

 \times FI

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Detailo	
Product Status	Obsolete
Number of LABs/CLBs	-
Number of Logic Elements/Cells	10000
Total RAM Bits	221184
Number of I/O	244
Number of Gates	-
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	388-BBGA
Supplier Device Package	388-FPBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lfxp10e-3fn388i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

LatticeXP Family Data Sheet Introduction

July 2007

Features

■ Non-volatile, Infinitely Reconfigurable

- Instant-on powers up in microseconds
- No external configuration memory
- Excellent design security, no bit stream to intercept
- Reconfigure SRAM based logic in milliseconds
- SRAM and non-volatile memory programmable through system configuration and JTAG ports
- Sleep Mode
 - Allows up to 1000x static current reduction
- TransFR[™] Reconfiguration (TFR)
 In-field logic update while system operates
- Extensive Density and Package Options
 - 3.1K to 19.7K LUT4s
 - 62 to 340 I/Os
 - Density migration supported

Embedded and Distributed Memory

- 54 Kbits to 396 Kbits sysMEM[™] Embedded Block RAM
- Up to 79 Kbits distributed RAM
- Flexible memory resources:
 - Distributed and block memory

■ Flexible I/O Buffer

• Programmable sysIO[™] buffer supports wide range of interfaces:

Data Sheet DS1001

- LVCMOS 3.3/2.5/1.8/1.5/1.2
- LVTTL
- SSTL 18 Class I
- SSTL 3/2 Class I, II
- HSTL15 Class I, III
- HSTL 18 Class I, II, III
- PCI
- LVDS, Bus-LVDS, LVPECL, RSDS
- Dedicated DDR Memory Support
 - Implements interface up to DDR333 (166MHz)

■ sysCLOCK[™] PLLs

- Up to 4 analog PLLs per device
- Clock multiply, divide and phase shifting
- System Level Support
 - IEEE Standard 1149.1 Boundary Scan, plus ispTRACY™ internal logic analyzer capability
 - Onboard oscillator for configuration
 - Devices operate with 3.3V, 2.5V, 1.8V or 1.2V power supply

Device	LFXP3	LFXP6	LFXP10	LFXP15	LFXP20
PFU/PFF Rows	16	24	32	40	44
PFU/PFF Columns	24	30	38	48	56
PFU/PFF (Total)	384	720	1216	1932	2464
LUTs (K)	3	6	10	15	20
Distributed RAM (KBits)	12	23	39	61	79
EBR SRAM (KBits)	54	72	216	324	396
EBR SRAM Blocks	6	8	24	36	44
V _{CC} Voltage	1.2/1.8/2.5/3.3V	1.2/1.8/2.5/3.3V	1.2/1.8/2.5/3.3V	1.2/1.8/2.5/3.3V	1.2/1.8/2.5/3.3V
PLLs	2	2	4	4	4
Max. I/O	136	188	244	300	340
Packages and I/O Combination	ons:				
100-pin TQFP (14 x 14 mm)	62				
144-pin TQFP (20 x 20 mm)	100	100			
208-pin PQFP (28 x 28 mm)	136	142			
256-ball fpBGA (17 x 17 mm)		188	188	188	188
388-ball fpBGA (23 x 23 mm)			244	268	268
484-ball fpBGA (23 x 23 mm)				300	340

Table 1-1. LatticeXP Family Selection Guide

© 2007 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

LatticeXP Family Data Sheet Architecture

July 2007

Data Sheet DS1001

Architecture Overview

The LatticeXP architecture contains an array of logic blocks surrounded by Programmable I/O Cells (PIC). Interspersed between the rows of logic blocks are rows of sysMEM Embedded Block RAM (EBR) as shown in Figure 2-1.

On the left and right sides of the PFU array, there are Non-volatile Memory Blocks. In configuration mode this nonvolatile memory is programmed via the IEEE 1149.1 TAP port or the sysCONFIG[™] peripheral port. On power up, the configuration data is transferred from the Non-volatile Memory Blocks to the configuration SRAM. With this technology, expensive external configuration memories are not required and designs are secured from unauthorized read-back. This transfer of data from non-volatile memory to configuration SRAM via wide busses happens in microseconds, providing an "instant-on" capability that allows easy interfacing in many applications.

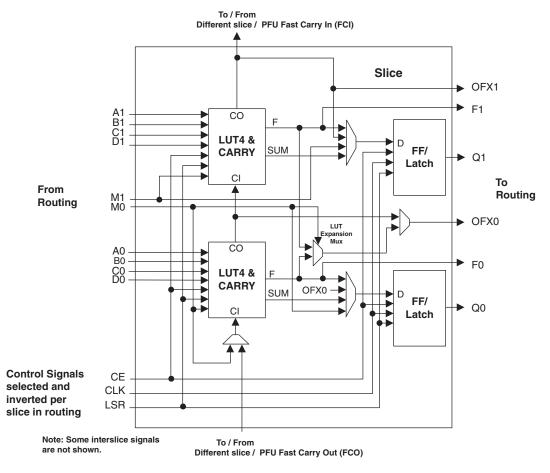
There are two kinds of logic blocks, the Programmable Functional Unit (PFU) and Programmable Functional unit without RAM/ROM (PFF). The PFU contains the building blocks for logic, arithmetic, RAM, ROM and register functions. The PFF block contains building blocks for logic, arithmetic and ROM functions. Both PFU and PFF blocks are optimized for flexibility, allowing complex designs to be implemented quickly and efficiently. Logic Blocks are arranged in a two-dimensional array. Only one type of block is used per row. The PFU blocks are used on the outside rows. The rest of the core consists of rows of PFF blocks interspersed with rows of PFU blocks. For every three rows of PFF blocks there is a row of PFU blocks.

Each PIC block encompasses two PIOs (PIO pairs) with their respective sysIO interfaces. PIO pairs on the left and right edges of the device can be configured as LVDS transmit/receive pairs. sysMEM EBRs are large dedicated fast memory blocks. They can be configured as RAM or ROM.

The PFU, PFF, PIC and EBR Blocks are arranged in a two-dimensional grid with rows and columns as shown in Figure 2-1. The blocks are connected with many vertical and horizontal routing channel resources. The place and route software tool automatically allocates these routing resources.

At the end of the rows containing the sysMEM Blocks are the sysCLOCK Phase Locked Loop (PLL) Blocks. These PLLs have multiply, divide and phase shifting capability; they are used to manage the phase relationship of the clocks. The LatticeXP architecture provides up to four PLLs per device.

Every device in the family has a JTAG Port with internal Logic Analyzer (ispTRACY) capability. The sysCONFIG port which allows for serial or parallel device configuration. The LatticeXP devices are available for operation from 3.3V, 2.5V, 1.8V and 1.2V power supplies, providing easy integration into the overall system.


