

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	-
Number of Logic Elements/Cells	10000
Total RAM Bits	221184
Number of I/O	244
Number of Gates	-
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	388-BBGA
Supplier Device Package	388-FPBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lfxp10e-5f388c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

LatticeXP Family Data Sheet Architecture

July 2007

Data Sheet DS1001

Architecture Overview

The LatticeXP architecture contains an array of logic blocks surrounded by Programmable I/O Cells (PIC). Interspersed between the rows of logic blocks are rows of sysMEM Embedded Block RAM (EBR) as shown in Figure 2-1.

On the left and right sides of the PFU array, there are Non-volatile Memory Blocks. In configuration mode this nonvolatile memory is programmed via the IEEE 1149.1 TAP port or the sysCONFIG[™] peripheral port. On power up, the configuration data is transferred from the Non-volatile Memory Blocks to the configuration SRAM. With this technology, expensive external configuration memories are not required and designs are secured from unauthorized read-back. This transfer of data from non-volatile memory to configuration SRAM via wide busses happens in microseconds, providing an "instant-on" capability that allows easy interfacing in many applications.

There are two kinds of logic blocks, the Programmable Functional Unit (PFU) and Programmable Functional unit without RAM/ROM (PFF). The PFU contains the building blocks for logic, arithmetic, RAM, ROM and register functions. The PFF block contains building blocks for logic, arithmetic and ROM functions. Both PFU and PFF blocks are optimized for flexibility, allowing complex designs to be implemented quickly and efficiently. Logic Blocks are arranged in a two-dimensional array. Only one type of block is used per row. The PFU blocks are used on the outside rows. The rest of the core consists of rows of PFF blocks interspersed with rows of PFU blocks. For every three rows of PFF blocks there is a row of PFU blocks.

Each PIC block encompasses two PIOs (PIO pairs) with their respective sysIO interfaces. PIO pairs on the left and right edges of the device can be configured as LVDS transmit/receive pairs. sysMEM EBRs are large dedicated fast memory blocks. They can be configured as RAM or ROM.

The PFU, PFF, PIC and EBR Blocks are arranged in a two-dimensional grid with rows and columns as shown in Figure 2-1. The blocks are connected with many vertical and horizontal routing channel resources. The place and route software tool automatically allocates these routing resources.

At the end of the rows containing the sysMEM Blocks are the sysCLOCK Phase Locked Loop (PLL) Blocks. These PLLs have multiply, divide and phase shifting capability; they are used to manage the phase relationship of the clocks. The LatticeXP architecture provides up to four PLLs per device.

Every device in the family has a JTAG Port with internal Logic Analyzer (ispTRACY) capability. The sysCONFIG port which allows for serial or parallel device configuration. The LatticeXP devices are available for operation from 3.3V, 2.5V, 1.8V and 1.2V power supplies, providing easy integration into the overall system.

^{© 2007} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Function	Туре	Signal Names	Description
Input	Data signal	A0, B0, C0, D0	Inputs to LUT4
Input	Data signal	A1, B1, C1, D1	Inputs to LUT4
Input	Multi-purpose	MO	Multipurpose Input
Input	Multi-purpose	M1	Multipurpose Input
Input	Control signal	CE	Clock Enable
Input	Control signal	LSR	Local Set/Reset
Input	Control signal	CLK	System Clock
Input	Inter-PFU signal	FCIN	Fast Carry In ¹
Output	Data signals	F0, F1	LUT4 output register bypass signals
Output	Data signals	Q0, Q1	Register Outputs
Output	Data signals	OFX0	Output of a LUT5 MUX
Output	Data signals	OFX1	Output of a LUT6, LUT7, LUT8 ² MUX depending on the slice
Output	Inter-PFU signal	FCO	For the right most PFU the fast carry chain output ¹

Table 2-1. Slice Signal Descriptions

1. See Figure 2-2 for connection details.

2. Requires two PFUs.

Modes of Operation

Each Slice is capable of four modes of operation: Logic, Ripple, RAM and ROM. The Slice in the PFF is capable of all modes except RAM. Table 2-2 lists the modes and the capability of the Slice blocks.

Table 2-2. Slice Modes

	Logic	Ripple	RAM	ROM
PFU Slice	LUT 4x2 or LUT 5x1	2-bit Arithmetic Unit	SP 16x2	ROM 16x1 x 2
PFF Slice	LUT 4x2 or LUT 5x1	2-bit Arithmetic Unit	N/A	ROM 16x1 x 2

Logic Mode: In this mode, the LUTs in each Slice are configured as 4-input combinatorial lookup tables. A LUT4 can have 16 possible input combinations. Any logic function with four inputs can be generated by programming this lookup table. Since there are two LUT4s per Slice, a LUT5 can be constructed within one Slice. Larger lookup tables such as LUT6, LUT7 and LUT8 can be constructed by concatenating other Slices.

