

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	-
Number of Logic Elements/Cells	15000
Total RAM Bits	331776
Number of I/O	188
Number of Gates	-
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	256-BGA
Supplier Device Package	256-FPBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lfxp15e-5fn256c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Lattice Semiconductor

The Lattice design tools support the creation of a variety of different size memories. Where appropriate, the software will construct these using distributed memory primitives that represent the capabilities of the PFU. Table 2-3 shows the number of Slices required to implement different distributed RAM primitives. Figure 2-4 shows the distributed memory primitive block diagrams. Dual port memories involve the pairing of two Slices, one Slice functions as the read-write port. The other companion Slice supports the read-only port. For more information on RAM mode in LatticeXP devices, please see details of additional technical documentation at the end of this data sheet.

Table 2-3. Number of Slices Required for Implementing Distributed RAM

	SPR16x2	DPR16x2			
Number of Slices	1	2			
Note: SPR = Single Port RAM. DPR = Dual Port RAM					

_				_	
	~ /		 	Duline	

ROM Mode: The ROM mode uses the same principal as the RAM modes, but without the Write port. Pre-loading is accomplished through the programming interface during configuration.

PFU Modes of Operation

Slices can be combined within a PFU to form larger functions. Table 2-4 tabulates these modes and documents the functionality possible at the PFU level.

Lattice Semiconductor

Figure 2-6. Secondary Clock Sources

Clock Routing

The clock routing structure in LatticeXP devices consists of four Primary Clock lines and a Secondary Clock network per quadrant. The primary clocks are generated from MUXs located in each quadrant. Figure 2-7 shows this clock routing. The four secondary clocks are generated from MUXs located in each quadrant as shown in Figure 2-8. Each slice derives its clock from the primary clock lines, secondary clock lines and routing as shown in Figure 2-9.

The EBR memory supports three forms of write behavior for single port or dual port operation:

- 1. **Normal** data on the output appears only during read cycle. During a write cycle, the data (at the current address) does not appear on the output. This mode is supported for all data widths.
- 2. Write Through -ba copy of the input data appears at the output of the same port during a write cycle.bThis mode is supported for all data widths.
- 3. **Read-Before-Write** when new data is being written, the old content of the address appears at the output. This mode is supported for x9, x18 and x36 data widths.

Memory Core Reset

The memory array in the EBR utilizes latches at the A and B output ports. These latches can be reset asynchronously. RSTA and RSTB are local signals, which reset the output latches associated with Port A and Port B respectively. The Global Reset (GSRN) signal resets both ports. The output data latches and associated resets for both ports are as shown in Figure 2-15.

Figure 2-28. LatticeXP Banks

Note: N and M are the maximum number of I/Os per bank.

LatticeXP devices contain two types of sysIO buffer pairs.

1. Top and Bottom sysIO Buffer Pair (Single-Ended Outputs Only)

The sysIO buffer pairs in the top and bottom banks of the device consist of two single-ended output drivers and two sets of single-ended input buffers (both ratioed and referenced). The referenced input buffer can also be configured as a differential input.

The two pads in the pair are described as "true" and "comp", where the true pad is associated with the positive side of the differential input buffer and the comp (complementary) pad is associated with the negative side of the differential input buffer.

Only the I/Os on the top and bottom banks have PCI clamps. Note that the PCI clamp is enabled after $V_{CC,}$ V_{CCAUX} and V_{CCIO} are at valid operating levels and the device has been configured.

2. Left and Right sysIO Buffer Pair (Differential and Single-Ended Outputs)

The sysIO buffer pairs in the left and right banks of the device consist of two single-ended output drivers, two sets of single-ended input buffers (both ratioed and referenced) and one differential output driver. The referenced input buffer can also be configured as a differential input. In these banks the two pads in the pair are described as "true" and "comp", where the true pad is associated with the positive side of the differential I/O, and the comp (complementary) pad is associated with the negative side of the differential I/O.

Select I/Os in the left and right banks have LVDS differential output drivers. Refer to the Logic Signal Connections tables for more information.