^{© 2007} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Slice

Each slice contains two LUT4 lookup tables feeding two registers (programmed to be in FF or Latch mode), and some associated logic that allows the LUTs to be combined to perform functions such as LUT5, LUT6, LUT7 and LUT8. There is control logic to perform set/reset functions (programmable as synchronous/asynchronous), clock select, chip-select and wider RAM/ROM functions. Figure 2-3 shows an overview of the internal logic of the slice. The registers in the slice can be configured for positive/negative and edge/level clocks.

There are 14 input signals: 13 signals from routing and one from the carry-chain (from adjacent slice or PFU). There are 7 outputs: 6 to routing and one to carry-chain (to adjacent PFU). Table 2-1 lists the signals associated with each slice.

Figure 2-3. Slice Diagram

Function	Туре	Signal Names	Description
Input	Data signal	A0, B0, C0, D0	Inputs to LUT4
Input	Data signal	A1, B1, C1, D1	Inputs to LUT4
Input	Multi-purpose	MO	Multipurpose Input
Input	Multi-purpose	M1	Multipurpose Input
Input	Control signal	CE	Clock Enable
Input	Control signal	LSR	Local Set/Reset
Input	Control signal	CLK	System Clock
Input	Inter-PFU signal	FCIN	Fast Carry In ¹
Output	Data signals	F0, F1	LUT4 output register bypass signals
Output	Data signals	Q0, Q1	Register Outputs
Output	Data signals	OFX0	Output of a LUT5 MUX
Output	Data signals	OFX1	Output of a LUT6, LUT7, LUT8 ² MUX depending on the slice
Output	Inter-PFU signal	FCO	For the right most PFU the fast carry chain output ¹

Table 2-1. Slice Signal Descriptions

1. See Figure 2-2 for connection details.

2. Requires two PFUs.

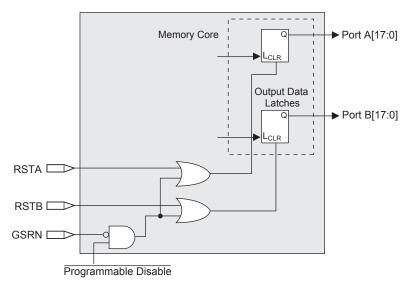
Modes of Operation

Each Slice is capable of four modes of operation: Logic, Ripple, RAM and ROM. The Slice in the PFF is capable of all modes except RAM. Table 2-2 lists the modes and the capability of the Slice blocks.

Table 2-2. Slice Modes

	Logic	Ripple	RAM	ROM
PFU Slice	LUT 4x2 or LUT 5x1	2-bit Arithmetic Unit	SP 16x2	ROM 16x1 x 2
PFF Slice	LUT 4x2 or LUT 5x1	2-bit Arithmetic Unit	N/A	ROM 16x1 x 2

Logic Mode: In this mode, the LUTs in each Slice are configured as 4-input combinatorial lookup tables. A LUT4 can have 16 possible input combinations. Any logic function with four inputs can be generated by programming this lookup table. Since there are two LUT4s per Slice, a LUT5 can be constructed within one Slice. Larger lookup tables such as LUT6, LUT7 and LUT8 can be constructed by concatenating other Slices.


Ripple Mode: Ripple mode allows the efficient implementation of small arithmetic functions. In ripple mode, the following functions can be implemented by each Slice:

- Addition 2-bit
- Subtraction 2-bit
- Add/Subtract 2-bit using dynamic control
- Up counter 2-bit
- Down counter 2-bit
- Ripple mode multiplier building block
- Comparator functions of A and B inputs
 - A greater-than-or-equal-to B
 - A not-equal-to B
 - A less-than-or-equal-to B

Two additional signals: Carry Generate and Carry Propagate are generated per Slice in this mode, allowing fast arithmetic functions to be constructed by concatenating Slices.

RAM Mode: In this mode, distributed RAM can be constructed using each LUT block as a 16x1-bit memory. Through the combination of LUTs and Slices, a variety of different memories can be constructed.

Figure 2-15. Memory Core Reset

For further information on sysMEM EBR block, see the details of additional technical documentation at the end of this data sheet.

EBR Asynchronous Reset

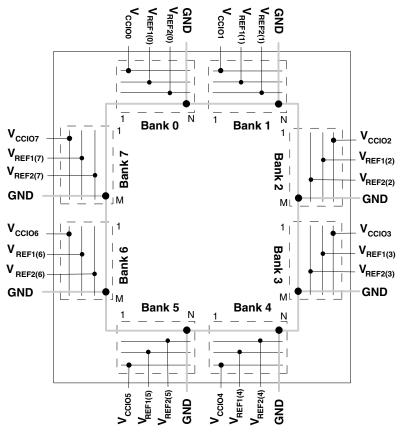
EBR asynchronous reset or GSR (if used) can only be applied if all clock enables are low for a clock cycle before the reset is applied and released a clock cycle after the reset is released, as shown in Figure 2-16. The GSR input to the EBR is always asynchronous.

Figure 2-16. EBR Asynchronous Reset (Including GSR) Timing Diagram

Reset	
Clock	
Clock Enable	

If all clock enables remain enabled, the EBR asynchronous reset or GSR may only be applied and released after the EBR read and write clock inputs are in a steady state condition for a minimum of $1/f_{MAX}$ (EBR clock). The reset release must adhere to the EBR synchronous reset setup time before the next active read or write clock edge.

If an EBR is pre-loaded during configuration, the GSR input must be disabled or the release of the GSR during device Wake Up must occur before the release of the device I/Os becoming active.


These instructions apply to all EBR RAM and ROM implementations.

Note that there are no reset restrictions if the EBR synchronous reset is used and the EBR GSR input is disabled.

Programmable I/O Cells (PICs)

Each PIC contains two PIOs connected to their respective sysIO Buffers which are then connected to the PADs as shown in Figure 2-17. The PIO Block supplies the output data (DO) and the Tri-state control signal (TO) to sysIO buffer, and receives input from the buffer.

Figure 2-28. LatticeXP Banks

Note: N and M are the maximum number of I/Os per bank.

LatticeXP devices contain two types of sysIO buffer pairs.

1. Top and Bottom sysIO Buffer Pair (Single-Ended Outputs Only)

The sysIO buffer pairs in the top and bottom banks of the device consist of two single-ended output drivers and two sets of single-ended input buffers (both ratioed and referenced). The referenced input buffer can also be configured as a differential input.

The two pads in the pair are described as "true" and "comp", where the true pad is associated with the positive side of the differential input buffer and the comp (complementary) pad is associated with the negative side of the differential input buffer.

