

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Obsolete
Number of LABs/CLBs	-
Number of Logic Elements/Cells	15000
Total RAM Bits	331776
Number of I/O	268
Number of Gates	-
Voltage - Supply	1.71V ~ 3.465V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	388-BBGA
Supplier Device Package	388-FPBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lfxp15c-3f388i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

LatticeXP Family Data Sheet Architecture

July 2007

Data Sheet DS1001

Architecture Overview

The LatticeXP architecture contains an array of logic blocks surrounded by Programmable I/O Cells (PIC). Interspersed between the rows of logic blocks are rows of sysMEM Embedded Block RAM (EBR) as shown in Figure 2-1.

On the left and right sides of the PFU array, there are Non-volatile Memory Blocks. In configuration mode this nonvolatile memory is programmed via the IEEE 1149.1 TAP port or the sysCONFIG[™] peripheral port. On power up, the configuration data is transferred from the Non-volatile Memory Blocks to the configuration SRAM. With this technology, expensive external configuration memories are not required and designs are secured from unauthorized read-back. This transfer of data from non-volatile memory to configuration SRAM via wide busses happens in microseconds, providing an "instant-on" capability that allows easy interfacing in many applications.

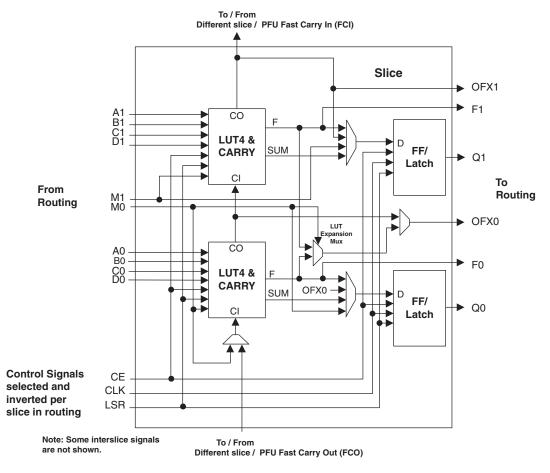
There are two kinds of logic blocks, the Programmable Functional Unit (PFU) and Programmable Functional unit without RAM/ROM (PFF). The PFU contains the building blocks for logic, arithmetic, RAM, ROM and register functions. The PFF block contains building blocks for logic, arithmetic and ROM functions. Both PFU and PFF blocks are optimized for flexibility, allowing complex designs to be implemented quickly and efficiently. Logic Blocks are arranged in a two-dimensional array. Only one type of block is used per row. The PFU blocks are used on the outside rows. The rest of the core consists of rows of PFF blocks interspersed with rows of PFU blocks. For every three rows of PFF blocks there is a row of PFU blocks.

Each PIC block encompasses two PIOs (PIO pairs) with their respective sysIO interfaces. PIO pairs on the left and right edges of the device can be configured as LVDS transmit/receive pairs. sysMEM EBRs are large dedicated fast memory blocks. They can be configured as RAM or ROM.

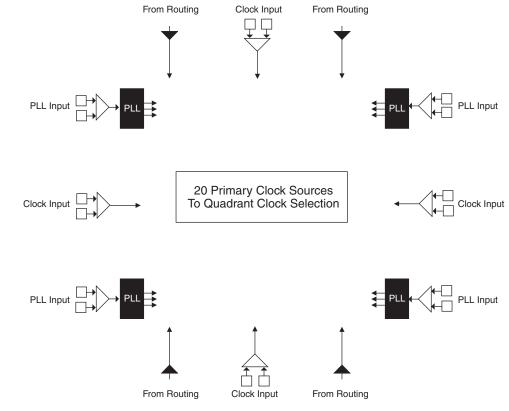
The PFU, PFF, PIC and EBR Blocks are arranged in a two-dimensional grid with rows and columns as shown in Figure 2-1. The blocks are connected with many vertical and horizontal routing channel resources. The place and route software tool automatically allocates these routing resources.

At the end of the rows containing the sysMEM Blocks are the sysCLOCK Phase Locked Loop (PLL) Blocks. These PLLs have multiply, divide and phase shifting capability; they are used to manage the phase relationship of the clocks. The LatticeXP architecture provides up to four PLLs per device.

Every device in the family has a JTAG Port with internal Logic Analyzer (ispTRACY) capability. The sysCONFIG port which allows for serial or parallel device configuration. The LatticeXP devices are available for operation from 3.3V, 2.5V, 1.8V and 1.2V power supplies, providing easy integration into the overall system.


^{© 2007} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

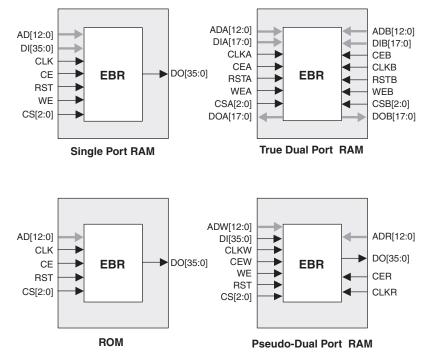
Slice


Each slice contains two LUT4 lookup tables feeding two registers (programmed to be in FF or Latch mode), and some associated logic that allows the LUTs to be combined to perform functions such as LUT5, LUT6, LUT7 and LUT8. There is control logic to perform set/reset functions (programmable as synchronous/asynchronous), clock select, chip-select and wider RAM/ROM functions. Figure 2-3 shows an overview of the internal logic of the slice. The registers in the slice can be configured for positive/negative and edge/level clocks.

