read cycle. During a write cycle, the data (at the current address) does not appear on the output. This mode is supported for all data widths.
- 2. Write Through -ba copy of the input data appears at the output of the same port during a write cycle.bThis mode is supported for all data widths.
- 3. **Read-Before-Write** when new data is being written, the old content of the address appears at the output. This mode is supported for x9, x18 and x36 data widths.

Memory Core Reset

The memory array in the EBR utilizes latches at the A and B output ports. These latches can be reset asynchronously. RSTA and RSTB are local signals, which reset the output latches associated with Port A and Port B respectively. The Global Reset (GSRN) signal resets both ports. The output data latches and associated resets for both ports are as shown in Figure 2-15.

Figure 2-18. Group of Seven PIOs

One PIO Pair

Figure 2-19. DQS Routing

	PIO A PIO B	← PADA "T" LVDS Pair PADB "C"
 	PIO A	PADA "T"
├ ──	PIO B	← PADB "C"
┣	PIO A	PADA "T"
 	PIO B	← PADB "C"
┣───	PIO A	← PADA "T"
†	PIO B	← PADB "C"
	PIO A	SysIO Buffer Delay PADA "T" LVDS Pair
	PIO B	► PADB "C"
┣	PIO A	← PADA "T"
┣	PIO B	PADB "C"
-		
	PIO A	PADA "T"

ΡΙΟ

The PIO contains four blocks: an input register block, output register block, tristate register block and a control logic block. These blocks contain registers for both single data rate (SDR) and double data rate (DDR) operation along with the necessary clock and selection logic. Programmable delay lines used to shift incoming clock and data signals are also included in these blocks.

Input Register Block

The input register block contains delay elements and registers that can be used to condition signals before they are passed to the device core. Figure 2-20 shows the diagram of the input register block.

Input signals are fed from the sysIO buffer to the input register block (as signal DI). If desired the input signal can bypass the register and delay elements and be used directly as a combinatorial signal (INDD), a clock (INCK) and

Figure 2-23. Output Register Block

*Latch is transparent when input is low.

Figure 2-24. ODDRXB Primitive

Tristate Register Block

The tristate register block provides the ability to register tri-state control signals from the core of the device before they are passed to the sysIO buffers. The block contains a register for SDR operation and an additional latch for DDR operation. Figure 2-25 shows the diagram of the Tristate Register Block.

In SDR mode, ONEG1 feeds one of the flip-flops that then feeds the output. The flip-flop can be configured a Dtype or latch. In DDR mode, ONEG1 is fed into one register on the positive edge of the clock and OPOS1 is latched. A multiplexer running off the same clock selects the correct register for feeding to the output (D0).

Figure 2-25. Tristate Register Block

*Latch is transparent when input is low.

Control Logic Block

The control logic block allows the selection and modification of control signals for use in the PIO block. A clock is selected from one of the clock signals provided from the general purpose routing and a DQS signal provided from the programmable DQS pin. The clock can optionally be inverted.

The clock enable and local reset signals are selected from the routing and optionally inverted. The global tristate signal is passed through this block.

DDR Memory Support

Implementing high performance DDR memory interfaces requires dedicated DDR register structures in the input (for read operations) and in the output (for write operations). As indicated in the PIO Logic section, the LatticeXP devices provide this capability. In addition to these registers, the LatticeXP devices contain two elements to simplify the design of input structures for read operations: the DQS delay block and polarity control logic.

DLL Calibrated DQS Delay Block

Source Synchronous interfaces generally require the input clock to be adjusted in order to correctly capture data at the input register. For most interfaces a PLL is used for this adjustment, however in DDR memories the clock (referred to as DQS) is not free running so this approach cannot be used. The DQS Delay block provides the required clock alignment for DDR memory interfaces.

The DQS signal (selected PIOs only) feeds from the PAD through a DQS delay element to a dedicated DQS routing resource. The DQS signal also feeds the polarity control logic which controls the polarity of the clock to the sync registers in the input register blocks. Figures 2-26 and 2-27 show how the polarity control logic are routed to the PIOs.

The temperature, voltage and process variations of the DQS delay block are compensated by a set of calibration (6-bit bus) signals from two DLLs on opposite sides of the device. Each DLL compensates DQS Delays in its half of the device as shown in Figure 2-27. The DLL loop is compensated for temperature, voltage and process variations by the system clock and feedback loop.

Figure 2-28. LatticeXP Banks

Note: N and M are the maximum number of I/Os per bank.

LatticeXP devices contain two types of sysIO buffer pairs.

1. Top and Bottom sysIO Buffer Pair (Single-Ended Outputs Only)

The sysIO buffer pairs in the top and bottom banks of the device consist of two single-ended output drivers and two sets of single-ended input buffers (both ratioed and referenced). The referenced input buffer can also be configured as a differential input.

The two pads in the pair are described as "true" and "comp", where the true pad is associated with the positive side of the differential input buffer and the comp (complementary) pad is associated with the negative side of the differential input buffer.

Only the I/Os on the top and bottom banks have PCI clamps. Note that the PCI clamp is enabled after $V_{CC,}$ V_{CCAUX} and V_{CCIO} are at valid operating levels and the device has been configured.