Only the I/Os on the top and bottom banks have PCI clamps. Note that the PCI clamp is enabled after $V_{CC,}$ V_{CCAUX} and V_{CCIO} are at valid operating levels and the device has been configured.

2. Left and Right sysIO Buffer Pair (Differential and Single-Ended Outputs)

The sysIO buffer pairs in the left and right banks of the device consist of two single-ended output drivers, two sets of single-ended input buffers (both ratioed and referenced) and one differential output driver. The referenced input buffer can also be configured as a differential input. In these banks the two pads in the pair are described as "true" and "comp", where the true pad is associated with the positive side of the differential I/O, and the comp (complementary) pad is associated with the negative side of the differential I/O.

Select I/Os in the left and right banks have LVDS differential output drivers. Refer to the Logic Signal Connections tables for more information.

Table 2-8. Supported	d Output Standards
----------------------	--------------------

Output Standard	Drive	V _{CCIO} (Nom.)
Single-ended Interfaces	· · ·	
LVTTL	4mA, 8mA, 12mA, 16mA, 20mA	3.3
LVCMOS33	4mA, 8mA, 12mA 16mA, 20mA	3.3
LVCMOS25	4mA, 8mA, 12mA 16mA, 20mA	2.5
LVCMOS18	4mA, 8mA, 12mA 16mA	1.8
LVCMOS15	4mA, 8mA	1.5
LVCMOS12	2mA, 6mA	1.2
LVCMOS33, Open Drain	4mA, 8mA, 12mA 16mA, 20mA	—
LVCMOS25, Open Drain	4mA, 8mA, 12mA 16mA, 20mA	—
LVCMOS18, Open Drain	4mA, 8mA, 12mA 16mA	_
LVCMOS15, Open Drain	4mA, 8mA	_
LVCMOS12, Open Drain	2mA. 6mA	—
PCI33	N/A	3.3
HSTL18 Class I, II, III	N/A	1.8
HSTL15 Class I, III	N/A	1.5
SSTL3 Class I, II	N/A	3.3
SSTL2 Class I, II	N/A	2.5
SSTL18 Class I	N/A	1.8
Differential Interfaces	· · ·	
Differential SSTL3, Class I, II	N/A	3.3
Differential SSTL2, Class I, II	N/A	2.5
Differential SSTL18, Class I	N/A	1.8
Differential HSTL18, Class I, II, III	N/A	1.8
Differential HSTL15, Class I, III	N/A	1.5
LVDS	N/A	2.5
BLVDS ¹	N/A	2.5
LVPECL ¹	N/A	3.3

1. Emulated with external resistors.

Hot Socketing

The LatticeXP devices have been carefully designed to ensure predictable behavior during power-up and powerdown. Power supplies can be sequenced in any order. During power up and power-down sequences, the I/Os remain in tristate until the power supply voltage is high enough to ensure reliable operation. In addition, leakage into I/O pins is controlled to within specified limits, which allows easy integration with the rest of the system. These capabilities make the LatticeXP ideal for many multiple power supply and hot-swap applications.

Sleep Mode

The LatticeXP "C" devices ($V_{CC} = 1.8/2.5/3.3V$) have a sleep mode that allows standby current to be reduced by up to three orders of magnitude during periods of system inactivity. Entry and exit to Sleep Mode is controlled by the SLEEPN pin.

During Sleep Mode, the FPGA logic is non-operational, registers and EBR contents are not maintained and I/Os are tri-stated. Do not enter Sleep Mode during device programming or configuration operation. In Sleep Mode, power supplies can be maintained in their normal operating range, eliminating the need for external switching of power supplies. Table 2-9 compares the characteristics of Normal, Off and Sleep Modes.

sysIO Recommended Operating Conditions

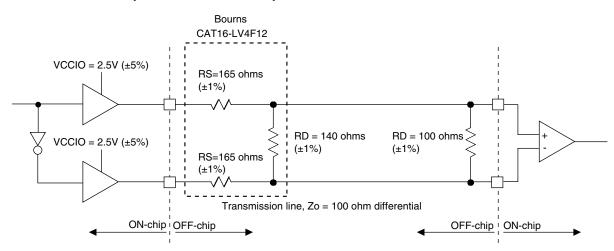
	V _{CCIO}				V _{REF} (V)	
Standard	Min.	Тур.	Max.	Min.	Тур.	Max.
LVCMOS 3.3	3.135	3.3	3.465	—	—	—
LVCMOS 2.5	2.375	2.5	2.625	—	—	—
LVCMOS 1.8	1.71	1.8	1.89	—	—	—
LVCMOS 1.5	1.425	1.5	1.575	—	—	—
LVCMOS 1.2	1.14	1.2	1.26	—	—	—
LVTTL	3.135	3.3	3.465	—	—	—
PCI33	3.135	3.3	3.465	—	—	—
SSTL18 Class I	1.71	1.8	1.89	0.833	0.9	0.969
SSTL2 Class I, II	2.375	2.5	2.625	1.15	1.25	1.35
SSTL3 Class I, II	3.135	3.3	3.465	1.3	1.5	1.7
HSTL15 Class I	1.425	1.5	1.575	0.68	0.75	0.9
HSTL15 Class III	1.425	1.5	1.575	—	0.9	—
HSTL 18 Class I, II	1.71	1.8	1.89	—	0.9	—
HSTL 18 Class III	1.71	1.8	1.89	—	1.08	—
LVDS	2.375	2.5	2.625	—	—	—
LVPECL ¹	3.135	3.3	3.465	—	—	—
BLVDS ¹	2.375	2.5	2.625	—	—	—