There are 14 input signals: 13 signals from routing and one from the carry-chain (from adjacent slice or PFU). There are 7 outputs: 6 to routing and one to carry-chain (to adjacent PFU). Table 2-1 lists the signals associated with each slice.

Figure 2-3. Slice Diagram

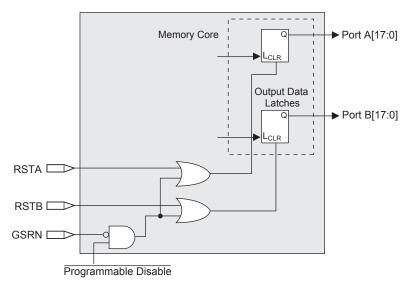
Figure 2-5. Primary Clock Sources



Note: Smaller devices have two PLLs.

Secondary Clock Sources

LatticeXP devices have four secondary clock resources per quadrant. The secondary clock branches are tapped at every PFU. These secondary clock networks can also be used for controls and high fanout data. These secondary clocks are derived from four clock input pads and 16 routing signals as shown in Figure 2-6.


The EBR memory supports three forms of write behavior for single port or dual port operation:

- 1. **Normal** data on the output appears only during read cycle. During a write cycle, the data (at the current address) does not appear on the output. This mode is supported for all data widths.
- 2. Write Through -ba copy of the input data appears at the output of the same port during a write cycle.bThis mode is supported for all data widths.
- 3. **Read-Before-Write** when new data is being written, the old content of the address appears at the output. This mode is supported for x9, x18 and x36 data widths.

Memory Core Reset

The memory array in the EBR utilizes latches at the A and B output ports. These latches can be reset asynchronously. RSTA and RSTB are local signals, which reset the output latches associated with Port A and Port B respectively. The Global Reset (GSRN) signal resets both ports. The output data latches and associated resets for both ports are as shown in Figure 2-15.

Figure 2-15. Memory Core Reset

For further information on sysMEM EBR block, see the details of additional technical documentation at the end of this data sheet.

EBR Asynchronous Reset

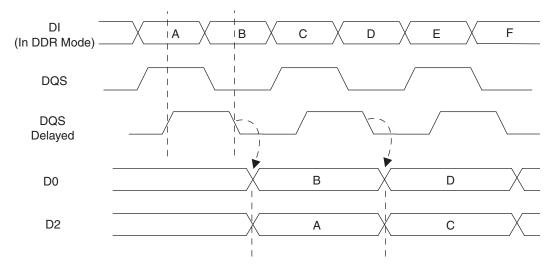
EBR asynchronous reset or GSR (if used) can only be applied if all clock enables are low for a clock cycle before the reset is applied and released a clock cycle after the reset is released, as shown in Figure 2-16. The GSR input to the EBR is always asynchronous.

Figure 2-16. EBR Asynchronous Reset (Including GSR) Timing Diagram

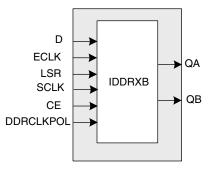
Reset	
Clock	
Clock Enable	

If all clock enables remain enabled, the EBR asynchronous reset or GSR may only be applied and released after the EBR read and write clock inputs are in a steady state condition for a minimum of $1/f_{MAX}$ (EBR clock). The reset release must adhere to the EBR synchronous reset setup time before the next active read or write clock edge.

If an EBR is pre-loaded during configuration, the GSR input must be disabled or the release of the GSR during device Wake Up must occur before the release of the device I/Os becoming active.


These instructions apply to all EBR RAM and ROM implementations.

Note that there are no reset restrictions if the EBR synchronous reset is used and the EBR GSR input is disabled.


Programmable I/O Cells (PICs)

Each PIC contains two PIOs connected to their respective sysIO Buffers which are then connected to the PADs as shown in Figure 2-17. The PIO Block supplies the output data (DO) and the Tri-state control signal (TO) to sysIO buffer, and receives input from the buffer.

Figure 2-22. INDDRXB Primitive

Output Register Block

The output register block provides the ability to register signals from the core of the device before they are passed to the sysIO buffers. The block contains a register for SDR operation that is combined with an additional latch for DDR operation. Figure 2-23 shows the diagram of the Output Register Block.

In SDR mode, ONEG0 feeds one of the flip-flops that then feeds the output. The flip-flop can be configured as a Dtype or as a latch. In DDR mode, ONEG0 is fed into one register on the positive edge of the clock and OPOS0 is latched. A multiplexer running off the same clock selects the correct register for feeding to the output (D0).

Figure 2-24 shows the design tool DDR primitives. The SDR output register has reset and clock enable available. The additional register for DDR operation does not have reset or clock enable available.

Polarity Control Logic

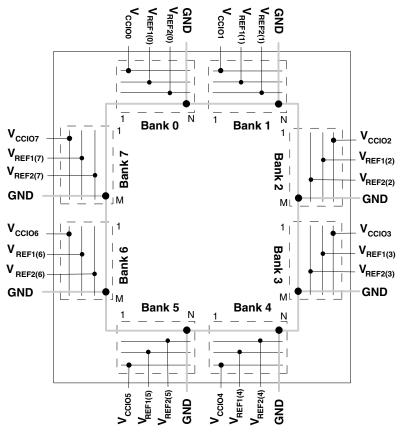
In a typical DDR Memory interface design, the phase relation between the incoming delayed DQS strobe and the internal system Clock (during the READ cycle) is unknown.

The LatticeXP family contains dedicated circuits to transfer data between these domains. To prevent setup and hold violations at the domain transfer between DQS (delayed) and the system Clock a clock polarity selector is used. This changes the edge on which the data is registered in the synchronizing registers in the input register block. This requires evaluation at the start of the each READ cycle for the correct clock polarity.