2. Left and Right sysIO Buffer Pair (Differential and Single-Ended Outputs)

The sysIO buffer pairs in the left and right banks of the device consist of two single-ended output drivers, two sets of single-ended input buffers (both ratioed and referenced) and one differential output driver. The referenced input buffer can also be configured as a differential input. In these banks the two pads in the pair are described as "true" and "comp", where the true pad is associated with the positive side of the differential I/O, and the comp (complementary) pad is associated with the negative side of the differential I/O.

Select I/Os in the left and right banks have LVDS differential output drivers. Refer to the Logic Signal Connections tables for more information.

Typical Building Block Function Performance¹

Pin-to-Pin Performance (LVCMOS25 12 mA Drive)

Function	-5 Timing	Units
Basic Functions	· ·	
16-bit decoder	6.1	ns
32-bit decoder	7.3	ns
64-bit decoder	8.2	ns
4:1 MUX	4.9	ns
8:1 MUX	5.3	ns
16:1 MUX	5.7	ns
32:1 MUX	6.3	ns

Register to Register Performance

Function	-5 Timing	Units
Basic Functions		
16-bit decoder	351	MHz
32-bit decoder	248	MHz
64-bit decoder	237	MHz
4:1 MUX	590	MHz
8:1 MUX	523	MHz
16:1 MUX	434	MHz
32:1 MUX	355	MHz
8-bit adder	343	MHz
16-bit adder	292	MHz
64-bit adder	130	MHz
16-bit counter	388	MHz
32-bit counter	295	MHz
64-bit counter	200	MHz
64-bit accumulator	164	MHz
Embedded Memory Functions	· · · · ·	
Single Port RAM 256x36 bits	254	MHz
True-Dual Port RAM 512x18 bits	254	MHz
Distributed Memory Functions	· · · · ·	
16x2 SP RAM	434	MHz
64x2 SP RAM	332	MHz
128x4 SP RAM	235	MHz
32x2 PDP RAM	322	MHz
64x4 PDP RAM	291	MHz

1. These timing numbers were generated using the ispLEVER design tool. Exact performance may vary with design and tool version. The tool uses internal parameters that have been characterized but are not tested on every device.

Timing v.F0.11

LatticeXP Internal Timing Parameters¹ (Continued)

Over Recommended Operating Conditions

		-	5	-	4	-	3	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{RSTO_EBR}	Reset To Output Delay Time from EBR Output Register	_	1.61	_	1.94	_	2.32	ns
PLL Parameters								
t _{RSTREC}	Reset Recovery to Rising Clock	1.00	_	1.00	-	1.00	—	ns
t _{RSTSU}	Reset Signal Setup Time	1.00	-	1.00	_	1.00	—	ns

1. Internal parameters are characterized but not tested on every device. Timing v.F0.11

EBR Memory Timing Diagrams

Figure 3-8. Read Mode (Normal)

Note: Input data and address are registered at the positive edge of the clock and output data appears after the positive of the clock.

Figure 3-9. Read Mode with Input and Output Registers

sysCLOCK PLL Timing

Parameter	Descriptions	Conditions	Min.	Тур.	Max.	Units
f _{IN}	Input Clock Frequency (CLKI, CLKFB)		25	—	375	MHz
f _{OUT}	Output Clock Frequency (CLKOP, CLKOS)		25	—	375	MHz
f _{OUT2}	K-Divider Output Frequency (CLKOK)		0.195	—	187.5	MHz
f _{VCO}	PLL VCO Frequency		375	—	750	MHz
f _{PFD}	Phase Detector Input Frequency		25	—	—	MHz
AC Characte	eristics					
t _{DT}	Output Clock Duty Cycle	Default duty cycle elected ³	45	50	55	%
t _{PH} ⁴	Output Phase Accuracy		_	—	0.05	UI
. 1	Output Clock Period Jitter	f _{OUT} Š 100MHz	_	—	+/- 125	ps
OPJIT		f _{OUT} < 100MHz	—	—	0.02	UIPP
t _{SK}	Input Clock to Output Clock Skew	Divider ratio = integer	_	—	+/- 200	ps
t _W	Output Clock Pulse Width	At 90% or 10% ³	1	—	_	ns
t _{LOCK} ²	PLL Lock-in Time		—	—	150	us
t _{PA}	Programmable Delay Unit		100	250	400	ps
t _{IPJIT}	Input Clock Period Jitter		_	—	+/- 200	ps
t _{FBKDLY}	External Feedback Delay		—	—	10	ns
t _{HI}	Input Clock High Time	90% to 90%	0.5	—		ns
t _{LO}	Input Clock Low Time	10% to 10%	0.5	—	—	ns
t _{RST}	RST Pulse Width		10	_	_	ns

Over Recommended Operating Conditions

1. Jitter sample is taken over 10,000 samples of the primary PLL output with clean reference clock.

2. Output clock is valid after t_{LOCK} for PLL reset and dynamic delay adjustment.

3. Using LVDS output buffers.

4. As compared to CLKOP output.

Timing v.F0.11

LatticeXP "C" Sleep Mode Timing

Parameter	Descriptions		Min.	Тур.	Max.	Units
t _{PWRDN}	SLEEPN Low to I/O Tristate		—	20	32	ns
t _{PWRUP}		LFXP3	—	1.4	2.1	ms
	L SLEEPN High to Power Up	LFXP6	—	1.7	2.4	ms
		LFXP10	—	1.1	1.8	ms
		LFXP15	—	1.4	2.1	ms
		LFXP20	—	1.7	2.4	ms
t _{WSLEEPN}	SLEEPN Pulse Width to Initiate Sleep Mode		400	-	—	ns
t _{WAWAKE}	SLEEPN Pulse Rejection		—	_	120	ns