1. Inputs on chip. Outputs are implemented with the addition of external resistors.

sysIO Single-Ended DC Electrical Characteristics

Input/Output	V _{IL}		V _{IH}		V _{OL} Max.	V _{OH} Min.	I _{OL}	I _{ОН}
Standard	Min. (V)	Max. (V)	Min. (V)	Max. (V)	(V)	(V)	(mA)	(mA)
LVCMOS 3.3	-0.3	0.8	2.0	3.6	0.4	V _{CCIO} - 0.4	20, 16, 12, 8, 4	-20, -16, -12, -8, -4
					0.2	V _{CCIO} - 0.2	0.1	-0.1
LVTTL	-0.3	0.8	2.0	3.6	0.4	V _{CCIO} - 0.4	20, 16, 12, 8, 4	-20, -16, -12, -8, -4
					0.2	V _{CCIO} - 0.2	0.1	-0.1
LVCMOS 2.5	-0.3	0.7	1.7	3.6	0.4	V _{CCIO} - 0.4	20, 16, 12, 8, 4	-20, -16, -12, -8, -4
					0.2	V _{CCIO} - 0.2	0.1	-0.1
LVCMOS 1.8	-0.3	0.35V _{CCIO}	0.65V _{CCIO}	3.6	0.4	V _{CCIO} - 0.4	16, 12, 8, 4	-16, -12, -8, -4
	-0.5	0.32 A CCIO	0.03 A CCIO	5.0	0.2	V _{CCIO} - 0.2	0.1	-0.1
LVCMOS 1.5	-0.3	0.35V _{CCIO}	0.65V _{CCIO}	3.6	0.4	V _{CCIO} - 0.4	8, 4	-8, -4
2000001.5	-0.5	0.00 0.00	0.0340000	0.0	0.2	V _{CCIO} - 0.2	0.1	-0.1
LVCMOS 1.2	-0.3	0.42	0.78	3.6	0.4	V _{CCIO} - 0.4	6, 2	-6, -2
("C" Version)	-0.5	0.42	0.70	0.0	0.2	V _{CCIO} - 0.2	0.1	-0.1
LVCMOS 1.2	-0.3	0.35V _{CC}	0.65V _{CC}	3.6	0.4	V _{CCIO} - 0.4	6, 2	-6, -2
("E" Version)	-0.5			0.0	0.2	V _{CCIO} - 0.2	0.1	-0.1
PCI	-0.3	0.3V _{CCIO}	0.5V _{CCIO}	3.6	$0.1V_{CCIO}$	0.9V _{CCIO}	1.5	-0.5
SSTL3 class I	-0.3	V _{REF} - 0.2	V _{REF} + 0.2	3.6	0.7	V _{CCIO} - 1.1	8	-8
SSTL3 class II	-0.3	V _{REF} - 0.2	V _{REF} + 0.2	3.6	0.5	V _{CCIO} - 0.9	16	-16
SSTL2 class I	-0.3	V _{REF} - 0.18	V _{REF} + 0.18	3.6	0.54	V _{CCIO} - 0.62	7.6	-7.6
SSTL2 class II	-0.3	V _{REF} - 0.18	V _{REF} + 0.18	3.6	0.35	V _{CCIO} - 0.43	15.2	-15.2
SSTL18 class I	-0.3	V _{REF} - 0.125	V _{REF} + 0.125	3.6	0.4	V _{CCIO} - 0.4	6.7	-6.7
HSTL15 class I	-0.3	V _{REF} - 0.1	V _{REF} + 0.1	3.6	0.4	V _{CCIO} - 0.4	8	-8
HSTL15 class III	-0.3	V _{REF} - 0.1	V _{REF} + 0.1	3.6	0.4	V _{CCIO} - 0.4	24	-8
HSTL18 class I	-0.3	V _{REF} - 0.1	V _{REF} + 0.1	3.6	0.4	V _{CCIO} - 0.4	9.6	-9.6
HSTL18 class II	-0.3	V _{REF} - 0.1	V _{REF} + 0.1	3.6	0.4	V _{CCIO} - 0.4	16	-16
HSTL18 class III	-0.3	V _{REF} - 0.1	V _{REF} + 0.1	3.6	0.4	V _{CCIO} - 0.4	24	-8

1. The average DC current drawn by I/Os between GND connections, or between the last GND in an I/O bank and the end of an I/O bank, as shown in the logic signal connections table shall not exceed n * 8mA. Where n is the number of I/Os between bank GND connections or between the last GND in a bank and the end of a bank.


Differential HSTL and SSTL

Differential HSTL and SSTL outputs are implemented as a pair of complementary single-ended outputs. All allowable single-ended output classes (class I and class II) are supported in this mode.

LVDS25E

The top and bottom side of LatticeXP devices support LVDS outputs via emulated complementary LVCMOS outputs in conjunction with a parallel resistor across the driver outputs. The scheme shown in Figure 3-1 is one possible solution for point-to-point signals.

Figure 3-1. LVDS25E Output Termination Example

Table 3-1. LVDS25E DC Conditions

Parameter	Description	Typical	Units
V _{OH}	Output high voltage	1.43	V
V _{OL}	Output low voltage	1.07	V
V _{OD}	Output differential voltage	0.35	V
V _{CM}	Output common mode voltage	1.25	V
Z _{BACK}	Back impedance	100	ohms
I _{DC}	DC output current	3.66	mA

BLVDS

The LatticeXP devices support BLVDS standard. This standard is emulated using complementary LVCMOS outputs in conjunction with a parallel external resistor across the driver outputs. BLVDS is intended for use when multidrop and bi-directional multi-point differential signaling is required. The scheme shown in Figure 3-2 is one possible solution for bi-directional multi-point differential signals.

LatticeXP External Switching Characteristics

			-	5	-	4	-	3	
Parameter	Description	Device	Min.	Max.	Min.	Max.	Min.	Max.	Units
General I/C	Pin Parameters (Using Primary Clock wit	hout PLL) ¹							
		LFXP3		5.12		6.12	_	7.43	ns
		LFXP6	—	5.30	—	6.34	-	7.69	ns
t _{CO}	Clock to Output - PIO Output Register	LFXP10	_	5.52		6.60	—	8.00	ns
		LFXP15	_	5.72		6.84	—	8.29	ns
		LFXP20	—	5.97	—	7.14	-	8.65	ns
		LFXP3	-0.40	—	-0.28	—	-0.16	—	ns
		LFXP6	-0.33	—	-0.32	—	-0.30	—	ns
t _{SU}	Clock to Data Setup - PIO Input Register	LFXP10	-0.61	—	-0.71	—	-0.81	—	ns
		LFXP15	-0.71		-0.77	_	-0.87	_	ns
		LFXP20	-0.95		-1.14	_	-1.35	_	ns
		LFXP3	2.10		2.50	_	2.98	_	ns
		LFXP6	2.28	—	2.72	—	3.24	—	ns
t _H	Clock to Data Hold - PIO Input Register	LFXP10	3.02	—	3.51	—	3.71	—	ns
		LFXP15	2.70		3.22	—	3.85	—	ns
		LFXP20	2.95	_	3.52	—	4.21	_	ns
	Clock to Data Setup - PIO Input Register with Input Data Delay	LFXP3	2.38		2.49	—	2.66	—	ns
		LFXP6	2.92		3.18	—	3.42	—	ns
t _{SU_DEL}		LFXP10	2.72	_	2.75	—	2.84	_	ns
		LFXP15	2.99		3.13	—	3.18	—	ns
		LFXP20	4.47	_	4.56	—	4.80	—	ns
		LFXP3	-0.70	_	-0.80	—	-0.92	_	ns
		LFXP6	-0.47		-0.38	—	-0.31	—	ns
t _{H_DEL}	Clock to Data Hold - PIO Input Register with Input Data Delay	LFXP10	-0.60		-0.47	—	-0.32	—	ns
		LFXP15	-1.05	—	-0.98	—	-1.01	_	ns
		LFXP20	-0.80	_	-0.58	—	-0.31	_	ns
f _{MAX_IO}	Clock Frequency of I/O and PFU Register	All	—	400	_	360	—	320	MHz
	n Parameters ²		I	l	l	I		l	L
t _{DVADQ}	Data Valid After DQS (DDR Read)	All	_	0.19	—	0.19	—	0.19	UI
t _{DVEDQ}	Data Hold After DQS (DDR Read)	All	0.67		0.67	—	0.67	—	UI
t _{DQVBS}	Data Valid Before DQS	All	0.20	—	0.20	—	0.20	_	UI
t _{DQVAS}	Data Valid After DQS	All	0.20		0.20		0.20	_	UI
f _{MAX_DDR}	DDR Clock Frequency	All	95	166	95	133	95	100	MHz
	nd Secondary Clocks	1	1	1	1	1	1	1	<u> </u>
f _{MAX_PRI}	Frequency for Primary Clock Tree	All	—	450	—	412	—	375	MHz
t _{W_PRI}	Clock Pulse Width for Primary Clock	All	1.19	—	1.19	—	1.19	—	ns
		LFXP3/6/10/15		250		300	—	350	ps
^t SKEW_PRI	Primary Clock Skew within an I/O Bank	LFXP20		300		350	—	400	ps
		1	1		1	1	1	1	1