Prior to the READ operation in DDR memories DQS is in tristate (pulled by termination). The DDR memory device drives DQS low at the start of the preamble state. A dedicated circuit detects this transition. This signal is used to control the polarity of the clock to the synchronizing registers.

sysIO Buffer

Each I/O is associated with a flexible buffer referred to as a sysIO buffer. These buffers are arranged around the periphery of the device in eight groups referred to as Banks. The sysIO buffers allow users to implement the wide variety of standards that are found in today's systems including LVCMOS, SSTL, HSTL, LVDS and LVPECL.


sysIO Buffer Banks

LatticeXP devices have eight sysIO buffer banks; each is capable of supporting multiple I/O standards. Each sysIO bank has its own I/O supply voltage (V_{CCIO}), and two voltage references V_{REF1} and V_{REF2} resources allowing each bank to be completely independent from each other. Figure 2-28 shows the eight banks and their associated supplies.

In the LatticeXP devices, single-ended output buffers and ratioed input buffers (LVTTL, LVCMOS, PCI and PCI-X) are powered using V_{CCIO} . LVTTL, LVCMOS33, LVCMOS25 and LVCMOS12 can also be set as a fixed threshold input independent of V_{CCIO} . In addition to the bank V_{CCIO} supplies, the LatticeXP devices have a V_{CC} core logic power supply, and a V_{CCAUX} supply that power all differential and referenced buffers.

Each bank can support up to two separate VREF voltages, VREF1 and VREF2 that set the threshold for the referenced input buffers. In the LatticeXP devices, a dedicated pin in a bank can be configured to be a reference voltage supply pin. Each I/O is individually configurable based on the bank's supply and reference voltages.

Figure 2-28. LatticeXP Banks

Note: N and M are the maximum number of I/Os per bank.

LatticeXP devices contain two types of sysIO buffer pairs.

1. Top and Bottom sysIO Buffer Pair (Single-Ended Outputs Only)

The sysIO buffer pairs in the top and bottom banks of the device consist of two single-ended output drivers and two sets of single-ended input buffers (both ratioed and referenced). The referenced input buffer can also be configured as a differential input.

The two pads in the pair are described as "true" and "comp", where the true pad is associated with the positive side of the differential input buffer and the comp (complementary) pad is associated with the negative side of the differential input buffer.

Only the I/Os on the top and bottom banks have PCI clamps. Note that the PCI clamp is enabled after $V_{CC,}$ V_{CCAUX} and V_{CCIO} are at valid operating levels and the device has been configured.

2. Left and Right sysIO Buffer Pair (Differential and Single-Ended Outputs)

The sysIO buffer pairs in the left and right banks of the device consist of two single-ended output drivers, two sets of single-ended input buffers (both ratioed and referenced) and one differential output driver. The referenced input buffer can also be configured as a differential input. In these banks the two pads in the pair are described as "true" and "comp", where the true pad is associated with the positive side of the differential I/O, and the comp (complementary) pad is associated with the negative side of the differential I/O.

Select I/Os in the left and right banks have LVDS differential output drivers. Refer to the Logic Signal Connections tables for more information.

Programming and Erase Flash Supply Current^{1, 2, 3, 4, 5}

Symbol	Parameter	Device	Тур.6	Units
		LFXP3E	30	mA
		LFXP6E	40	mA
		LFXP10E	50	mA
		LFXP15E	60	mA
	Core Dower Supply	LFXP20E	70	mA
Icc	Core Power Supply	LFXP3C	50	mA
		LFXP6C	60	mA
		LFXP10C	90	mA
		LFXP15C	100	mA
		LFXP20C	110	mA
		LFXP3E/C	50	mA
		LFXP6E/C	60	mA
I _{CCAUX}	Auxiliary Power Supply V _{CCAUX} = 3.3V	LFXP10E/C	90	mA
		LFXP15E/C	110	mA
		LFXP20E/C	130	mA
I _{CCJ}	V _{CCJ} Power Supply ⁷	All	2	mA

1. For further information on supply current, please see details of additional technical documentation at the end of this data sheet.

2. Assumes all outputs are tristated, all inputs are configured as LVCMOS and held at the $V_{\mbox{CCIO}}$ or GND.

3. Blank user pattern; typical Flash pattern.

4. Bypass or decoupling capacitor across the supply.

5. JTAG programming is at 1MHz.

6. $T_A=25^{\circ}C$, power supplies at nominal voltage.

7. When programming via JTAG.

sysIO Recommended Operating Conditions

		V _{CCIO}			V _{REF} (V)	
Standard	Min.	Тур.	Max.	Min.	Тур.	Max.
LVCMOS 3.3	3.135	3.3	3.465	—	—	—
LVCMOS 2.5	2.375	2.5	2.625	—	—	—
LVCMOS 1.8	1.71	1.8	1.89	—	—	—
LVCMOS 1.5	1.425	1.5	1.575	—	—	—
LVCMOS 1.2	1.14	1.2	1.26	—	—	—
LVTTL	3.135	3.3	3.465	—	—	—
PCI33	3.135	3.3	3.465	—	—	—
SSTL18 Class I	1.71	1.8	1.89	0.833	0.9	0.969
SSTL2 Class I, II	2.375	2.5	2.625	1.15	1.25	1.35
SSTL3 Class I, II	3.135	3.3	3.465	1.3	1.5	1.7
HSTL15 Class I	1.425	1.5	1.575	0.68	0.75	0.9
HSTL15 Class III	1.425	1.5	1.575	—	0.9	—
HSTL 18 Class I, II	1.71	1.8	1.89	—	0.9	—
HSTL 18 Class III	1.71	1.8	1.89	—	1.08	—
LVDS	2.375	2.5	2.625	—	—	—
LVPECL ¹	3.135	3.3	3.465	—	—	—
BLVDS ¹	2.375	2.5	2.625	—	—	—