Ripple Mode: Ripple mode allows the efficient implementation of small arithmetic functions. In ripple mode, the following functions can be implemented by each Slice:

- Addition 2-bit
- Subtraction 2-bit
- Add/Subtract 2-bit using dynamic control
- Up counter 2-bit
- Down counter 2-bit
- Ripple mode multiplier building block
- Comparator functions of A and B inputs
 - A greater-than-or-equal-to B
 - A not-equal-to B
 - A less-than-or-equal-to B

Two additional signals: Carry Generate and Carry Propagate are generated per Slice in this mode, allowing fast arithmetic functions to be constructed by concatenating Slices.

RAM Mode: In this mode, distributed RAM can be constructed using each LUT block as a 16x1-bit memory. Through the combination of LUTs and Slices, a variety of different memories can be constructed.

For more information on the PLL, please see details of additional technical documentation at the end of this data sheet.

Dynamic Clock Select (DCS)

The DCS is a global clock buffer with smart multiplexer functions. It takes two independent input clock sources and outputs a clock signal without any glitches or runt pulses. This is achieved irrespective of where the select signal is toggled. There are eight DCS blocks per device, located in pairs at the center of each side. Figure 2-12 illustrates the DCS Block Macro.

Figure 2-12. DCS Block Primitive

Figure 2-13 shows timing waveforms of the default DCS operating mode. The DCS block can be programmed to other modes. For more information on the DCS, please see details of additional technical documentation at the end of this data sheet.

Figure 2-13. DCS Waveforms

sysMEM Memory

The LatticeXP family of devices contain a number of sysMEM Embedded Block RAM (EBR). The EBR consists of a 9-Kbit RAM, with dedicated input and output registers.

sysMEM Memory Block

The sysMEM block can implement single port, dual port or pseudo dual port memories. Each block can be used in a variety of depths and widths as shown in Table 2-6.

Lattice Semiconductor

in selected blocks the input to the DQS delay block. If one of the bypass options is not chosen, the signal first passes through an optional delay block. This delay, if selected, ensures no positive input-register hold-time requirement when using a global clock.

The input block allows two modes of operation. In the single data rate (SDR) the data is registered, by one of the registers in the single data rate sync register block, with the system clock. In the DDR Mode two registers are used to sample the data on the positive and negative edges of the DQS signal creating two data streams, D0 and D2. These two data streams are synchronized with the system clock before entering the core. Further discussion on this topic is in the DDR Memory section of this data sheet.

Figure 2-21 shows the input register waveforms for DDR operation and Figure 2-22 shows the design tool primitives. The SDR/SYNC registers have reset and clock enable available.

The signal DDRCLKPOL controls the polarity of the clock used in the synchronization registers. It ensures adequate timing when data is transferred from the DQS to the system clock domain. For further discussion of this topic, see the DDR memory section of this data sheet.

Figure 2-20. Input Register Diagram

master serial clock is 2.5MHz. Table 2-10 lists all the available Master Serial Clock frequencies. When a different Master Serial Clock is selected during the design process, the following sequence takes place:

- 1. User selects a different Master Serial Clock frequency for configuration.
- 2. During configuration the device starts with the default (2.5MHz) Master Serial Clock frequency.
- 3. The clock configuration settings are contained in the early configuration bit stream.
- 4. The Master Serial Clock frequency changes to the selected frequency once the clock configuration bits are received.

For further information on the use of this oscillator for configuration, please see details of additional technical documentation at the end of this data sheet.

Table 2-10. Selectable Master Serial Clock (CCLK) Frequencies During Configuration

CCLK (MHz)	CCLK (MHz)	CCLK (MHz)
2.5 ¹	13	45
4.3	15	51
5.4	20	55
6.9	26	60
8.1	30	130
9.2	34	—
10.0	41	—
1. Default	•	•

Density Shifting

The LatticeXP family has been designed to ensure that different density devices in the same package have the same pin-out. Furthermore, the architecture ensures a high success rate when performing design migration from lower density parts to higher density parts. In many cases, it is also possible to shift a lower utilization design targeted for a high-density device to a lower density device. However, the exact details of the final resource utilization will impact the likely success in each case.

Initialization Supply Current^{1, 2, 3, 4, 5, 6}

Symbol	Parameter	Device	Typ. ⁷	Units
		LFXP3E	40	mA
		LFXP6E	50	mA
		LFXP10E	110	mA
		LFXP15E	140	mA
	Coro Powor Supply	LFXP20E	250	mA
CC	Core Fower Suppry	LFXP3C	60	mA
		LFXP6C	70	mA
		LFXP10C	150	mA
		LFXP15C	180	mA
		LFXP20C	290	mA
		LFXP3E/C	50	mA
		LFXP6E/C	60	mA
I _{CCAUX}	Auxiliary Power Supply	LFXP10E/C	90	mA
	CCAUX - 0.0V	LFXP15 /C	110	mA
		LFXP20E/C	130	mA
ICCJ	V _{CCJ} Power Supply	All	2	mA

Over Recommended Operating Conditions

1. Until DONE signal is active.

2. For further information on supply current, please see details of additional technical documentation at the end of this data sheet.

3. Assumes all outputs are tristated, all inputs are configured as LVCMOS and held at the V_{CCIO} or GND.

4. Frequency 0MHz.

5. Typical user pattern.

6. Assume normal bypass capacitor/decoupling capacitor across the supply.

7. $T_A=25^{\circ}C$, power supplies at nominal voltage.