LatticeXP sysCONFIG Port Timing Specifications

Over	Recommended	Operating	Conditions
••••		• por a mig	•••••••

Parameter	Description	Min.	Max.	Units
sysCONFIG By	te Data Flow	I	1	
t _{SUCBDI}	Byte D[0:7] Setup Time to CCLK	7	_	ns
t _{HCBDI}	Byte D[0:7] Hold Time to CCLK	3	—	ns
t _{CODO}	Clock to Dout in Flowthrough Mode	—	12	ns
t _{SUCS}	CS[0:1] Setup Time to CCLK	7	—	ns
t _{HCS}	CS[0:1] Hold Time to CCLK	2	—	ns
t _{SUWD}	Write Signal Setup Time to CCLK	7	—	ns
t _{HWD}	Write Signal Hold Time to CCLK	2	—	ns
t _{DCB}	CCLK to BUSY Delay Time	—	12	ns
t _{CORD}	Clock to Out for Read Data	_	12	ns
sysCONFIG By	te Slave Clocking	•		•
t _{BSCH}	Byte Slave Clock Minimum High Pulse	6	—	ns
t _{BSCL}	Byte Slave Clock Minimum Low Pulse	8	—	ns
t _{BSCYC}	Byte Slave Clock Cycle Time	15	—	ns
sysCONFIG Se	rial (Bit) Data Flow			
t _{SUSCDI}	DI (Data In) Setup Time to CCLK	7	—	ns
t _{HSCDI}	DI (Data In) Hold Time to CCLK	2	—	ns
t _{CODO}	Clock to Dout in Flowthrough Mode	_	12	ns
sysCONFIG Se	rial Slave Clocking			
t _{SSCH}	Serial Slave Clock Minimum High Pulse	6	—	ns
t _{SSCL}	Serial Slave Clock Minimum Low Pulse	6	—	ns
sysCONFIG PC	DR, Initialization and Wake Up			
t _{ICFG}	Minimum Vcc to INIT High	—	50	ms
t _{VMC}	Time from t _{ICFG} to Valid Master Clock	—	2	us
t _{PRGMRJ}	Program Pin Pulse Rejection	—	7	ns
t _{PRGM} ²	PROGRAMN Low Time to Start Configuration	25	—	ns
t _{DINIT}	INIT Low Time	—	1	ms
t _{DPPINIT}	Delay Time from PROGRAMN Low to INIT Low	—	37	ns
t _{DINITD}	Delay Time from PROGRAMN Low to DONE Low	_	37	ns
t _{IODISS}	User I/O Disable from PROGRAMN Low	_	25	ns
t _{IOENSS}	User I/O Enabled Time from CCLK Edge During Wake-up Sequence	—	25	ns
t _{MWC}	Additional Wake Master Clock Signals after Done Pin High	120	—	cycles
Configuration I	Master Clock (CCLK)			
Frequency ¹		Selected Value - 30%	Selected Value + 30%	MHz
Duty Cycle		40	60	%

1. See Table 2-10 for available CCLK frequencies.

2. The threshold level for PROGRAMN, as well as for CFG[1] and CFG[0], is determined by V_{CC} , such that the threshold = $V_{CC}/2$. Timing v.F0.11

PICs and DDR Data (DQ) Pins Associated with the DDR Strobe (DQS) Pin

PICs Associated with DQS Strobe	PIO within PIC	Polarity	DDR Strobe (DQS) and Data (DQ) Pins
P[Edge] [n_4]	A	True	DQ
	В	Complement	DQ
P[Edge] [p_3]	A	True	DQ
	В	Complement	DQ
P[Edge] [p_2]	A	True	DQ
	В	Complement	DQ
P[Edge] [p-1]	A	True	DQ
P[Edge] [n]			
	В	Complement	DQ
P[Edge] [n+1]	A	True	[Edge]DQSn
	В	Complement	DQ
P[Edge] [n 2]	A	True	DQ
	В	Complement	DQ
P[Edge] [n 3]	A	True	DQ
	В	Complement	DQ

Notes:

1. "n" is a row/column PIC number.

2. The DDR interface is designed for memories that support one DQS strobe per eight bits of data. In some packages, all the potential DDR data (DQ) pins may not be available.

3. The definition of the PIC numbering is provided in the Signal Names column of the Signal Descriptions table in this data sheet.

LFXP3 Logic Signal Connections: 100 TQFP (Cont.)