Over Recommended Operating Conditions

1. General timing numbers based on LVCMOS 2.5, 12mA.

2. DDR timing numbers based on SSTL I/O.

Timing v.F0.11

LatticeXP Family Data Sheet Pinout Information

November 2007

Data Sheet DS1001

Signal Descriptions

Signal Name	I/O	Descriptions				
General Purpose						
		[Edge] indicates the edge of the device on which the pad is located. Valid edge designations are L (Left), B (Bottom), R (Right), T (Top).				
		[Row/Column Number] indicates the PFU row or the column of the device on which the PIC exists. When Edge is T (Top) or (Bottom), only need to specify Row Number. When Edge is L (Left) or R (Right), only need to specify Column Number.				
P[Edge] [Row/Column Number*]_[A/B]	I/O	[A/B] indicates the PIO within the PIC to which the pad is connected.				
		Some of these user programmable pins are shared with special function pins. These pin when not used as special purpose pins can be programmed as I/Os for user logic.				
		During configuration, the user-programmable I/Os are tri-stated with an inter- nal pull-up resistor enabled. If any pin is not used (or not bonded to a pack- age pin), it is also tri-stated with an internal pull-up resistor enabled after configuration.				
GSRN	I	Global RESET signal. (Active low). Any I/O pin can be configured to be GSRN.				
NC		No connect.				
GND	_	GND - Ground. Dedicated Pins.				
V _{CC}		VCC - The power supply pins for core logic. Dedicated Pins.				
V _{CCAUX}	—	V_{CCAUX} - The Auxiliary power supply pin. It powers all the differential and referenced input buffers. Dedicated Pins.				
V _{CCP0}		Voltage supply pins for ULM0PLL (and LLM1PLL ¹).				
V _{CCP1}	_	Voltage supply pins for URM0PLL (and LRM1PLL ¹).				
GNDP0	_	Ground pins for ULM0PLL (and LLM1PLL ¹).				
GNDP1		Ground pins for URM0PLL (and LRM1PLL ¹).				
V _{CCIOx}	_	V _{CCIO} - The power supply pins for I/O bank x. Dedicated Pins.				
V _{REF1(x)} , V _{REF2(x)}	—	Reference supply pins for I/O bank x. Pre-determined pins in each bank are assigned as V_{REF} inputs. When not used, they may be used as I/O pins.				
PLL and Clock Functions (Used as user	progra	ammable I/O pins when not in use for PLL or clock pins)				
[LOC][num]_PLL[T, C]_IN_A	_	Reference clock (PLL) input Pads: ULM, LLM, URM, LRM, num = row from center, $T =$ true and $C =$ complement, index A, B, Cat each side.				
[LOC][num]_PLL[T, C]_FB_A	_	Optional feedback (PLL) input Pads: ULM, LLM, URM, LRM, num = row from center, $T =$ true and $C =$ complement, index A, B, Cat each side.				
PCLK[T, C]_[n:0]_[3:0]	_	Primary Clock Pads, T = true and C = complement, n per side, indexed by bank and 0,1, 2, 3 within bank.				
[LOC]DQS[num]	_	DQS input Pads: T (Top), R (Right), B (Bottom), L (Left), DQS, num = Ball function number. Any pad can be configured to be DQS output.				

^{© 2007} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

PICs and DDR Data (DQ) Pins Associated with the DDR Strobe (DQS) Pin

PICs Associated with DQS Strobe	PIO within PIC	Polarity	DDR Strobe (DQS) and Data (DQ) Pins
D[Edge] [p. 4]	А	True	DQ
P[Edge] [n-4]	В	Complement	DQ
D[Edgo] [n 2]	А	True	DQ
P[Edge] [n-3]	В	Complement	DQ
P[Edge] [n-2]	А	True	DQ
	В	Complement	DQ
P[Edge] [n-1]	A	True	DQ
P[Edge] [n]	В	Complement	DQ
	A	True	[Edge]DQSn
P[Edge] [n+1]	В	Complement	DQ
	А	True	DQ
P[Edge] [n+2]	В	Complement	DQ
D[Edgo] [n , 2]	А	True	DQ
P[Edge] [n+3]	В	Complement	DQ

Notes:

1. "n" is a row/column PIC number.

2. The DDR interface is designed for memories that support one DQS strobe per eight bits of data. In some packages, all the potential DDR data (DQ) pins may not be available.

3. The definition of the PIC numbering is provided in the Signal Names column of the Signal Descriptions table in this data sheet.

Pin Information Summary¹ (Cont.)