Programming and Erase Flash Supply Current^{1, 2, 3, 4, 5}

Symbol	Parameter	Device	Typ. ⁶	Units
		LFXP3E	30	mA
		LFXP6E	40	mA
		LFXP10E	50	mA
		LFXP15E	60	mA
1	Coro Powor Supply	LFXP20E	70	mA
CC		LFXP3C	50	mA
		LFXP6C	60	mA
		LFXP10C	90	mA
		LFXP15C	100	mA
		LFXP20C	110	mA
		LFXP3E/C	50	mA
	Auxiliary Power Supply V _{CCAUX} = 3.3V	LFXP6E/C	60	mA
I _{CCAUX}		LFXP10E/C	90	mA
		LFXP15E/C	110	mA
		LFXP20E/C	130	mA
ICCJ	V _{CCJ} Power Supply ⁷	All	2	mA

1. For further information on supply current, please see details of additional technical documentation at the end of this data sheet.

2. Assumes all outputs are tristated, all inputs are configured as LVCMOS and held at the $V_{\mbox{CCIO}}$ or GND.

3. Blank user pattern; typical Flash pattern.

4. Bypass or decoupling capacitor across the supply.

5. JTAG programming is at 1MHz.

6. $T_A=25^{\circ}C$, power supplies at nominal voltage.

7. When programming via JTAG.

sysIO Recommended Operating Conditions

		V _{CCIO}		V _{REF} (V)		
Standard	Min.	Тур.	Max.	Min.	Тур.	Max.
LVCMOS 3.3	3.135	3.3	3.465	—	—	—
LVCMOS 2.5	2.375	2.5	2.625	—	—	—
LVCMOS 1.8	1.71	1.8	1.89	_	—	—
LVCMOS 1.5	1.425	1.5	1.575	—	—	—
LVCMOS 1.2	1.14	1.2	1.26	—	—	—
LVTTL	3.135	3.3	3.465	—	—	—
PCI33	3.135	3.3	3.465	—	—	—
SSTL18 Class I	1.71	1.8	1.89	0.833	0.9	0.969
SSTL2 Class I, II	2.375	2.5	2.625	1.15	1.25	1.35
SSTL3 Class I, II	3.135	3.3	3.465	1.3	1.5	1.7
HSTL15 Class I	1.425	1.5	1.575	0.68	0.75	0.9
HSTL15 Class III	1.425	1.5	1.575	—	0.9	—
HSTL 18 Class I, II	1.71	1.8	1.89	_	0.9	—
HSTL 18 Class III	1.71	1.8	1.89	—	1.08	—
LVDS	2.375	2.5	2.625	—	—	—
LVPECL ¹	3.135	3.3	3.465	—	—	—
BLVDS ¹	2.375	2.5	2.625	—	_	—

1. Inputs on chip. Outputs are implemented with the addition of external resistors.

Figure 3-4. RSDS (Reduced Swing Differential Standard)

Table 3-4. RSDS DC Conditions

Parameter	Description	Typical	Units
Z _{OUT}	Output impedance	20	ohms
R _S	Driver series resistor	300	ohms
R _P	Driver parallel resistor	121	ohms
R _T	Receiver termination	100	ohms
V _{OH}	Output high voltage	1.35	V
V _{OL}	Output low voltage	1.15	V
V _{OD}	Output differential voltage	0.20	V
V _{CM}	Output common mode voltage	1.25	V
Z _{BACK}	Back impedance	101.5	ohms
I _{DC}	DC output current	3.66	mA

Typical Building Block Function Performance¹

Pin-to-Pin Performance (LVCMOS25 12 mA Drive)

Function	-5 Timing	Units
Basic Functions	· ·	
16-bit decoder	6.1	ns
32-bit decoder	7.3	ns
64-bit decoder	8.2	ns
4:1 MUX	4.9	ns
8:1 MUX	5.3	ns
16:1 MUX	5.7	ns
32:1 MUX	6.3	ns

Register to Register Performance

Function	-5 Timing	Units
Basic Functions		
16-bit decoder	351	MHz
32-bit decoder	248	MHz
64-bit decoder	237	MHz
4:1 MUX	590	MHz
8:1 MUX	523	MHz
16:1 MUX	434	MHz
32:1 MUX	355	MHz
8-bit adder	343	MHz
16-bit adder	292	MHz
64-bit adder	130	MHz
16-bit counter	388	MHz
32-bit counter	295	MHz
64-bit counter	200	MHz
64-bit accumulator	164	MHz
Embedded Memory Functions	· · · · ·	
Single Port RAM 256x36 bits	254	MHz
True-Dual Port RAM 512x18 bits	254	MHz
Distributed Memory Functions	· · · · ·	
16x2 SP RAM	434	MHz
64x2 SP RAM	332	MHz
128x4 SP RAM	235	MHz
32x2 PDP RAM	322	MHz
64x4 PDP RAM	291	MHz

1. These timing numbers were generated using the ispLEVER design tool. Exact performance may vary with design and tool version. The tool uses internal parameters that have been characterized but are not tested on every device.

Timing v.F0.11

Switching Test Conditions

Figure 3-13 shows the output test load that is used for AC testing. The specific values for resistance, capacitance, voltage, and other test conditions are shown in Figure 3-5.