Pin Number	Pin Function	Bank	Differential	Dual Function
44	GNDIO4	4	-	-
45	PB15A	4	Т	PCLKT4_0
46	PB15B	4	С	PCLKC4_0
47	VCCIO4	4	-	-
48	PB19A	4	Т	DQS
49	PB19B	4	С	VREF1_4
50	PB24A	4	-	VREF2_4
51	PR18B	3	C ³	-
52	GNDIO3	3	-	-
53	PR18A	3	T ³	-
54	PR15B	3	-	VREF1_3
55	PR14A	3	-	VREF2_3
56	PR13B	3	С	-
57	PR13A	3	Т	-
58	VCCIO3	3	-	-
59	GNDP1	-	-	-
60	VCCP1	-	-	-
61	PR9B	2	С	PCLKC2_0
62	PR9A	2	Т	PCLKT2_0
63	PR8B	2	С	RUM0_PLLC_IN_A
64	PR8A	2	Т	RUM0_PLLT_IN_A
65	VCCIO2	2	-	-
66	PR6B	2	-	VREF1_2
67	PR5A	2	-	VREF2_2
68	GNDIO2	2	-	-
69	PR3B	2	С	RUM0_PLLC_FB_A
70	PR3A	2	Т	RUM0_PLLT_FB_A
71	VCCAUX	-	-	-
72	TDO	-	-	-
73	VCCJ	-	-	-
74	TDI	-	-	-
75	TMS	-	-	-
76	TCK	-	-	-
77	VCC	-	-	-
78	PT24A	1	-	-
79	PT23A	1	-	D0
80	PT22B	1	-	D1
81	PT21A	1	-	D2
82	VCCIO1	1	-	-
83	PT20B	1	-	D3
84	GNDIO1	1	-	-
85	PT17A	1	-	D4
86	PT16A	1	-	D5
87	PT15B	1	-	D6

LFXP6 & LFXP10 Logic Signal Connections: 256 fpBGA (Cont.)

			LFXP6		LFXP10					
Ball Number	Ball Function	Bank	Differential	Dual Function	Ball Function	Bank	Differential	Dual Function		
K4	PL20A	6	Т	-	PL29A	6	Т	-		
K5	PL20B	6	С	-	PL29B	6	С	-		
-	GNDIO6	6	-	-	GNDIO6	6	-	-		
N1	PL23B	6	-	VREF2_6	PL31A	6	-	VREF2_6		
N2	PL21B	6	C ³	-	PL32B	6	-	-		
P1	PL24A	6	T ³	DQS	PL33A	6	T ³	DQS		
P2	PL24B	6	C ³	-	PL33B	6	C ³	-		
L5	PL25A	6	Т	-	PL34A	6	Т	LLM0_PLLT_FB_A		
M6	PL25B	6	С	-	PL34B	6	С	LLM0_PLLC_FB_A		
M3	PL26A	6	T ³	-	PL35A	6	T ³	-		
-	GNDIO6	6	-	-	GNDIO6	6	-	-		
N3	PL26B	6	C ³	-	PL35B	6	C ³	-		
P4	SLEEPN ¹ /TOE ²	-	-	-	SLEEPN ¹ /TOE ²	-	-	-		
P3	INITN	5	-	-	INITN	5	-	-		
-	GNDIO5	5	-	-	GNDIO5	5	-	-		
R4	PB2A	5	Т	-	PB6A	5	Т	-		
N5	PB2B	5	С	-	PB6B	5	С	-		
-	GNDIO5	5	-	-	GNDIO5	5	-	-		
P5	PB5B	5	-	VREF1_5	PB7A	5	Т	VREF1_5		
R1	PB3B	5	С	-	PB7B	5	С	-		
N6	PB4A	5	-	-	PB8A	5	-	-		
M7	PB3A	5	Т	-	PB9B	5	-	-		
R2	PB6A	5	Т	DQS	PB10A	5	Т	DQS		
T2	PB6B	5	С	-	PB10B	5	С	-		
R3	PB7A	5	Т	-	PB11A	5	Т	-		
Т3	PB7B	5	С	-	PB11B	5	С	-		
-	GNDIO5	5	-	-	GNDIO5	5	-	-		
T4	PB8A	5	Т	-	PB12A	5	Т	-		
R5	PB8B	5	С	VREF2_5	PB12B	5	С	VREF2_5		
N7	PB9A	5	Т	-	PB13A	5	Т	-		
M8	PB9B	5	С	-	PB13B	5	С	-		
T5	PB10A	5	Т	-	PB14A	5	Т	-		
P6	PB10B	5	С	-	PB14B	5	С	-		
Т6	PB11A	5	Т	-	PB15A	5	Т	-		
R6	PB11B	5	С	-	PB15B	5	С	-		
-	GNDIO5	5	-	-	GNDIO5	5	-	-		
P7	PB12A	5	-	-	PB16A	5	-	-		
N8	PB13B	5	-	-	PB17B	5	-	-		
R7	PB14A	5	Т	DQS	PB18A	5	Т	DQS		
T7	PB14B	5	С	-	PB18B	5	С	-		
P8	PB15A	5	Т	-	PB19A	5	Т	-		
Т8	PB15B	5	C	-	PB19B	5	С	-		

LFXP6 & LFXP10 Logic Signal Connections: 256 fpBGA (Cont.)