1. Inputs on chip. Outputs are implemented with the addition of external resistors.

Signal Descriptions (Cont.)

achine. ending t is rr-up 149.1.
ending t is r-up 149.1.
ending t is r-up 149.1.
ending t is r-up 149.1.
ng edge
ng edge
ng edge
ng con- hen this
has an
ete, and
) pin.
is
is
er pro-
mmable
g sys-
ysCON- on it is a
e device /lode not used
as a s recom-

Applies tob LFXP10, LFXP15 and LFXP20 only.
 Applies to LFXP "C" devices only.
 Applies to LFXP "E" devices only.

Pin Information Summary¹ (Cont.)

		XP	10		XP15		XP20					
Pin Ty	pe	256 fpBGA	388 fpBGA	256 fpBGA	388 fpBGA	484 fpBGA	256 fpBGA	388 fpBGA	484 fpBGA			
Single Ended l	Jser I/O	188	244	188	268	300	188	268	340			
Differential Pai	r User I/O ²	76	104	76	112	128	76	112	144			
Configuration	Dedicated	11	11	11	11	11	11	11	11			
Configuration	Muxed	14	14	14	14	14	14	14	14			
TAP	•	5	5	5	5	5	5	5	5			
Dedicated (total without supplies)		6	6	6	6	6	6	6	6			
V _{CC}		8	14	8	14	28	8	14	28			
V _{CCAUX}		4	4	4	4	12	4	4	12			
V _{CCPLL}		2	2	2	2	2	2	2	2			
	Bank0	2	5	2	5	4	2	5	4			
V	Bank1	2	5	2	5	4	2	5	4			
	Bank2	2	4	2	4	4	2	4	4			
	Bank3	2	4	2	4	4	2	4	4			
V _{CCIO}	Bank4	2	5	2	5	4	2	5	4			
	Bank5	2	5	2	5	4	2	5	4			
	Bank6	2	4	2	4	4	2	4	4			
	Bank7	2	4	2	4	4	2	4	4			
GND	•	24	50	24	50	56	24	50	56			
GND _{PLL}		2	2	2	2	2	2	2	2			
NC		0	24	0	0	40	0	0	0			
	Bank0	26/11	33/14	26/11	39/16	40/17	26/11	39/16	47/20			
	Bank1	26/11	33/14	26/11	39/16	40/17	26/11	39/16	47/20			
	Bank2	21/8	28/12	21/8	28/12	35/15	21/8	28/12	38/16			
Single Ended/ Differential I/O	Bank3	21/8	28/12	21/8	28/12	35/15	21/8	28/12	38/16			
per Bank ²	Bank4	26/11	33/14	26/11	39/16	40/17	26/11	39/16	47/20			
ľ	Bank5	26/11	33/14	26/11	39/16	40/17	26/11	39/16	47/20			
	Bank6	21/8	28/12	21/8	28/12	35/15	21/8	28/12	38/16			
	Bank7	21/8	28/12	21/8	28/12	35/15	21/8	28/12	38/16			
V _{CCJ}		1	1	1	1	1	1	1	1			

1. During configuration the user-programmable I/Os are tri-stated with an internal pull-up resistor enabled. If any pin is not used (or not bonded to a package pin), it is also tri-stated with an internal pull-up resistor enabled after configuration.

2. The differential I/O per bank includes both dedicated LVDS and emulated LVDS pin pairs. Please see the Logic Signal Connections table for more information.

LFXP3 Logic Signal Connections: 100 TQFP (Cont.)

Pin Number	Pin Function	Bank	Differential	Dual Function
44	GNDIO4	4	-	-
45	PB15A	4	Т	PCLKT4_0
46	PB15B	4	С	PCLKC4_0
47	VCCIO4	4	-	-
48	PB19A	4	Т	DQS
49	PB19B	4	С	VREF1_4
50	PB24A	4	-	VREF2_4
51	PR18B	3	C ³	-
52	GNDIO3	3	-	-
53	PR18A	3	T ³	-
54	PR15B	3	-	VREF1_3
55	PR14A	3	-	VREF2_3
56	PR13B	3	С	-
57	PR13A	3	Т	-
58	VCCIO3	3	-	-
59	GNDP1	-	-	-
60	VCCP1	-	-	-
61	PR9B	2	С	PCLKC2_0
62	PR9A	2	Т	PCLKT2_0
63	PR8B	2	С	RUM0_PLLC_IN_
64	PR8A	2	Т	RUM0_PLLT_IN_/
65	VCCIO2	2	-	-
66	PR6B	2	-	VREF1_2
67	PR5A	2	-	VREF2_2
68	GNDIO2	2	-	-
69	PR3B	2	С	RUM0_PLLC_FB_
70	PR3A	2	Т	RUM0_PLLT_FB_
71	VCCAUX	-	-	-
72	TDO	-	-	-
73	VCCJ	-	-	-
74	TDI	-	-	-
75	TMS	-	-	-
76	ТСК	-	-	-
77	VCC	-	-	-
78	PT24A	1	-	-
79	PT23A	1	-	D0
80	PT22B	1	-	D1
81	PT21A	1	-	D2
82	VCCIO1	1	-	-
83	PT20B	1	-	D3
84	GNDIO1	1	-	-
85	PT17A	1	-	D4
86	PT16A	1	-	D5
87	PT15B	1	-	D6