Figure 3-13. Output Test Load, LVTTL and LVCMOS Standards

Table 3-5. Test Fixture Required Components, Non-Terminated Interfaces

Test Condition	R ₁	CL	Timing Ref.	VT
	8	0pF	LVCMOS 3.3 = 1.5V	—
			LVCMOS 2.5 = $V_{CCIO}/2$	—
LVTTL and other LVCMOS settings (L -> H, H -> L)			LVCMOS 1.8 = $V_{CCIO}/2$	—
			LVCMOS 1.5 = $V_{CCIO}/2$	—
			LVCMOS 1.2 = V _{CCIO} /2	—
LVCMOS 2.5 I/O (Z -> H)			V _{CCIO} /2	V _{OL}
LVCMOS 2.5 I/O (Z -> L)	188	OnE	V _{CCIO} /2	V _{OH}
LVCMOS 2.5 I/O (H -> Z)		орі	V _{OH} - 0.15	V _{OL}
LVCMOS 2.5 I/O (L -> Z)]		V _{OL} + 0.15	V _{OH}

Note: Output test conditions for all other interfaces are determined by the respective standards.

Pin Information Summary¹

		XP3		XP6			
Pin 1	Туре	100 TQFP	144 TQFP	208 PQFP	144 TQFP	208 PQFP	256 fpBGA
Single Ended User I/O		62	100	136	100	142	188
Differential Pair User I/O ²		19	35	56	35	58	80
Configuration	Dedicated	11	11	11	11	11	11
	Muxed	14	14	14	14	14	14
TAP		5	5	5	5	5	5
Dedicated (total without s	supplies)	6	6	6	6	6	6
V _{CC}		2	4	8	4	8	8
V _{CCAUX}		2	2	2	2	2	4
V _{CCPLL}		2	2	2	2	2	2
	Bank0	1	1	2	1	2	2
	Bank1	1	1	2	1	2	2
	Bank2	1	1	2	1	2	2
V	Bank3	1	1	2	1	2	2
V CCIO	Bank4	1	2	2	2	2	2
	Bank5	1	1	2	1	2	2
	Bank6	1	1	2	1	2	2
	Bank7	1	1	2	1	2	2
GND		10	13	24	13	24	24
GND _{PLL}		2	2	2	2	2	2
NC		0	0	6	0	0	0
	Bank0	8/2	12/3	20/8	12/3	20/8	26/11
	Bank1	9/0	12/2	18/6	12/2	18/6	26/11
	Bank2	8/3	12/5	14/6	12/5	17/7	21/9
Single Ended/Differential	Bank3	6/2	13/5	14/6	13/5	14/6	21/9
I/O per Bank ²	Bank4	5/2	14/6	21/9	14/6	21/9	26/11
	Bank5	12/4	12/4	21/9	12/4	21/9	26/11
	Bank6	4/2	13/5	14/6	13/5	17/7	21/9
	Bank7	10/4	12/5	14/6	12/5	14/6	21/9
V _{CCJ}		1	1	1	1	1	1

1. During configuration the user-programmable I/Os are tri-stated with an internal pull-up resistor enabled. If any pin is not used (or not bonded to a package pin), it is also tri-stated with an internal pull-up resistor enabled after configuration.

2. The differential I/O per bank includes both dedicated LVDS and emulated LVDS pin pairs. Please see the Logic Signal Connections table for more information.