			LFXP6		LFXP10					
Ball Number	Ball Function	Bank	Differential	Dual Function	Ball Function	Bank	Differential	Dual Function		
E8	PT13B	0	-	-	PT17B	0	-	-		
D8	PT12A	0	-	DOUT	PT16A	0	-	DOUT		
A6	PT11B	0	С	-	PT15B	0	С	-		
-	GNDIO0	0	-	-	GNDIO0	0	-	-		
C6	PT11A	0	Т	WRITEN	PT15A	0	Т	WRITEN		
E7	PT10B	0	С	-	PT14B	0	С	-		
D7	PT10A	0	Т	VREF1_0	PT14A	0	Т	VREF1_0		
A5	PT9B	0	С	-	PT13B	0	С	-		
B5	PT9A	0	Т	DI	PT13A	0	Т	DI		
A4	PT8B	0	С	-	PT12B	0	С	-		
B6	PT8A	0	Т	CSN	PT12A	0	Т	CSN		
E6	PT7B	0	С	-	PT11B	0	С	-		
-	GNDIO0	0	-	-	GNDIO0	0	-	-		
D6	PT7A	0	Т	-	PT11A	0	Т	-		
D5	PT6B	0	С	VREF2_0	PT10B	0	С	VREF2_0		
A3	PT6A	0	Т	DQS	PT10A	0	Т	DQS		
B3	PT5B	0	-	-	PT9B	0	-	-		
B2	PT4A	0	-	-	PT8A	0	-	-		
A2	PT3B	0	С	-	PT7B	0	С	-		
B1	PT3A	0	Т	-	PT7A	0	Т	-		
F5	PT2B	0	С	-	PT6B	0	С	-		
-	GNDIO0	0	-	-	GNDIO0	0	-	-		
C5	PT2A	0	Т	-	PT6A	0	Т	-		
C4	CFG0	0	-	-	CFG0	0	-	-		
B4	CFG1	0	-	-	CFG1	0	-	-		
C3	DONE	0	-	-	DONE	0	-	-		
A1	GND	-	-	-	GND	-	-	-		
A16	GND	-	-	-	GND	-	-	-		
F11	GND	-	-	-	GND	-	-	-		
F6	GND	-	-	-	GND	-	-	-		
G10	GND	-	-	-	GND	-	-	-		
G7	GND	-	-	-	GND	-	-	-		
G8	GND	-	-	-	GND	-	-	-		
G9	GND	-	-	-	GND	-	-	-		
H10	GND	-	-	-	GND	-	-	-		
H7	GND	-	-	-	GND	-	-	-		
H8	GND	-	-	-	GND	-	-	-		
H9	GND	-	-	-	GND	-	-	-		
J10	GND	-	-	-	GND	-	-	-		
J7	GND	-	-	-	GND	-	-	-		
J8	GND	-	-	-	GND	-	-	-		
J9	GND	-	-	-	GND	-	-	-		

LFXP15 & LFXP20 Logic Signal Connections: 256 fpBGA

			LFXP15		LFXP20					
Ball Number	Ball Function	Bank	Differential	Dual Function	Ball Function	Bank	Differential	Dual Function		
C2	PROGRAMN	7	-	-	PROGRAMN	7	-	-		
C1	CCLK	7	-	-	CCLK	7	-	-		
-	GNDIO7	7	-	-	GNDIO7	7	-	-		
-	GNDIO7	7	-	-	GNDIO7	7	-	-		
D2	PL7A	7	Т	LUM0_PLLT_FB_A	PL7A	7	Т	LUM0_PLLT_FB_A		
D3	PL7B	7	С	LUM0_PLLC_FB_A	PL7B	7	С	LUM0_PLLC_FB_A		
D1	PL9A	7	-	-	PL9A	7	-	-		
E2	PL10B	7	-	VREF1_7	PL10B	7	-	VREF1_7		
E1	PL11A	7	T ³	DQS	PL11A	7	T ³	DQS		
F1	PL11B	7	C ³	-	PL11B	7	C ³	-		
-	GNDIO7	7	-	-	GNDIO7	7	-	-		
E3	PL12A	7	Т	-	PL12A	7	Т	-		
F4	PL12B	7	С	-	PL12B	7	С	-		
F3	PL13A	7	T ³	-	PL13A	7	T ³	-		
F2	PL13B	7	C ³	-	PL13B	7	C ³	-		
G1	PL15B	7	-	-	PL15B	7	-	-		
-	GNDIO7	7	-	-	GNDIO7	7	-	-		
G3	PL16A	7	Т	LUM0_PLLT_IN_A	PL16A	7	Т	LUM0_PLLT_IN_A		
G2	PL16B	7	С	LUM0_PLLC_IN_A	PL16B	7	С	LUM0_PLLC_IN_A		
H1	PL17A	7	Т³	-	PL17A	7	T ³	-		
H2	PL17B	7	C ³	-	PL17B	7	C ³	-		
G4	PL18A	7	-	VREF2_7	PL18A	7	-	VREF2_7		
G5	PL19B	7	-	-	PL19B	7	-	-		
J1	PL20A	7	Т³	DQS	PL20A	7	T ³	DQS		
-	GNDIO7	7	-	-	GNDIO7	7	-	-		
J2	PL20B	7	C ³	-	PL20B	7	C ³	-		
H3	PL22A	7	T³	-	PL22A	7	T ³	-		
J3	PL22B	7	C ³	-	PL22B	7	C ³	-		
H4	VCCP0	-	-	-	VCCP0	-	-	-		
H5	GNDP0	-	-	-	GNDP0	-	-	-		
K1	PL24A	6	Т	PCLKT6_0	PL28A	6	Т	PCLKT6_0		
-	GNDIO6	6	-	-	GNDIO6	6	-	-		
K2	PL24B	6	С	PCLKC6_0	PL28B	6	С	PCLKC6_0		
J4	PL26A	6	-	-	PL30A	6	-	-		
J5	PL27B	6	-	VREF1_6	PL31B	6	-	VREF1_6		
L1	PL28A	6	T ³	DQS	PL32A	6	T ³	DQS		
L2	PL28B	6	C ³	-	PL32B	6	C ³	-		
-	GNDIO6	6	-	-	GNDIO6	6	-	-		
M1	PL29A	6	Т	LLM0_PLLT_IN_A	PL33A	6	Т	LLM0_PLLT_IN_A		
M2	PL29B	6	С	LLM0_PLLC_IN_A	PL33B	6	С	LLM0_PLLC_IN_A		
K3	PL30A	6	T ³	-	PL34A	6	T ³	-		
L3	PL30B	6	C ³	-	PL34B	6	C ³	-		