LFXP3 & LFXP6 Logic Signal Connections: 144 TQFP

Pin			LFXP3		LFXP6					
Number	Pin Function	Bank	Differential	Dual Function	Pin Function	Bank	Differential	Dual Function		
1	PROGRAMN	7	-	-	PROGRAMN	7	-	-		
2	CCLK	7	-	-	CCLK	7	-	-		
3	GND	-	-	-	GND	-	-	-		
4	PL2A	7	T ³	-	PL2A	7	T ³	-		
5	PL2B	7	C ³	-	PL2B	7	C ³	-		
6	PL3A	7	Т	LUM0_PLLT_FB_A	PL3A	7	Т	LUM0_PLLT_FB_A		
7	PL3B	7	С	LUM0_PLLC_FB_A	PL3B	7	С	LUM0_PLLC_FB_A		
8	VCCIO7	7	-	-	VCCIO7	7	-	-		
9	PL5A	7	-	VREF1_7	PL5A	7	-	VREF1_7		
10	PL6B	7	-	VREF2_7	PL6B	7	-	VREF2_7		
11	GNDIO7	7	-	-	GNDIO7	7	-	-		
12	PL7A	7	T ³	DQS	PL7A	7	T ³	DQS		
13	PL7B	7	C ³	-	PL7B	7	C ³	-		
14	VCC	-	-	-	VCC	-	-	-		
15	PL8A	7	Т	LUM0_PLLT_IN_A	PL8A	7	Т	LUM0_PLLT_IN_A		
16	PL8B	7	С	LUM0_PLLC_IN_A	PL8B	7	С	LUM0_PLLC_IN_A		
17	PL9A	7	T ³	-	PL9A	7	T ³	-		
18	PL9B	7	C ³	_	PL9B	7	C ³	-		
19	VCCP0	-	-	<u>-</u>	VCCP0	-	-	-		
20	GNDP0	-	-	_	GNDP0	-	-			
21	VCCIO6	6	-	-	VCCIO6	6	-	-		
22	PL11A	6	T ³	_	PL16A	6	T ³	-		
23	PL11B	6	C ³		PL16B	6	C ³	-		
23	PL12A	6	Т	PCLKT6_0	PL17A	6	Т	PCLKT6_0		
24	PL12A	6	C	PCLKC6_0	PL17B	6	C	PCLKC6_0		
26	PL13A	6	T ³		PL18A	6	T ³	TOEROO_0		
20	PL13A PL13B	6	C ³	-	PL18A PL18B	6	C ³	-		
28	GNDIO6	6	-	-	GNDIO6	6	-	-		
20	PL14A	6	-	VREF1_6	PL22A	6	-	VREF1_6		
30	PL14A PL15B	6	-	VREF1_0	PL22A PL23B	6	-	VREF1_6		
	PL15B PL16A		- T ³	DQS	PL23B PL24A		- T ³	DQS		
31	PL16A PL16B	6	C ³			6	C ³	DQS		
32		6		-	PL24B	6		-		
33	PL17A	6	-	-	PL25A	6	-	-		
34	PL18A	6	T ³	-	PL26A	6	T ³	-		
35	PL18B	6	C ³	-	PL26B	6	C ³	-		
36	VCCAUX	-	-	-	VCCAUX	-	-	-		
37	SLEEPN ¹ /TOE ²	-	-	-	SLEEPN ¹ /TOE ²	-	-	-		
38	INITN	5	-	-	INITN	5	-	-		
39	VCC	-	-	-	VCC	-	-	-		
40	PB2B	5	-	VREF1_5	PB5B	5	-	VREF1_5		
41	PB5B	5	-	VREF2_5	PB8B	5	-	VREF2_5		
42	PB7A	5	Т	-	PB10A	5	Т	-		
43	PB7B	5	С	-	PB10B	5	С	-		
44	GNDIO5	5	-	-	GNDIO5	5	-	-		
45	PB9A	5	-	-	PB12A	5	-	-		
46	PB10B	5	-	-	PB13B	5	-	-		

LFXP10, LFXP15 & LFXP20 Logic Signal Connections: 388 fpBGA (Cont.)