Power Supply and NC Connections

Signals	100 TQFP	144 TQFP	208 PQFP	256 fpBGA	388 fpBGA	484 fpBGA
V _{CC}	28, 77	14, 39, 73, 112	19, 35, 53, 80, 107, 151, 158, 182	D4, D13, E5, E12, M5, M12, N4, N13	H9, J8, J15, K8, K15, L8, L15, M8, M15, N8, N15, P8, P15, R9	F10, F13, G9, G10, G13, G14, H8, H15, J7, J16, K6, K7, K16, K17, N6, N7, N16, N17, P7, P16, R8, R15, T9, T10, T13, T14, U10, U13
V _{CCIO0}	94	133	189, 199	F7, F8	G8, G9, G10, G11, H8	F11, G11, H10, H11
V _{CCIO1}	82	119	167, 177	F9, F10	G12, G13, G14, G15, H15	F12, G12, H12, H13
V _{CCIO2}	65	98	140, 149	G11, H11	H16, J16, K16, L16	K15, L15, L16, L17
V _{CCIO3}	58	88	115, 125	J11, K11	M16, N16, P16, R16	M15, M16, M17, N15
V _{CCIO4}	47	61, 68	87, 97	L9, L10	R15, T12, T13, T14, T15	R12, R13, T12, U12
V _{CCIO5}	38	49	64, 74	L7, L8	R8, T8, T9, T10, T11	R10, R11, T11, U11
V _{CCIO6}	22	21	28, 41	J6, K6	M7, N7, P7, R7	M6, M7, M8, N8
V _{CCIO7}	7	8	13, 23	G6, H6	H7, J7, K7, L7	K8, L6, L7, L8
V _{CCJ}	73	108	154	D16	E20	E20
V _{CCP0}	17	19	25	H4	M2	L5
V _{CCP1}	60	91	128	J12	M21	L18
V _{CCAUX}	25, 71	36, 106	50, 152	E4, E13, M4, M13	G7, G16, T7, T16	G7, G8, G15, G16, H7, H16, R7, R16, T7, T8, T15, T16
GND ¹	10, 18, 21, 33, 43, 44, 52, 59, 68, 84, 90, 99	3, 11, 20, 28, 44, 54, 56, 64, 75, 85, 90, 101, 121, 127, 136	5, 7, 16, 26, 38, 47, 49, 59, 69, 79, 82, 92, 106, 109, 118, 121, 127, 130, 135, 143, 163, 172, 181, 184, 194, 207	A1, A16, F6, F11, G7, G8, G9, G10, H5, H7, H8, H9, H10, J7, J8, J9, J10, J13, K7, K8, K9, K10, L6, L11, T1, T16	A1, A22, H10, H11, H12, H13, H14, J9, J10, J11, J12, J13, J14, K9, K10, K11, K12, K13, K14, L9, L10, L11, L12, L13, L14, M9, M10, M11, M12, M13, M14, N1, N9, N10, N11, N12, N13, N14, N22, P9, P10, P11, P12, P13, P14, R10, R11, R12, R13, R14, AB1, AB22	A1, A2, A21, A22, B1, B22, H9, H14, J8, J9, J10, J11, J12, J13, J14, J15, K9, K10, K11, K12, K13, K14, L9, L10, L11, L12, L13, L14, M9, M10, M11, M12, M13, M14, M20, N2, N9, N10, N11, N12, N13, N14, P8, P9, P10, P11, P12, P13, P14, P15, R9, R14, AA1, AA22, AB1, AB2, AB21, AB22
NC ²			XP3: 27, 33, 34, 129, 133, 134		XP10: C2, C15, C16, C17, D4, D5, D6, D7, D16, D17, E4, E19, W3, W4, W7, W17, W18, W19, W20, Y3, Y15, Y16, AA1, AA2	XP15: B21, C4, C5, C6, C18, C19, C20, C21, D6, D18, E4, E6, E18, F6, L1, L19, L20, M1, M2, M19, M21, N1, N21, N22, P1, P2, U5, U6, U17, U18, V5, V6, V17, V18, W17, W18, W19, Y3, Y4, Y5

1. All grounds must be electrically connected at the board level. 2. NC pins should not be connected to any active signals, V_{CC} or GND.

LFXP3 & LFXP6 Logic Signal Connections: 208 PQFP (Cont.)

Din			LFXP3		LFXP6				
Number	Pin Function	Bank	Differential	Dual Function	Pin Function	Bank	Differential	Dual Function	
185	PT13A	0	Т	CS1N	PT16A	0	Т	CS1N	
186	PT12B	0	С	PCLKC0_0	PT15B	0	С	PCLKC0_0	
187	PT12A	0	Т	PCLKT0_0	PT15A	0	Т	PCLKT0_0	
188	PT11B	0	С	-	PT14B	0	С	-	
189	VCCIO0	0	-	-	VCCIO0	0	-	-	
190	PT11A	0	Т	DQS	PT14A	0	Т	DQS	
191	PT10B	0	-	-	PT13B	0	-	-	
192	PT9A	0	-	DOUT	PT12A	0	-	DOUT	
193	PT8B	0	С	-	PT11B	0	С	-	
194	GNDIO0	0	-	-	GNDIO0	0	-	-	
195	PT8A	0	Т	WRITEN	PT11A	0	Т	WRITEN	
196	PT7B	0	С	-	PT10B	0	С	-	
197	PT7A	0	Т	VREF1_0	PT10A	0	Т	VREF1_0	
198	PT6B	0	С	-	PT9B	0	С	-	
199	VCCIO0	0	-	-	VCCIO0	0	-	-	
200	PT6A	0	Т	DI	PT9A	0	Т	DI	
201	PT5B	0	С	-	PT8B	0	С	-	
202	PT5A	0	Т	CSN	PT8A	0	Т	CSN	
203	PT4B	0	С	-	PT7B	0	С	-	
204	PT4A	0	Т	-	PT7A	0	Т	-	
205	PT3B	0	-	VREF2_0	PT6B	0	-	VREF2_0	
206	PT2B	0	-	-	PT5B	0	-	-	
207	GND	-	-	-	GND	-	-	-	
208	CFG0	0	-	-	CFG0	0	-	-	

Applies to LFXP "C" only.
Applies to LFXP "E" only.

3. Supports dedicated LVDS outputs.

LFXP15 & LFXP20 Logic Signal Connections: 256 fpBGA (Cont.)