LFXP15 & LFXP20 Logic Signal Connections: 256 fpBGA (Cont.)

			LFXP15					
Ball Number	Ball Function	Bank	Differential	Dual Function	Ball Function	Bank	Differential	Dual Function
-	GNDIO2	2	-	-	GNDIO2	2	-	-
F15	PR10B	2	-	-	PR10B	2	-	-
E15	PR9A	2	-	VREF2_2	PR9A	2	-	VREF2_2
F14	PR8B	2	C ³	-	PR8B	2	C ³	-
E14	PR8A	2	T ³	-	PR8A	2	T ³	-
D15	PR7B	2	С	RUM0_PLLC_FB_A	PR7B	2	С	RUM0_PLLC_FB_A
C15	PR7A	2	Т	RUM0_PLLT_FB_A	PR7A	2	Т	RUM0_PLLT_FB_A
-	GNDIO2	2	-	-	GNDIO2	2	-	-
E16	TDO	-	-	-	TDO	-	-	-
D16	VCCJ	-	-	-	VCCJ	-	-	-
D14	TDI	-	-	-	TDI	-	-	-
C14	TMS	-	-	-	TMS	-	-	-
B14	ТСК	-	-	-	ТСК	-	-	-
-	GNDIO1	1	-	-	GNDIO1	1	-	-
-	GNDIO1	1	-	-	GNDIO1	1	-	-
-	GNDIO1	1	-	-	GNDIO1	1	-	-
A15	PT40B	1	С	-	PT44B	1	С	-
B15	PT40A	1	Т	-	- PT44A 1		Т	-
D12	PT39B	1	С	VREF1_1	PT43B	1	С	VREF1_1
-	GNDIO1	1	-	-	GNDIO1	1	-	-
C11	PT39A	1	Т	DQS	PT43A	1	Т	DQS
A14	PT38B	1	-	-	PT42B	1	-	-
B13	PT37A	1	-	-	PT41A	1	-	-
F12	PT36B	1	С	-	PT40B	1	С	-
E11	PT36A	1	Т	-	PT40A	1	Т	-
A13	PT35B	1	С	-	PT39B	1	С	-
C13	PT35A	1	Т	D0	PT39A	1	Т	D0
C10	PT34B	1	С	D1	PT38B	1	С	D1
E10	PT34A	1	Т	VREF2_1	PT38A	1	Т	VREF2_1
A12	PT33B	1	С	-	PT37B	1	С	-
B12	PT33A	1	Т	D2	PT37A	1	Т	D2
-	GNDIO1	1	-	-	GNDIO1	1	-	-
C12	PT32B	1	С	D3	PT36B	1	С	D3
A11	PT32A	1	Т	-	PT36A	1	Т	-
B11	PT31B	1	С	-	PT35B	1	С	-
D11	PT31A	1	Т	DQS	PT35A	1	Т	DQS
B9	PT30B	1	-	-	PT34B	1	-	-
D9	PT29A	1	-	D4	PT33A	1	-	D4
A10	PT28B	1	С	-	PT32B	1	С	-
B10	PT28A	1	Т	D5	PT32A	1	Т	D5
-	GNDIO1	1	-	-	GNDIO1	1	-	-
D10	PT27B	1	С	D6	PT31B	1	С	D6

LFXP15 & LFXP20 Logic Signal Connections: 256 fpBGA (Cont.)