	LFXP10				LFXP15				LFXP20			
Ball Number	Ball Function	Bank	Diff.	Dual Function	Ball Function	Bank	Diff.	Dual Function	Ball Function	Bank	Diff.	Dual Function
Y10	PB11B	5	С	-	PB16B	5	С	-	PB20B	5	С	-
AA7	PB12A	5	Т	-	PB17A	5	Т	-	PB21A	5	Т	-
AB7	PB12B	5	С	VREF2_5	PB17B	5	С	VREF2_5	PB21B	5	С	VREF2_5
Y7	PB13A	5	Т	-	PB18A	5	Т	-	PB22A	5	Т	-
-	GNDIO5	5	-	-	GNDIO5	5	-	-	GNDIO5	5	-	-
AA8	PB13B	5	С	-	PB18B	5	С	-	PB22B	5	С	-
AB8	PB14A	5	Т	-	PB19A	5	Т	-	PB23A	5	Т	-
Y8	PB14B	5	С	-	PB19B	5	С	-	PB23B	5	С	-
AB9	PB15A	5	Т	-	PB20A	5	Т	-	PB24A	5	Т	-
AA9	PB15B	5	С	-	PB20B	5	С	-	PB24B	5	С	-
W10	PB16A	5	-	-	PB21A	5	-	-	PB25A	5	-	-
W11	PB17B	5	-	-	PB22B	5	-	-	PB26B	5	-	-
AB10	PB18A	5	Т	DQS	PB23A	5	Т	DQS	PB27A	5	Т	DQS
AA10	PB18B	5	С	-	PB23B	5	С	-	PB27B	5	С	-
-	GNDIO5	5	-	-	GNDIO5	5	-	-	GNDIO5	5	-	-
AA11	PB19A	5	Т	-	PB24A	5	Т	-	PB28A	5	Т	-
AB11	PB19B	5	С	-	PB24B	5	С	-	PB28B	5	С	-
Y11	PB20A	5	Т	-	PB25A	5	Т	-	PB29A	5	Т	-
Y12	PB20B	5	С	-	PB25B	5	С	-	PB29B	5	С	-
AB12	PB21A	4	Т	-	PB26A	4	Т	-	PB30A	4	Т	-
AA12	PB21B	4	С	-	PB26B	4	С	-	PB30B	4	С	-
AB13	PB22A	4	Т	PCLKT4_0	PB27A	4	Т	PCLKT4_0	PB31A	4	Т	PCLKT4_0
AA13	PB22B	4	С	PCLKC4_0	PB27B	4	С	PCLKC4_0	PB31B	4	С	PCLKC4_0
-	GNDIO4	4	-	-	GNDIO4	4	-	-	GNDIO4	4	-	
AA14	PB23A	4	Т	-	PB28A	4	Т	-	PB32A	4	Т	-
AB14	PB23B	4	С	-	PB28B	4	С	-	PB32B	4	С	-
W12	PB24A	4	-	-	PB29A	4	-	-	PB33A	4	-	-
W13	PB25B	4	-	-	PB30B	4	-	-	PB34B	4	-	-
AA15	PB26A	4	Т	DQS	PB31A	4	Т	DQS	PB35A	4	Т	DQS
AB15	PB26B	4	С	VREF1_4	PB31B	4	С	VREF1_4	PB35B	4	С	VREF1_4
AA16	PB27A	4	Т	-	PB32A	4	Т	-	PB36A	4	Т	-
AB16	PB27B	4	С	-	PB32B	4	С	-	PB36B	4	С	-
Y17	PB28A	4	Т	-	PB33A	4	Т	-	PB37A	4	Т	-
-	GNDIO4	4	-	-	GNDIO4	4	-	-	GNDIO4	4	-	-
AA17	PB28B	4	С	-	PB33B	4	С	-	PB37B	4	С	-
Y13	PB29A	4	Т	-	PB34A	4	т	-	PB38A	4	Т	-
Y14	PB29B	4	С	-	PB34B	4	С	-	PB38B	4	С	-
AB17	PB30A	4	Т	-	PB35A	4	Т	-	PB39A	4	Т	-
Y18	PB30B	4	С	-	PB35B	4	С	-	PB39B	4	С	-
AA18	PB31A	4	Т	VREF2_4	PB36A	4	Т	VREF2 4	PB40A	4	Т	VREF2 4
AB18	PB31B	4	С	-	PB36B	4	С	-	PB40B	4	С	-
Y19	PB32A	4	-	-	PB37A	4	_	-	PB41A	4	-	-
AB19	PB33B	4	-	-	PB38B	4	-	-	PB42B	4	-	-
-	GNDIO4	4	-	-	GNDIO4	4	-	_	GNDIO4	4	-	-
AA19	PB34A	4	Т	DQS	PB39A	4	Т	DQS	PB43A	4	Т	DQS
Y20	PB34B	4	C	-	PB39B	4	C	-	PB43B	4	C	-
W14	PB35A	4	T	-	PB40A	4	T	-	PB44A	4	T	-
W14 W15	PB35B	4	C	-	PB40B	4	C	-	PB44B	4	C	-
AB20	PB36A	4	T	-	PB41A	4	T	-	PB45A	4	T	-
AB20	1 DOUR	-	'	-		7	'	-	1 0404	7	'	-

LFXP10, LFXP15 & LFXP20 Logic Signal Connections: 388 fpBGA (Cont.)