	LFXP15				LFXP20			
Ball Number	Ball Function	Bank	Differential	Dual Function	Ball Function	Bank	Differential	Dual Function
T7	PB23B	5	С	-	PB27B	5	С	-
-	GNDIO5	5	-	-	GNDIO5	5	-	-
P8	PB24A	5	Т	-	PB28A	5	Т	-
T8	PB24B	5	С	-	PB28B	5	С	-
R8	PB25A	5	Т	-	PB29A	5	Т	-
Т9	PB25B	5	С	-	PB29B	5	С	-
R9	PB26A	4	Т	-	PB30A	4	Т	-
P9	PB26B	4	С	-	PB30B	4	С	-
T10	PB27A	4	Т	PCLKT4_0	PB31A	4	Т	PCLKT4_0
T11	PB27B	4	С	PCLKC4_0	PB31B	4	С	PCLKC4_0
-	GNDIO4	4	-	-	GNDIO4	4	-	-
R10	PB28A	4	Т	-	PB32A	4	Т	-
P10	PB28B	4	С	-	PB32B	4	С	-
N9	PB29A	4	-	-	PB33A	4	-	-
M9	PB30B	4	-	-	PB34B	4	-	-
R12	PB31A	4	Т	DQS	PB35A	4	Т	DQS
T12	PB31B	4	С	VREF1_4	PB35B	4	С	VREF1_4
P13	PB32A	4	Т	-	PB36A	4	Т	-
R13	PB32B	4	С	-	PB36B	4	С	-
M11	PB33A	4	Т	-	PB37A	4	Т	-
-	GNDIO4	4	-	-	GNDIO4	4	-	-
N11	PB33B	4	С	-	PB37B	4	С	-
N10	PB34A	4	Т	-	PB38A	4	Т	-
M10	PB34B	4	С	-	PB38B	4	С	-
T13	PB35A	4	Т	-	PB39A	4	Т	-
P14	PB35B	4	С	-	PB39B	4	С	-
R11	PB36A	4	Т	VREF2_4	PB40A	4	Т	VREF2_4
P12	PB36B	4	С	-	PB40B	4	С	-
T14	PB37A	4	-	-	PB41A	4	-	-
R14	PB38B	4	-	-	PB42B	4	-	-
-	GNDIO4	4	-	-	GNDIO4	4	-	-
P11	PB39A	4	Т	DQS	PB43A	4	Т	DQS
N12	PB39B	4	С	-	PB43B	4	С	-
T15	PB40A	4	Т	-	PB44A	4	Т	-
R15	PB40B	4	С	-	PB44B	4	С	-
-	GNDIO4	4	-	-	GNDIO4	4	-	-
-	GNDIO4	4	-	-	GNDIO4	4	-	-
-	GNDIO4	4	-	-	GNDIO4	4	-	-
-	GNDIO3	3	-	-	GNDIO3	3	-	-
-	GNDIO3	3	-	-	GNDIO3	3	-	-
P15	PR38B	3	С	RLM0_PLLC_FB_A	PR42B	3	С	RLM0_PLLC_FB_A
N15	PR38A	3	Т	RLM0_PLLT_FB_A	PR42A	3	Т	RLM0_PLLT_FB_A

LFXP15 & LFXP20 Logic Signal Connections: 256 fpBGA (Cont.)

		LFXP15		LFXP20				
Ball Number	Ball Function	Bank	Differential	Dual Function	Ball Function	Bank	Differential	Dual Function
-	GNDIO2	2	-	-	GNDIO2	2	-	-
F15	PR10B	2	-	-	PR10B	2	-	-
E15	PR9A	2	-	VREF2_2	PR9A	2	-	VREF2_2
F14	PR8B	2	C ³	-	PR8B	2	C ³	-
E14	PR8A	2	T ³	-	PR8A	2	T ³	-
D15	PR7B	2	С	RUM0_PLLC_FB_A	PR7B	2	С	RUM0_PLLC_FB_A
C15	PR7A	2	Т	RUM0_PLLT_FB_A	PR7A	2	Т	RUM0_PLLT_FB_A
-	GNDIO2	2	-	-	GNDIO2	2	-	-
E16	TDO	-	-	-	TDO	-	-	-
D16	VCCJ	-	-	-	VCCJ	-	-	-
D14	TDI	-	-	-	TDI	-	-	-
C14	TMS	-	-	-	TMS	-	-	-
B14	ТСК	-	-	-	ТСК	-	-	-
-	GNDIO1	1	-	-	GNDIO1	1	-	-
-	GNDIO1	1	-	-	GNDIO1	1	-	-
-	GNDIO1	1	-	-	GNDIO1	1	-	-
A15	PT40B	1	С	-	PT44B	1	С	-
B15	PT40A	1	Т	-	PT44A	1	Т	-
D12	PT39B	1	С	VREF1_1	PT43B	1	С	VREF1_1
-	GNDIO1	1	-	-	GNDIO1	1	-	-
C11	PT39A	1	Т	DQS	PT43A	1	Т	DQS
A14	PT38B	1	-	-	PT42B	1	-	-
B13	PT37A	1	-	-	PT41A	1	-	-
F12	PT36B	1	С	-	PT40B	1	С	-
E11	PT36A	1	Т	-	PT40A	1	Т	-
A13	PT35B	1	С	-	PT39B	1	С	-
C13	PT35A	1	Т	D0	PT39A	1	Т	D0
C10	PT34B	1	С	D1	PT38B	1	С	D1
E10	PT34A	1	Т	VREF2_1	PT38A	1	Т	VREF2_1
A12	PT33B	1	С	-	PT37B	1	С	-
B12	PT33A	1	Т	D2	PT37A	1	Т	D2
-	GNDIO1	1	-	-	GNDIO1	1	-	-
C12	PT32B	1	С	D3	PT36B	1	С	D3
A11	PT32A	1	Т	-	PT36A	1	Т	-
B11	PT31B	1	С	-	PT35B	1	С	-
D11	PT31A	1	Т	DQS	PT35A	1	Т	DQS
B9	PT30B	1	-	-	PT34B	1	-	-
D9	PT29A	1	-	D4	PT33A	1	-	D4
A10	PT28B	1	С	-	PT32B	1	С	-
B10	PT28A	1	Т	D5	PT32A	1	Т	D5
-	GNDIO1	1	-	-	GNDIO1	1	-	-
D10	PT27B	1	С	D6	PT31B	1	С	D6