Table 2-8. Supported	Output Standards
----------------------	-------------------------

Output Standard	Drive	V _{CCIO} (Nom.)
Single-ended Interfaces	•	
LVTTL	4mA, 8mA, 12mA, 16mA, 20mA	3.3
LVCMOS33	4mA, 8mA, 12mA 16mA, 20mA	3.3
LVCMOS25	4mA, 8mA, 12mA 16mA, 20mA	2.5
LVCMOS18	4mA, 8mA, 12mA 16mA	1.8
LVCMOS15	4mA, 8mA	1.5
LVCMOS12	2mA, 6mA	1.2
LVCMOS33, Open Drain	4mA, 8mA, 12mA 16mA, 20mA	—
LVCMOS25, Open Drain	4mA, 8mA, 12mA 16mA, 20mA	—
LVCMOS18, Open Drain	4mA, 8mA, 12mA 16mA	—
LVCMOS15, Open Drain	4mA, 8mA	—
LVCMOS12, Open Drain	2mA. 6mA	—
PCI33	N/A	3.3
HSTL18 Class I, II, III	N/A	1.8
HSTL15 Class I, III	N/A	1.5
SSTL3 Class I, II	N/A	3.3
SSTL2 Class I, II	N/A	2.5
SSTL18 Class I	N/A	1.8
Differential Interfaces	•	
Differential SSTL3, Class I, II	N/A	3.3
Differential SSTL2, Class I, II	N/A	2.5
Differential SSTL18, Class I	N/A	1.8
Differential HSTL18, Class I, II, III	N/A	1.8
Differential HSTL15, Class I, III	N/A	1.5
LVDS	N/A	2.5
BLVDS ¹	N/A	2.5
LVPECL ¹	N/A	3.3

1. Emulated with external resistors.

Hot Socketing

The LatticeXP devices have been carefully designed to ensure predictable behavior during power-up and powerdown. Power supplies can be sequenced in any order. During power up and power-down sequences, the I/Os remain in tristate until the power supply voltage is high enough to ensure reliable operation. In addition, leakage into I/O pins is controlled to within specified limits, which allows easy integration with the rest of the system. These capabilities make the LatticeXP ideal for many multiple power supply and hot-swap applications.

Sleep Mode

The LatticeXP "C" devices ($V_{CC} = 1.8/2.5/3.3V$) have a sleep mode that allows standby current to be reduced by up to three orders of magnitude during periods of system inactivity. Entry and exit to Sleep Mode is controlled by the SLEEPN pin.

During Sleep Mode, the FPGA logic is non-operational, registers and EBR contents are not maintained and I/Os are tri-stated. Do not enter Sleep Mode during device programming or configuration operation. In Sleep Mode, power supplies can be maintained in their normal operating range, eliminating the need for external switching of power supplies. Table 2-9 compares the characteristics of Normal, Off and Sleep Modes.

DC Electrical Characteristics

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
I., I., 1, 2, 4		$0 \le V_{IN} \le (V_{CCIO} - 0.2V)$	—	_	10	μΑ
'IL, 'IH	Input of I/O Leakage	$(V_{CCIO} - 0.2V) < V_{IN} \le 3.6V$	—	_	40	μΑ
I _{PU}	I/O Active Pull-up Current	$0 \leq V_{IN} \leq 0.7 \ V_{CCIO}$	-30	_	-150	μΑ
I _{PD}	I/O Active Pull-down Current	V_{IL} (MAX) $\leq V_{IN} \leq V_{IH}$ (MAX)	30	_	150	μΑ
I _{BHLS}	Bus Hold Low sustaining current	$V_{IN} = V_{IL}$ (MAX)	30	_	—	μΑ
I _{BHHS}	Bus Hold High sustaining current	$V_{IN} = 0.7 V_{CCIO}$	-30	_	—	μΑ
I _{BHLO}	Bus Hold Low Overdrive current	$0 \le V_{IN} \le V_{IH}$ (MAX)	—	_	150	μΑ
I _{BHHO}	Bus Hold High Overdrive current	$0 \le V_{IN} \le V_{IH}$ (MAX)	—	_	-150	μΑ
V _{BHT}	Bus Hold trip Points	$0 \le V_{IN} \le V_{IH}$ (MAX)	V_{IL} (MAX)	—	V_{IH} (MIN)	V
C1	I/O Capacitance ³		_	8	_	pf
C2	Dedicated Input Capacitance ³		_	8	_	pf

Over Recommended Operating Conditions

1. Input or I/O leakage current is measured with the pin configured as an input or as an I/O with the output driver tri-stated. It is not measured with the output driver active. Bus maintenance circuits are disabled.