	LFXP15				LFXP20					
Ball Number	Ball Function	Bank	Differential	Dual Function	Ball Function	Bank	Differential	Dual Function		
A9	PT27A	1	Т	-	PT31A	1	Т	-		
C9	PT26B	1	С	D7	PT30B	1	С	D7		
C8	PT26A	1	Т	-	PT30A	1	Т	-		
E9	PT25B	0	С	BUSY	PT29B	0	С	BUSY		
-	GNDIO0	0	-	-	GNDIO0	0	-	-		
B8	PT25A	0	Т	CS1N	PT29A	0	Т	CS1N		
A8	PT24B	0	С	PCLKC0_0	PT28B	0	С	PCLKC0_0		
A7	PT24A	0	Т	PCLKT0_0	PT28A	0	Т	PCLKT0_0		
B7	PT23B	0	С	-	PT27B	0	С	-		
C7	PT23A	0	Т	DQS	PT27A	0	Т	DQS		
E8	PT22B	0	-	-	PT26B	0	-	-		
D8	PT21A	0	-	DOUT	PT25A	0	-	DOUT		
A6	PT20B	0	С	-	PT24B	0	С	-		
-	GNDIO0	0	-	-	GNDIO0	0	-	-		
C6	PT20A	0	Т	WRITEN	PT24A	0	Т	WRITEN		
E7	PT19B	0	С	-	PT23B	0	С	-		
D7	PT19A	0	Т	VREF1_0	PT23A	0	Т	VREF1_0		
A5	PT18B	0	С	-	PT22B	0	С	-		
B5	PT18A	0	Т	DI	PT22A	0	Т	DI		
A4	PT17B	0	С	-	PT21B	0	С	-		
B6	PT17A	0	Т	CSN	PT21A	0	Т	CSN		
E6	PT16B	0	С	-	PT20B	0	С	-		
D6	PT16A	0	Т	-	PT20A	0	Т	-		
D5	PT15B	0	С	VREF2_0	PT19B	0	С	VREF2_0		
A3	PT15A	0	Т	DQS	PT19A	0	Т	DQS		
B3	PT14B	0	-	-	PT18B	0	-	-		
B2	PT13A	0	-	-	PT17A	0	-	-		
-	GNDIO0	0	-	-	GNDIO0	0	-	-		
A2	PT12B	0	С	-	PT16B	0	С	-		
B1	PT12A	0	Т	-	PT16A	0	Т	-		
F5	PT11B	0	С	-	PT15B	0	С	-		
C5	PT11A	0	Т	-	PT15A	0	Т	-		
-	GNDIO0	0	-	-	GNDIO0	0	-	-		
-	GNDIO0	0	-	-	GNDIO0	0	-	-		
-	GNDIO0	0	-	-	GNDIO0	0	-	-		
C4	CFG0	0	-	-	CFG0	0	-	-		
B4	CFG1	0	-	-	CFG1	0	-	-		
C3	DONE	0	-	-	DONE	0	-	-		
A1	GND	-	-	-	GND	-	-	-		
A16	GND	-	-	-	GND	-	-	-		
F11	GND	-	-	-	GND	-	-	-		
F6	GND	-	-	-	GND	-	-	-		

LFXP10, LFXP15 & LFXP20 Logic Signal Connections: 388 fpBGA (Cont.)

		L	FXP10)	LFXP15				LFXP20			
Ball Number	Ball Function	Bank	Diff.	Dual Function	Ball Function	Bank	Diff.	Dual Function	Ball Function	Bank	Diff.	Dual Function
C20	PT38A	1	Т	-	PT43A	1	Т	-	PT47A	1	Т	-
C21	PT37B	1	С	-	PT42B	1	С	-	PT46B	1	С	-
C22	PT37A	1	Т	-	PT42A	1	Т	-	PT46A	1	Т	-
B22	PT36B	1	С	-	PT41B	1	С	-	PT45B	1	С	-
A21	PT36A	1	Т	-	PT41A	1	Т	-	PT45A	1	Т	-
D15	PT35B	1	С	-	PT40B	1	С	-	PT44B	1	С	-
D14	PT35A	1	Т	-	PT40A	1	Т	-	PT44A	1	Т	-
B21	PT34B	1	С	VREF1_1	PT39B	1	С	VREF1_1	PT43B	1	С	VREF1_1
-	GNDIO1	1	-	-	GNDIO1	1	-	-	GNDIO1	1	-	-
A20	PT34A	1	Т	DQS	PT39A	1	Т	DQS	PT43A	1	Т	DQS
B20	PT33B	1	-	-	PT38B	1	-	-	PT42B	1	-	-
A19	PT32A	1	-	-	PT37A	1	-	-	PT41A	1	-	-
B19	PT31B	1	С	-	PT36B	1	С	-	PT40B	1	С	-
A18	PT31A	1	Т	-	PT36A	1	Т	-	PT40A	1	Т	-
C14	PT30B	1	С	-	PT35B	1	С	-	PT39B	1	С	-
C13	PT30A	1	Т	D0	PT35A	1	Т	D0	PT39A	1	Т	D0
B18	PT29B	1	С	D1	PT34B	1	С	D1	PT38B	1	С	D1
A17	PT29A	1	Т	VREF2_1	PT34A	1	Т	VREF2_1	PT38A	1	Т	VREF2_1
B17	PT28B	1	С	-	PT33B	1	С	-	PT37B	1	С	-
A16	PT28A	1	Т	D2	PT33A	1	Т	D2	PT37A	1	Т	D2
-	GNDIO1	1	-	-	GNDIO1	1	-	-	GNDIO1	1	-	-
B16	PT27B	1	С	D3	PT32B	1	С	D3	PT36B	1	С	D3
A15	PT27A	1	Т	-	PT32A	1	Т	-	PT36A	1	Т	-
B15	PT26B	1	С	-	PT31B	1	С	-	PT35B	1	С	-
A14	PT26A	1	Т	DQS	PT31A	1	Т	DQS	PT35A	1	Т	DQS
D13	PT25B	1	-	-	PT30B	1	-	-	PT34B	1	-	-
D12	PT24A	1	-	D4	PT29A	1	-	D4	PT33A	1	-	D4
B14	PT23B	1	С	-	PT28B	1	С	-	PT32B	1	С	-
A13	PT23A	1	Т	D5	PT28A	1	Т	D5	PT32A	1	Т	D5
-	GNDIO1	1	-	-	GNDIO1	1	-	-	GNDIO1	1	-	-
B13	PT22B	1	С	D6	PT27B	1	С	D6	PT31B	1	С	D6
A12	PT22A	1	Т	-	PT27A	1	Т	-	PT31A	1	Т	-
B12	PT21B	1	С	D7	PT26B	1	С	D7	PT30B	1	С	D7
C12	PT21A	1	Т	-	PT26A	1	Т	-	PT30A	1	Т	-
C11	PT20B	0	С	BUSY	PT25B	0	С	BUSY	PT29B	0	С	BUSY
-	GNDIO0	0	-	-	GNDIO0	0	-	-	GNDIO0	0	-	-
B11	PT20A	0	Т	CS1N	PT25A	0	Т	CS1N	PT29A	0	Т	CS1N
A11	PT19B	0	С	PCLKC0_0	PT24B	0	С	PCLKC0_0	PT28B	0	С	PCLKC0_0
A10	PT19A	0	Т	PCLKT0_0	PT24A	0	Т	PCLKT0_0	PT28A	0	Т	PCLKT0_0
B10	PT18B	0	С	-	PT23B	0	С	-	PT27B	0	С	-
B9	PT18A	0	Т	DQS	PT23A	0	Т	DQS	PT27A	0	Т	DQS
D11	PT17B	0	-	-	PT22B	0	-	-	PT26B	0	-	-
D10	PT16A	0	-	DOUT	PT21A	0	-	DOUT	PT25A	0	-	DOUT
A9	PT15B	0	С	-	PT20B	0	С	-	PT24B	0	С	-
-	GNDIO0	0	-	-	GNDIO0	0	-	-	GNDIO0	0	-	-
C8	PT15A	0	Т	WRITEN	PT20A	0	Т	WRITEN	PT24A	0	Т	WRITEN
B8	PT14B	0	С	-	PT19B	0	С	-	PT23B	0	С	-
A8	PT14A	0	Т	VREF1_0	PT19A	0	Т	VREF1_0	PT23A	0	Т	VREF1_0
C7	PT13B	0	С	-	PT18B	0	С	-	PT22B	0	С	-
L]		1										1