LFXP15 & LFXP20 Logic Signal Connections: 484 fpBGA (Cont.)

		LFXP15		LFXP20				
Ball Number	Ball Function	Bank	Differential	Dual Function	Ball Function	Bank	Differential	Dual Function
R18	PR38B	3	С	RLM0_PLLC_FB_A	PR42B	3	С	RLM0_PLLC_FB_A
R17	PR38A	3	Т	RLM0_PLLT_FB_A	PR42A	3	Т	RLM0_PLLT_FB_A
Y22	PR37B	3	C ³	-	PR41B	3	C ³	-
Y21	PR37A	3	T ³	DQS	PR41A	3	T ³	DQS
W22	PR36B	3	-	-	PR40B	3	-	-
W21	PR35A	3	-	VREF1_3	PR39A	3	-	VREF1_3
P17	PR34B	3	C ³	-	PR38B	3	C ³	-
P18	PR34A	3	T ³	-	PR38A	3	T ³	-
-	GNDIO3	3	-	-	GNDIO3	3	-	-
R19	PR33B	3	С	-	PR37B	3	С	-
R20	PR33A	3	Т	-	PR37A	3	Т	-
V22	PR32B	3	C ³	-	PR36B	3	C ³	-
V21	PR32A	3	T ³	-	PR36A	3	T ³	-
U22	PR30B	3	C ³	-	PR34B	3	C ³	-
U21	PR30A	3	T ³	-	PR34A	3	T ³	-
P19	PR29B	3	С	RLM0_PLLC_IN_A	PR33B	3	С	RLM0_PLLC_IN_A
P20	PR29A	3	Т	RLM0_PLLT_IN_A	PR33A	3	Т	RLM0_PLLT_IN_A
-	GNDIO3	3	-	-	GNDIO3	3	-	-
T22	PR28B	3	C ³	-	PR32B	3	C ³	-
T21	PR28A	3	T ³	DQS	PR32A	3	T ³	DQS
R22	PR27B	3	-	-	PR31B	3	-	-
R21	PR26A	3	-	VREF2_3	PR30A	3	-	VREF2_3
N19	PR25B	3	C ³	-	PR29B	3	C ³	-
N20	PR25A	3	T ³	-	PR29A	3	T ³	-
N18	PR24B	3	С	-	PR28B	3	С	-
M18	PR24A	3	Т	-	PR28A	3	Т	-
-	GNDIO3	3	-	-	GNDIO3	3	-	-
P22	PR23B	3	C ³	-	PR27B	3	C ³	-
P21	PR23A	3	T ³	-	PR27A	3	T ³	-
N22	-	-	-	-	PR26B	3	C ³	-
N21	-	-	-	-	PR26A	3	T ³	-
M19	-	-	-	-	PR25B	3	-	-
M20	GNDP1	-	-	-	GNDP1	-	-	-
L18	VCCP1	-	-	-	VCCP1	-	-	-
M21	-	-	-	-	PR24A	2	-	-
M22	PR22B	2	C ³	-	PR23B	2	C ³	-
L22	PR22A	2	T ³	-	PR23A	2	T ³	-
-	GNDIO2	2	-	-	GNDIO2	2	-	-
L19	-	-	-	-	PR22B	2	C ³	-
L20	-	-	-	-	PR22A	2	T ³	-
L21	PR21B	2	С	PCLKC2_0	PR21B	2	С	PCLKC2_0
K22	PR21A	2	Т	PCLKT2_0	PR21A	2	Т	PCLKT2_0

LFXP15 & LFXP20 Logic Signal Connections: 484 fpBGA (Cont.)