		LFXP10				;		LFXP20				
Ball			Ball				Ball					
Number	Function	Bank		Dual Function	Function	Bank		Dual Function	Function	Bank	Diff.	Dual Function
C20	PT38A	1	Т	-	PT43A	1	Т	-	PT47A	1	Т	-
C21	PT37B	1	С	-	PT42B	1	С	-	PT46B	1	С	-
C22	PT37A	1	Т	-	PT42A	1	Т	-	PT46A	1	Т	-
B22	PT36B	1	С	-	PT41B	1	С	-	PT45B	1	С	-
A21	PT36A	1	Т	-	PT41A	1	Т	-	PT45A	1	Т	-
D15	PT35B	1	С	-	PT40B	1	С	-	PT44B	1	С	-
D14	PT35A	1	Т	-	PT40A	1	Т	-	PT44A	1	Т	-
B21	PT34B	1	С	VREF1_1	PT39B	1	С	VREF1_1	PT43B	1	С	VREF1_1
-	GNDIO1	1	-	-	GNDIO1	1	-	-	GNDIO1	1	-	-
A20	PT34A	1	Т	DQS	PT39A	1	Т	DQS	PT43A	1	Т	DQS
B20	PT33B	1	-	-	PT38B	1	-	-	PT42B	1	-	-
A19	PT32A	1	-	-	PT37A	1	-	-	PT41A	1	-	-
B19	PT31B	1	С	-	PT36B	1	С	-	PT40B	1	С	-
A18	PT31A	1	Т	-	PT36A	1	Т	-	PT40A	1	Т	-
C14	PT30B	1	С	-	PT35B	1	С	-	PT39B	1	С	-
C13	PT30A	1	Т	D0	PT35A	1	Т	D0	PT39A	1	Т	D0
B18	PT29B	1	С	D1	PT34B	1	С	D1	PT38B	1	С	D1
A17	PT29A	1	Т	VREF2_1	PT34A	1	Т	VREF2_1	PT38A	1	Т	VREF2_1
B17	PT28B	1	С	-	PT33B	1	С	-	PT37B	1	С	-
A16	PT28A	1	Т	D2	PT33A	1	Т	D2	PT37A	1	Т	D2
-	GNDIO1	1	-		GNDIO1	1	_		GNDIO1	1	-	
B16	PT27B	1	С	D3	PT32B	1	С	D3	PT36B	1	С	D3
A15	PT27A	1	T	-	PT32A	1	T	-	PT36A	1	T	-
B15	PT26B	1	C	_	PT31B	1	C	-	PT35B	1	C	-
A14	PT26A	1	T	DQS	PT31A	1	Т	DQS	PT35A	1	Т	DQS
D13	PT25B	1	-	DQ3	PT30B	1	-	-	PT34B	1	-	-
D13	PT24A	1	-	- D4	PT29A	1	-	- D4	PT34B PT33A	1	-	- D4
B14		1	C	-			C	-	PT32B	1	C	-
	PT23B	1	Т		PT28B	1	Т				Т	
A13	PT23A		-	D5	PT28A	1		D5	PT32A	1		D5
-	GNDIO1 PT22B	1		-	GNDIO1	1	-	-	GNDIO1	1	-	-
B13		1	C	D6	PT27B	1	C	D6	PT31B	1	C	D6
A12	PT22A	1	T	-	PT27A	1	Т	-	PT31A	1	Т	-
B12	PT21B	1	C	D7	PT26B	1	C	D7	PT30B	1	C	D7
C12	PT21A	1	Т	-	PT26A	1	Т	-	PT30A	1	Т	-
C11	PT20B	0	С	BUSY	PT25B	0	С	BUSY	PT29B	0	С	BUSY
-	GNDIO0	0	-	-	GNDIO0	0	-	-	GNDIO0	0	-	-
B11	PT20A	0	Т	CS1N	PT25A	0	Т	CS1N	PT29A	0	Т	CS1N
A11	PT19B	0	С	PCLKC0_0	PT24B	0	С	PCLKC0_0	PT28B	0	С	PCLKC0_0
A10	PT19A	0	Т	PCLKT0_0	PT24A	0	Т	PCLKT0_0	PT28A	0	Т	PCLKT0_0
B10	PT18B	0	С	-	PT23B	0	С	-	PT27B	0	С	-
B9	PT18A	0	Т	DQS	PT23A	0	Т	DQS	PT27A	0	Т	DQS
D11	PT17B	0	-	-	PT22B	0	-	-	PT26B	0	-	-
D10	PT16A	0	-	DOUT	PT21A	0	-	DOUT	PT25A	0	-	DOUT
A9	PT15B	0	С	-	PT20B	0	С	-	PT24B	0	С	-
-	GNDIO0	0	-	-	GNDIO0	0	-	-	GNDIO0	0	-	-
C8	PT15A	0	Т	WRITEN	PT20A	0	Т	WRITEN	PT24A	0	Т	WRITEN
B8	PT14B	0	С	-	PT19B	0	С	-	PT23B	0	С	-
A8	PT14A	0	Т	VREF1_0	PT19A	0	Т	VREF1_0	PT23A	0	Т	VREF1_0
C7	PT13B	0	С	-	PT18B	0	С	-	PT22B	0	С	-

Thermal Management

Thermal management is recommended as part of any sound FPGA design methodology. To assess the thermal characteristics of a system, Lattice specifies a maximum allowable junction temperature in all device data sheets. Designers must complete a thermal analysis of their specific design to ensure that the device and package do not exceed the junction temperature limits. Refer to the Thermal Management document to find the device/package specific thermal values.

For Further Information

For further information regarding Thermal Management, refer to the following located on the Lattice website at <u>www.latticesemi.com</u>.

- Thermal Management document
- Technical Note TN1052 Power Estimation and Management for LatticeECP/EC and LatticeXP Devices
- Power Calculator tool included with Lattice's ispLEVER design tool, or as a standalone download from
 <u>www.latticesemi.com/software</u>

Part Number	I/Os	Voltage	Grade	Package	Pins	Temp.	LUTs					
LFXP6E-3F256C	188	1.2V	-3	fpBGA	256	COM	5.8K					
LFXP6E-4F256C	188	1.2V	-4	fpBGA	256	COM	5.8K					
LFXP6E-5F256C	188	1.2V	-5	fpBGA	256	COM	5.8K					
LFXP6E-3Q208C	142	1.2V	-3	PQFP	208	COM	5.8K					
LFXP6E-4Q208C	142	1.2V	-4	PQFP	208	COM	5.8K					
LFXP6E-5Q208C	142	1.2V	-5	PQFP	208	COM	5.8K					
LFXP6E-3T144C	100	1.2V	-3	TQFP	144	COM	5.8K					
LFXP6E-4T144C	100	1.2V	-4	TQFP	144	COM	5.8K					
LFXP6E-5T144C	100	1.2V	-5	TQFP	144	COM	5.8K					