		XP	10		XP15			XP20	
Pin Ty	pe	256 fpBGA	388 fpBGA	256 fpBGA	388 fpBGA	484 fpBGA	256 fpBGA	388 fpBGA	484 fpBGA
Single Ended User I/O		188	244	188	268	300	188	268	340
Differential Pai	r User I/O ²	76	104	76	112	128	76	112	144
Configuration	Dedicated	11	11	11	11	11	11	11	11
Configuration	Muxed	14	14	14	14	14	14	14	14
TAP	•	5	5	5	5	5	5	5	5
Dedicated (total without s	upplies)	6	6	6	6	6	6	6	6
V _{CC}		8	14	8	14	28	8	14	28
V _{CCAUX}		4	4	4	4	12	4	4	12
V _{CCPLL}		2	2	2	2	2	2	2	2
	Bank0	2	5	2	5	4	2	5	4
	Bank1	2	5	2	5	4	2	5	4
	Bank2	2	4	2	4	4	2	4	4
V	Bank3	2	4	2	4	4	2	4	4
V _{CCIO}	Bank4	2	5	2	5	4	2	5	4
	Bank5	2	5	2	5	4	2	5	4
	Bank6	2	4	2	4	4	2	4	4
	Bank7	2	4	2	4	4	2	4	4
GND	•	24	50	24	50	56	24	50	56
GND _{PLL}		2	2	2	2	2	2	2	2
NC		0	24	0	0	40	0	0	0
	Bank0	26/11	33/14	26/11	39/16	40/17	26/11	39/16	47/20
	Bank1	26/11	33/14	26/11	39/16	40/17	26/11	39/16	47/20
	Bank2	21/8	28/12	21/8	28/12	35/15	21/8	28/12	38/16
Single Ended/ Differential I/O	Bank3	21/8	28/12	21/8	28/12	35/15	21/8	28/12	38/16
per Bank ²	Bank4	26/11	33/14	26/11	39/16	40/17	26/11	39/16	47/20
ľ	Bank5	26/11	33/14	26/11	39/16	40/17	26/11	39/16	47/20
	Bank6	21/8	28/12	21/8	28/12	35/15	21/8	28/12	38/16
	Bank7	21/8	28/12	21/8	28/12	35/15	21/8	28/12	38/16
V _{CCJ}		1	1	1	1	1	1	1	1

1. During configuration the user-programmable I/Os are tri-stated with an internal pull-up resistor enabled. If any pin is not used (or not bonded to a package pin), it is also tri-stated with an internal pull-up resistor enabled after configuration.

2. The differential I/O per bank includes both dedicated LVDS and emulated LVDS pin pairs. Please see the Logic Signal Connections table for more information.

LFXP15 & LFXP20 Logic Signal Connections: 256 fpBGA (Cont.)

		LFXP15		LFXP20				
Ball Number	Ball Function	Bank	Differential	Dual Function	Ball Function	Bank	Differential	Dual Function
P16	PR37B	3	C ³	-	PR41B	3	C ³	-
R16	PR37A	3	T ³	DQS	PR41A	3	T ³	DQS
M15	PR36B	3	-	-	PR40B	3	-	-
N14	PR35A	3	-	VREF1_3	PR39A	3	-	VREF1_3
-	GNDIO3	3	-	-	GNDIO3	3	-	-
M14	PR33B	3	С	-	PR37B	3	С	-
L13	PR33A	3	Т	-	PR37A	3	Т	-
L15	PR32B	3	C ³	-	PR36B	3	C³	-
L14	PR32A	3	Т³	-	PR36A	3	T ³	-
L12	PR30A	3	-	-	PR34A	3	-	-
M16	PR29B	3	С	RLM0_PLLC_IN_A	PR33B	3	С	RLM0_PLLC_IN_A
N16	PR29A	3	Т	RLM0_PLLT_IN_A	PR33A	3	Т	RLM0_PLLT_IN_A
-	GNDIO3	3	-	-	GNDIO3	3	-	-
K14	PR28B	3	C ³	-	PR32B	3	C ³	-
K15	PR28A	3	T ³	DQS	PR32A	3	T ³	DQS
K12	PR27B	3	-	-	PR31B	3	-	-
K13	PR26A	3	-	VREF2_3	PR30A	3	-	VREF2_3
L16	PR25B	3	C ³	-	PR29B	3	C ³	-
K16	PR25A	3	T ³	-	PR29A	3	T ³	-
-	GNDIO3	3	-	-	GNDIO3	3	-	-
J15	PR23B	3	C ³	-	PR27B	3	C ³	-
J14	PR23A	3	T ³	-	PR27A	3	T ³	-
J13	GNDP1	-	-	-	GNDP1	-	-	-
J12	VCCP1	-	-	-	VCCP1	-	-	-
-	GNDIO2	2	-	-	GNDIO2	2	-	-
J16	PR21B	2	С	PCLKC2_0	PR21B	2	С	PCLKC2_0
H16	PR21A	2	Т	PCLKT2_0	PR21A	2	Т	PCLKT2_0
H13	PR20B	2	C ³	-	PR20B	2	C ³	-
H12	PR20A	2	T ³	DQS	PR20A	2	T ³	DQS
H15	PR19B	2	-	-	PR19B	2	-	-
H14	PR18A	2	-	VREF1_2	PR18A	2	-	VREF1_2
-	GNDIO2	2	-	-	GNDIO2	2	-	-
G15	PR17B	2	C ³	-	PR17B	2	C³	-
G14	PR17A	2	T ³	-	PR17A	2	T ³	-
G16	PR16B	2	С	RUM0_PLLC_IN_A	PR16B	2	С	RUM0_PLLC_IN_A
F16	PR16A	2	Т	RUM0_PLLT_IN_A	PR16A	2	Т	RUM0_PLLT_IN_A
G13	PR15B	2	-	-	PR15B	2	-	-
-	GNDIO2	2	-	-	GNDIO2	2	-	-
G12	PR12B	2	С	-	PR12B	2	С	-
F13	PR12A	2	Т	-	PR12A	2	Т	-
B16	PR11B	2	C ³	-	PR11B	2	C ³	-
C16	PR11A	2	T ³	DQS	PR11A	2	T ³	DQS

LFXP15 & LFXP20 Logic Signal Connections: 256 fpBGA (Cont.)

			LFXP15		LFXP20			
Ball Number	Ball Function	Bank	Differential	Dual Function	Ball Function	Bank	Differential	Dual Function
L7	VCCIO5	5	-	-	VCCIO5	5	-	-
L8	VCCIO5	5	-	-	VCCIO5	5	-	-
J6	VCCIO6	6	-	-	VCCIO6	6	-	-
K6	VCCIO6	6	-	-	VCCIO6	6	-	-
G6	VCCIO7	7	-	-	VCCI07	7	-	-
H6	VCCIO7	7	-	-	VCCI07	7	-	-

Applies to LFXP "C" only.
Applies to LFXP "E" only.

3. Supports dedicated LVDS outputs.

LFXP10, LFXP15 & LFXP20 Logic Signal Connections: 388 fpBGA (Cont.)