			LFXP15		LFXP20			
Ball Number	Ball Function	Bank	Differential	Dual Function	Ball Function	Bank	Differential	Dual Function
H13	VCCIO1	1	-	-	VCCIO1	1	-	-
K15	VCCIO2	2	-	-	VCCIO2	2	-	-
L15	VCCIO2	2	-	-	VCCIO2	2	-	-
L16	VCCIO2	2	-	-	VCCIO2	2	-	-
L17	VCCIO2	2	-	-	VCCIO2	2	-	-
M15	VCCIO3	3	-	-	VCCIO3	3	-	-
M16	VCCIO3	3	-	-	VCCIO3	3	-	-
M17	VCCIO3	3	-	-	VCCIO3	3	-	-
N15	VCCIO3	3	-	-	VCCIO3	3	-	-
R12	VCCIO4	4	-	-	VCCIO4	4	-	-
R13	VCCIO4	4	-	-	VCCIO4	4	-	-
T12	VCCIO4	4	-	-	VCCIO4	4	-	-
U12	VCCIO4	4	-	-	VCCIO4	4	-	-
R10	VCCIO5	5	-	-	VCCIO5	5	-	-
R11	VCCIO5	5	-	-	VCCIO5	5	-	-
T11	VCCIO5	5	-	-	VCCIO5	5	-	-
U11	VCCIO5	5	-	-	VCCIO5	5	-	-
M6	VCCIO6	6	-	-	VCCIO6	6	-	-
M7	VCCIO6	6	-	-	VCCIO6	6	-	-
M8	VCCIO6	6	-	-	VCCIO6	6	-	-
N8	VCCIO6	6	-	-	VCCIO6	6	-	-
K8	VCCIO7	7	-	-	VCCI07	7	-	-
L6	VCCIO7	7	-	-	VCCIO7	7	-	-
L7	VCCIO7	7	-	-	VCCI07	7	-	-
L8	VCCIO7	7	-	-	VCCIO7	7	-	-

1. Applies to LFXP "C" only.

Applies to LFXP "E" only.
Supports dedicated LVDS outputs.

LatticeXP Family Data Sheet Supplemental Information

November 2007

Data Sheet DS1001

For Further Information

A variety of technical notes for the LatticeXP family are available on the Lattice website at <u>www.latticesemi.com</u>.

- LatticeECP/EC and LatticeXP sysIO Usage Guide (TN1056)
- Lattice ispTRACY Usage Guide (TN1054)
- LatticeECP/EC and LatticeXP sysCLOCK PLL Design and Usage Guide (TN1049)
- Memory Usage Guide for LatticeECP/EC and LatticeXP Devices (TN1051)
- LatticeECP/EC and XP DDR Usage Guide (TN1050)
- Power Estimation and Management for LatticeECP/EC and LatticeXP Devices (TN1052)
- LatticeXP sysCONFIG Usage Guide (TN1082)

For further information on interface standards refer to the following web sites:

- JEDEC Standards (LVTTL, LVCMOS, SSTL, HSTL): www.jedec.org
- PCI: <u>www.pcisig.com</u>

© 2007 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Date	Version	Section	Change Summary
September 2005 (cont.)	03.0 (cont.)	DC and Switching Characteristics (cont.)	Updated Typical Building Block Function Performance timing numbers.
			Updated External Switching Characteristics timing numbers.
			Updated Internal Timing Parameters.
			Updated LatticeXP Family timing adders.
			Updated LatticeXP "C" Sleep Mode timing numbers.
			Updated JTAG Port Timing numbers.
		Pinout Information	Added clarification to SLEEPN and TOE description.
			Clarification of dedicated LVDS outputs.
		Supplemental Information	Updated list of technical notes.
September 2005	03.1	Pinout Information	Power Supply and NC Connections table corrected VCCP1 pin number for 208 PQFP.
December 2005	04.0	Introduction	Moved data sheet from Advance to Final.
		Architecture	Added clarification to Typical I/O Behavior During Power-up section.
		DC and Switching Characteristics	Added clarification to Recommended Operating Conditions.
			Updated timing numbers.
		Pinout Information	Updated Signal Descriptions table.
			Added clarification to Differential I/O Per Bank.
			Updated Differential dedicated LVDS output support.
		Ordering Information	Added 208 PQFP lead-free package and ordering part numbers.
February 2006	04.1	Pinout Information	Corrected description of Signal Names VREF1(x) and VREF2(x).
March 2006	04.2	DC and Switching Characteristics	Corrected condition for IIL and IIH.
March 2006	04.3	DC and Switching Characteristics	Added clarification to Recommended Operating Conditions for VCCAUX.
April 2006	04.4	Pinout Information	Removed Bank designator "5" from SLEEPN/TOE ball function.
May 2006	04.5	DC and Switching Characteristics	Added footnote 2 regarding threshold level for PROGRAMN to sysCON- FIG Port Timing Specifications table.
June 2006	04.6	DC and Switching Characteristics	Corrected LVDS25E Output Termination Example.
August 2006	04.7	Architecture	Added clarification to Typical I/O Behavior During Power-Up section.
			Added clarification to Left and Right sysIO Buffer Pair section.
		DC and Switching Characteristics	Changes to LVDS25E Output Termination Example diagram.
December 2006	04.8	Architecture	EBR Asynchronous Reset section added.
February 2007	04.9	Architecture	Updated EBR Asynchronous Reset section.
July 2007	05.0	Introduction	Updated LatticeXP Family Selection Guide table.
		Architecture	Updated Typical I/O Behavior During Power-up text section.
		DC and Switching Characteristics	Updated sysIO Single-Ended DC Electrical Characteristics table. Split out LVCMOS 1.2 by supply voltage.
November 2007	05.1	DC and Switching Characteristics	Added JTAG Port Timing Waveforms diagram.
		Pinout Information	Added Thermal Management text section.
		Supplemental Information	Updated title list.