Part Number	l/Os	Voltage	Grade	Package	Pins	Temp.	LUTs
LFXP10E-3F388C	244	1.2V	-3	fpBGA	388	COM	9.7K
LFXP10E-4F388C	244	1.2V	-4	fpBGA	388	COM	9.7K
LFXP10E-5F388C	244	1.2V	-5	fpBGA	388	COM	9.7K
LFXP10E-3F256C	188	1.2V	-3	fpBGA	256	COM	9.7K
LFXP10E-4F256C	188	1.2V	-4	fpBGA	256	COM	9.7K
LFXP10E-5F256C	188	1.2V	-5	fpBGA	256	COM	9.7K

Part Number	I/Os	Voltage	Grade	Package	Pins	Temp.	LUTs
LFXP15E-3F484C	300	1.2V	-3	fpBGA	484	COM	15.5K
LFXP15E-4F484C	300	1.2V	-4	fpBGA	484	COM	15.5K
LFXP15E-5F484C	300	1.2V	-5	fpBGA	484	COM	15.5K
LFXP15E-3F388C	268	1.2V	-3	fpBGA	388	COM	15.5K
LFXP15E-4F388C	268	1.2V	-4	fpBGA	388	COM	15.5K
LFXP15E-5F388C	268	1.2V	-5	fpBGA	388	COM	15.5K
LFXP15E-3F256C	188	1.2V	-3	fpBGA	256	COM	15.5K
LFXP15E-4F256C	188	1.2V	-4	fpBGA	256	COM	15.5K
LFXP15E-5F256C	188	1.2V	-5	fpBGA	256	COM	15.5K

Commercial (Cont.)

Part Number	l/Os	Voltage	Grade	Package	Pins	Temp.	LUTs
LFXP15E-3F484I	300	1.2V	-3	fpBGA	484	IND	15.5K
LFXP15E-4F484I	300	1.2V	-4	fpBGA	484	IND	15.5K
LFXP15E-3F388I	268	1.2V	-3	fpBGA	388	IND	15.5K
LFXP15E-4F388I	268	1.2V	-4	fpBGA	388	IND	15.5K
LFXP15E-3F256I	188	1.2V	-3	fpBGA	256	IND	15.5K
LFXP15E-4F256I	188	1.2V	-4	fpBGA	256	IND	15.5K

Industrial (Cont.)

Part Number	I/Os	Voltage	Grade	Package	Pins	Temp.	LUTs
LFXP20E-3F484I	340	1.2V	-3	fpBGA	484	IND	19.7K
LFXP20E-4F484I	340	1.2V	-4	fpBGA	484	IND	19.7K
LFXP20E-3F388I	268	1.2V	-3	fpBGA	388	IND	19.7K
LFXP20E-4F388I	268	1.2V	-4	fpBGA	388	IND	19.7K
LFXP20E-3F256I	188	1.2V	-3	fpBGA	256	IND	19.7K
LFXP20E-4F256I	188	1.2V	-4	fpBGA	256	IND	19.7K

LatticeXP Family Data Sheet Revision History

November 2007

Revision History

Data Sheet DS1001

Date	Version	Section	Change Summary					
February 2005	01.0	—	Initial release.					
April 2005	01.1	Architecture	EBR memory support section updated with clarification.					
May 2005 01.2		Introduction	Added TransFR Reconfiguration to Features section.					
		Architecture	Added TransFR section.					
June 2005	01.3	Pinout Information	Added pinout information for LFXP3, LFXP6, LFXP15 and LFXP20.					
July 2005	02.0	Introduction	Updated XP6, XP15 and XP20 EBR SRAM Bits and Block numbers.					
		Architecture	Updated Per Quadrant Primary Clock Selection figure.					
			Added Typical I/O Behavior During Power-up section.					
			Updated Device Configuration section under Configuration and Testing.					
		DC and Switching	Clarified Hot Socketing Specification					
		Characteristics	Updated Supply Current (Standby) Table					
			Updated Initialization Supply Current Table					
			Added Programming and Erase Flash Supply Current table					
			Added LVDS Emulation section. Updated LVDS25E Output Termination Example figure and LVDS25E DC Conditions table.					
			Updated Differential LVPECL diagram and LVPECL DC Conditions table.					
			Deleted 5V Tolerant Input Buffer section. Updated RSDS figure and RSDS DC Conditions table.					
			Updated sysCONFIG Port Timing Specifications					
			Updated JTAG Port Timing Specifications. Added Flash Download Time table.					
		Pinout Information	Updated Signal Descriptions table.					
			Updated Logic Signal Connections Dual Function column.					
		Ordering Information	Added lead-free ordering part numbers.					
July 2005	02.1	DC and Switching Characteristics	Clarification of Flash Programming Junction Temperature					
August 2005	02.2	Introduction	Added Sleep Mode feature.					
		Architecture	Added Sleep Mode section.					
		DC and Switching	Added Sleep Mode Supply Current Table					
		Characteristics	Added Sleep Mode Timing section					
		Pinout Information	Added SLEEPN and TOE signal names, descriptions and footnotes.					
			Added SLEEPN and TOE to pinout information and footnotes.					
			Added footnote 3 to Logic Signal Connections tables for clarification on emulated LVDS output.					
September 2005 03	03.0	Architecture	Added clarification of PCI clamp.					
			Added clarification to SLEEPN Pin Characteristics section.					
		DC and Switching Characteristics	DC Characteristics, added footnote 4 for clarification. Updated Supply Current (Sleep Mode), Supply Current (Standby), Initialization Supply Current, and Programming and Erase Flash Supply Current typical numbers.					

© 2007 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.