LFXP15 & LFXP20 Logic Signal Connections: 484 fpBGA (Cont.)

			LFXP15		LFXP20					
Ball Number	Ball Function	Bank	Differential	Dual Function	Ball Function	Bank	Differential	Dual Function		
D18	-	-	-	-	PT55B	1	С	-		
E18	-	-	-	-	PT55A	1	Т	-		
C19	-	-	-	-	PT54B	1	C	-		
C18	-	-	-	-	PT54A	1	Т	-		
C21	-	-	-	-	PT53B	1	C	-		
-	GNDIO1	1	-	-	GNDIO1	1	-	-		
B21	-	-	-	-	PT53A	1	Т	-		
E17	PT48B	1	С	-	PT52B	1	C	-		
E16	PT48A	1	Т	-	PT52A	1	Т	-		
C17	PT47B	1	С	-	PT51B	1	C	-		
D17	PT47A	1	Т	DQS	PT51A	1	Т	DQS		
F17	PT46B	1	-	-	PT50B	1	-	-		
F16	PT45A	1	-	-	PT49A	1	-	-		
C16	PT44B	1	С	-	PT48B	1	C	-		
D16	PT44A	1	Т	-	PT48A	1	Т	-		
A20	PT43B	1	С	-	PT47B	1	C	-		
-	GNDIO1	1	-	-	GNDIO1	1	-	-		
B20	PT43A	1	Т	-	PT47A	1	Т	-		
A19	PT42B	1	С	-	PT46B	1	C	-		
B19	PT42A	1	Т	-	PT46A	1	Т	-		
C15	PT41B	1	С	-	PT45B	1	C	-		
D15	PT41A	1	Т	-	PT45A	1	Т	-		
A18	PT40B	1	С	-	PT44B	1	C	-		
B18	PT40A	1	Т	-	PT44A	1	Т	-		
F15	PT39B	1	С	VREF1_1	PT43B	1	C	VREF1_1		
-	GNDIO1	1	-	-	GNDIO1	1	-	-		
E15	PT39A	1	Т	DQS	PT43A	1	Т	DQS		
A17	PT38B	1	-	-	PT42B	1	-	-		
B17	PT37A	1	-	-	PT41A	1	-	-		
E14	PT36B	1	С	-	PT40B	1	C	-		
F14	PT36A	1	Т	-	PT40A	1	Т	-		
D14	PT35B	1	С	-	PT39B	1	C	-		
C14	PT35A	1	Т	D0	PT39A	1	Т	D0		
A16	PT34B	1	С	D1	PT38B	1	C	D1		
B16	PT34A	1	Т	VREF2_1	PT38A	1	Т	VREF2_1		
A15	PT33B	1	С	-	PT37B	1	C	-		
B15	PT33A	1	Т	D2	PT37A	1	Т	D2		
-	GNDIO1	1	-	-	GNDIO1	1	-	-		
E13	PT32B	1	С	D3	PT36B	1	C	D3		
D13	PT32A	1	Т	-	PT36A	1	Т	-		
C13	PT31B	1	С	-	PT35B	1	C	-		
B13	PT31A	1	Т	DQS	PT35A	1	Т	DQS		