	LFXP10					;	LFXP20					
Ball Number	Ball Function	Bank	Diff.	Dual Function	Ball Function	Bank	Diff.	Dual Function	Ball Function	Bank	Diff.	Dual Function
G7	VCCAUX	-	-	-	VCCAUX	-	-	-	VCCAUX	-	-	-
T16	VCCAUX	-	-	-	VCCAUX	-	-	-	VCCAUX	-	-	-
T7	VCCAUX	-	-	-	VCCAUX	-	-	-	VCCAUX	-	-	-
G10	VCCIO0	0	-	-	VCCIO0	0	-	-	VCCIO0	0	-	-
G11	VCCIO0	0	-	-	VCCIO0	0	-	-	VCCIO0	0	-	-
G8	VCCIO0	0	-	-	VCCIO0	0	-	-	VCCIO0	0	-	-
G9	VCCIO0	0	-	-	VCCIO0	0	-	-	VCCIO0	0	-	-
H8	VCCIO0	0	-	-	VCCIO0	0	-	-	VCCIO0	0	-	-
G12	VCCIO1	1	-	-	VCCIO1	1	-	-	VCCIO1	1	-	-
G13	VCCIO1	1	-	-	VCCIO1	1	-	-	VCCIO1	1	-	-
G14	VCCIO1	1	-	-	VCCIO1	1	-	-	VCCIO1	1	-	-
G15	VCCIO1	1	-	-	VCCIO1	1	-	-	VCCIO1	1	-	-
H15	VCCIO1	1	-	-	VCCIO1	1	-	-	VCCIO1	1	-	-
H16	VCCIO2	2	-	-	VCCIO2	2	-	-	VCCIO2	2	-	-
J16	VCCIO2	2	-	-	VCCIO2	2	-	-	VCCIO2	2	-	-
K16	VCCIO2	2	-	-	VCCIO2	2	-	-	VCCIO2	2	-	-
L16	VCCIO2	2	-	-	VCCIO2	2	-	-	VCCIO2	2	-	-
M16	VCCIO3	3	-	-	VCCIO3	3	-	-	VCCIO3	3	-	-
N16	VCCIO3	3	-	-	VCCIO3	3	-	-	VCCIO3	3	-	-
P16	VCCIO3	3	-	-	VCCIO3	3	-	-	VCCIO3	3	-	-
R16	VCCIO3	3	-	-	VCCIO3	3	-	-	VCCIO3	3	-	-
R15	VCCIO4	4	-	-	VCCIO4	4	-	-	VCCIO4	4	-	-
T12	VCCIO4	4	-	-	VCCIO4	4	-	-	VCCIO4	4	-	-
T13	VCCIO4	4	-	-	VCCIO4	4	-	-	VCCIO4	4	-	-
T14	VCCIO4	4	-	-	VCCIO4	4	-	-	VCCIO4	4	-	-
T15	VCCIO4	4	-	-	VCCIO4	4	-	-	VCCIO4	4	-	-
R8	VCCIO5	5	-	-	VCCIO5	5	-	-	VCCIO5	5	-	-
T10	VCCIO5	5	-	-	VCCIO5	5	-	-	VCCIO5	5	-	-
T11	VCCIO5	5	-	-	VCCIO5	5	-	-	VCCIO5	5	-	-
T8	VCCIO5	5	-	-	VCCIO5	5	-	-	VCCIO5	5	-	-
Т9	VCCIO5	5	-	-	VCCIO5	5	-	-	VCCIO5	5	-	-
M7	VCCIO6	6	-	-	VCCIO6	6	-	-	VCCIO6	6	-	-
N7	VCCIO6	6	-	-	VCCIO6	6	-	-	VCCIO6	6	-	-
P7	VCCIO6	6	-	-	VCCIO6	6	-	-	VCCIO6	6	-	-
R7	VCCIO6	6	-	-	VCCIO6	6	-	-	VCCIO6	6	-	-
H7	VCCIO7	7	-	-	VCCI07	7	-	-	VCCIO7	7	-	-
J7	VCCIO7	7	-	-	VCCI07	7	-	-	VCCIO7	7	-	-
K7	VCCI07	7	-	-	VCCI07	7	-	-	VCCI07	7	-	-
L7	VCCI07	7	-	-	VCCI07	7	-	-	VCCIO7	7	-	-

1. Applies to LFXP "C" only.

2. Applies to LFXP "E" only.

3. Supports dedicated LVDS outputs.

LFXP15 & LFXP20 Logic Signal Connections: 484 fpBGA (Cont.)

		LFXP15		LFXP20					
Ball Number	Ball Function	Bank	Differential	Dual Function	Ball Function	Bank	Differential	Dual Function	
R18	PR38B	3	С	RLM0_PLLC_FB_A	PR42B	3	С	RLM0_PLLC_FB_A	
R17	PR38A	3	Т	RLM0_PLLT_FB_A	PR42A	3	Т	RLM0_PLLT_FB_A	
Y22	PR37B	3	C ³	-	PR41B	3	C ³	-	
Y21	PR37A	3	T ³	DQS	PR41A	3	T ³	DQS	
W22	PR36B	3	-	-	PR40B	3	-	-	
W21	PR35A	3	-	VREF1_3	PR39A	3	-	VREF1_3	
P17	PR34B	3	C ³	-	PR38B	3	C ³	-	
P18	PR34A	3	T³	-	PR38A	3	T ³	-	
-	GNDIO3	3	-	-	GNDIO3	3	-	-	
R19	PR33B	3	С	-	PR37B	3	С	-	
R20	PR33A	3	Т	-	PR37A	3	Т	-	
V22	PR32B	3	C ³	-	PR36B	3	C ³	-	
V21	PR32A	3	T ³	-	PR36A	3	T ³	-	
U22	PR30B	3	C ³	-	PR34B	3	C ³	-	
U21	PR30A	3	T ³	-	PR34A	3	T ³	-	
P19	PR29B	3	С	RLM0_PLLC_IN_A	PR33B	3	С	RLM0_PLLC_IN_A	
P20	PR29A	3	Т	RLM0_PLLT_IN_A	PR33A	3	Т	RLM0_PLLT_IN_A	
-	GNDIO3	3	-	-	GNDIO3	3	-	-	
T22	PR28B	3	C ³	-	PR32B	3	C ³	-	
T21	PR28A	3	T ³	DQS	PR32A	3	T ³	DQS	
R22	PR27B	3	-	-	PR31B	3	-	-	
R21	PR26A	3	-	VREF2_3	PR30A	3	-	VREF2_3	
N19	PR25B	3	C ³	-	PR29B	3	C ³	-	
N20	PR25A	3	T ³	-	PR29A	3	T ³	-	
N18	PR24B	3	С	-	PR28B	3	С	-	
M18	PR24A	3	Т	-	PR28A	3	Т	-	
-	GNDIO3	3	-	-	GNDIO3	3	-	-	
P22	PR23B	3	C ³	-	PR27B	3	C ³	-	
P21	PR23A	3	T ³	-	PR27A	3	T ³	-	
N22	-	-	-	-	PR26B	3	C ³	-	
N21	-	-	-	-	PR26A	3	T ³	-	
M19	-	-	-	-	PR25B	3	-	-	
M20	GNDP1	-	-	-	GNDP1	-	-	-	
L18	VCCP1	-	-	-	VCCP1	-	-	-	
M21	-	-	-	-	PR24A	2	-	-	
M22	PR22B	2	C ³	-	PR23B	2	C ³	-	
L22	PR22A	2	T ³	-	PR23A	2	T ³	-	
-	GNDIO2	2	-	-	GNDIO2	2	-	-	
L19	-	-	-	-	PR22B	2	C ³	-	
L20	-	-	-	-	PR22A	2	T ³	-	
L21	PR21B	2	С	PCLKC2_0	PR21B	2	С	PCLKC2_0	
K22	PR21A	2	Т	PCLKT2_0	PR21A	2	Т	PCLKT2_0	

LFXP15 & LFXP20 Logic Signal Connections: 484 fpBGA (Cont.)

			LFXP15		LFXP20					
Ball Number	Ball Function	Bank	Differential	Dual Function	Ball Function	Bank	Differential	Dual Function		
B3	PT8B	0	С	-	PT12B	0	С	-		
A3	PT8A	0	Т	-	PT12A	0	Т	-		
-	GNDIO0	0	-	-	GNDIO0	0	-	-		
D7	PT7B	0	С	-	PT11B	0	С	-		
C7	PT7A	0	Т	DQS	PT11A	0	Т	DQS		
B2	PT6B	0	-	-	PT10B	0	-	-		
C2	PT5A	0	-	-	PT9A	0	-	-		
C3	PT4B	0	С	-	PT8B	0	С	-		
D3	PT4A	0	Т	-	PT8A	0	Т	-		
F7	PT3B	0	С	-	PT7B	0	С	-		
E7	PT3A	0	Т	-	PT7A	0	Т	-		
-	GNDIO0	0	-	-	GNDIO0	0	-	-		
C6	-	-	-	-	PT6B	0	С	-		
D6	-	-	-	-	PT6A	0	Т	-		
C5	-	-	-	-	PT5B	0	С	-		
C4	-	-	-	-	PT5A	0	Т	-		
F6	-	-	-	-	PT4B	0	С	-		
E6	-	-	-	-	PT4A	0	Т	-		
-	GNDIO0	0	-	-	GNDIO0	0	-	-		
E4	-	-	-	-	PT3B	0	-	-		
E5	CFG0	0	-	-	CFG0	0	-	-		
D4	CFG1	0	-	-	CFG1	0	-	-		
D5	DONE	0	-	-	DONE	0	-	-		
A1	GND	-	-	-	GND	-	-	-		
A2	GND	-	-	-	GND	-	-	-		
A21	GND	-	-	-	GND	-	-	-		
A22	GND	-	-	-	GND	-	-	-		
AA1	GND	-	-	-	GND	-	-	-		
AA22	GND	-	-	-	GND	-	-	-		
AB1	GND	-	-	-	GND	-	-	-		
AB2	GND	-	-	-	GND	-	-	-		
AB21	GND	-	-	-	GND	-	-	-		
AB22	GND	-	-	-	GND	-	-	-		
B1	GND	-	-	-	GND	-	-	-		
B22	GND	-	-	-	GND	-	-	-		
H14	GND	-	-	-	GND	-	-	-		
H9	GND	-	-	-	GND	-	-	-		
J10	GND	-	-	-	GND	-	-	-		
J11	GND	-	-	-	GND	-	-	-		
J12	GND	-	-	-	GND	-	-	-		
J13	GND	-	-	-	GND	-	-	-		
J14	GND	-	-	-	GND	-	-	-		

Date	Version	Section	Change Summary
September 2005 (cont.)	03.0 (cont.)	DC and Switching Characteristics (cont.)	Updated Typical Building Block Function Performance timing numbers.
	. ,		Updated External Switching Characteristics timing numbers.
			Updated Internal Timing Parameters.
			Updated LatticeXP Family timing adders.
			Updated LatticeXP "C" Sleep Mode timing numbers.
			Updated JTAG Port Timing numbers.
		Pinout Information	Added clarification to SLEEPN and TOE description.
			Clarification of dedicated LVDS outputs.
		Supplemental Information	Updated list of technical notes.
September 2005	03.1	Pinout Information	Power Supply and NC Connections table corrected VCCP1 pin number for 208 PQFP.
December 2005	04.0	Introduction	Moved data sheet from Advance to Final.
		Architecture	Added clarification to Typical I/O Behavior During Power-up section.
		DC and Switching Characteristics	Added clarification to Recommended Operating Conditions.
			Updated timing numbers.
		Pinout Information	Updated Signal Descriptions table.
			Added clarification to Differential I/O Per Bank.
			Updated Differential dedicated LVDS output support.
		Ordering Information	Added 208 PQFP lead-free package and ordering part numbers.
February 2006	04.1	Pinout Information	Corrected description of Signal Names VREF1(x) and VREF2(x).
March 2006	04.2	DC and Switching Characteristics	Corrected condition for IIL and IIH.
March 2006	04.3	DC and Switching Characteristics	Added clarification to Recommended Operating Conditions for VCCAUX.
April 2006	04.4	Pinout Information	Removed Bank designator "5" from SLEEPN/TOE ball function.
May 2006	04.5	DC and Switching Characteristics	Added footnote 2 regarding threshold level for PROGRAMN to sysCON- FIG Port Timing Specifications table.
June 2006	04.6	DC and Switching Characteristics	Corrected LVDS25E Output Termination Example.
August 2006	04.7	Architecture	Added clarification to Typical I/O Behavior During Power-Up section.
			Added clarification to Left and Right sysIO Buffer Pair section.
		DC and Switching Characteristics	Changes to LVDS25E Output Termination Example diagram.
December 2006	04.8	Architecture	EBR Asynchronous Reset section added.
February 2007	04.9	Architecture	Updated EBR Asynchronous Reset section.
July 2007	05.0	Introduction	Updated LatticeXP Family Selection Guide table.
		Architecture	Updated Typical I/O Behavior During Power-up text section.
		DC and Switching Characteristics	Updated sysIO Single-Ended DC Electrical Characteristics table. Split out LVCMOS 1.2 by supply voltage.
November 2007	05.1	DC and Switching Characteristics	Added JTAG Port Timing Waveforms diagram.
		Pinout Information	Added Thermal Management text section.
		Supplemental Information	Updated title list.