2. Not applicable to SLEEPN/TOE pin.

3. T_A 25°C, f = 1.0MHz

4. When V_{IH} is higher than V_{CCIO}, a transient current typically of 30ns in duration or less with a peak current of 6mA can be expected on the high-to-low transition.

Supply Current (Sleep Mode)^{1, 2, 3}

Symbol	Parameter	Device	Typ.⁴	Max	Units
		LFXP3C	12	65	μΑ
		LFXP6C	14	75	μA
I _{CC}	Core Power Supply	DeviceLFXP3CLFXP6CLFXP10CLFXP10CLFXP15CLFXP20CAll LFXP 'C' DevicesLFXP3CLFXP6CLFXP10CLFXP10CLFXP20CLFXP20CLFXP3CLFXP6CLFXP10CLFXP10CLFXP10CLFXP10CLFXP10CLFXP10CLFXP10CLFXP10CLFXP10CLFXP20CAll LFXP 'C' Devices	16	85	μΑ
Symbol CC CCP CCAUX CCIO		LFXP15C	18	95	μΑ
		Image: Construct of the system Type LFXP3C 12 LFXP6C 14 LFXP10C 16 LFXP15C 18 LFXP20C 20 ver PLL) All LFXP 'C' Devices 1 LFXP3C 2 LFXP6C 2 LFXP6C 2 LFXP10C 2 LFXP10C 2 LFXP10C 2 LFXP20C 4 LFXP3C 2 LFXP6C 2 LFXP10C 2 LFXP6C 2 LFXP6C 2 LFXP10C 2 LFXP10C 2 LFXP10C 2 LFXP10C 2 LFXP15C 3 LFXP20C 4 All LFXP 'C' Devices 1	20	105	μA
I _{CCP}	PLL Power Supply (per PLL)	All LFXP 'C' Devices	1	5	μΑ
		LFXP3C	2	90	μΑ
		LFXP6C	2	100	μA
ICCAUX	Auxiliary Power Supply	LFXP10C	2	110	μΑ
		LFXP15C	3	120	μΑ
		Perice Typ.* Max LFXP3C 12 65 LFXP6C 14 75 LFXP10C 16 85 LFXP10C 16 85 LFXP10C 18 95 LFXP20C 20 105 r PLL) All LFXP 'C' Devices 1 5 LFXP3C 2 90 1 LFXP10C 2 110 1 LFXP10C 2 110 1 LFXP10C 2 110 1 LFXP10C 2 100 1 LFXP10C 2 20 1 LFXP20C 4 130 1 LFXP6C 2 20 1 LFXP10C 2 24 1 LFXP15C 3 27 1 LFXP20C 4 30 3 All LFXP 'C' Devices 1 5	μA		
		LFXP3C	2	20	μΑ
		LFXP6C	2	22	μΑ
I _{CCIO}	Bank Power Supply ⁵	LFXP10C	2	24	μA
		LFXP15C	3	27	μΑ
		LFXP20C	4	30	μΑ
I _{CCJ}	VCCJ Power Supply	All LFXP 'C' Devices	1	5	μΑ

1. Assumes all inputs are configured as LVCMOS and held at the VCCIO or GND.

2. Frequency 0MHz.

3. User pattern: blank.

4. $T_A=25^{\circ}C$, power supplies at nominal voltage.

5. Per bank.

sysIO Differential Electrical Characteristics LVDS

Parameter Symbol	Parameter Description	Test Conditions	Min.	Тур.	Max.	Units
V _{INP,} V _{INM}	Input Voltage		0	_	2.4	V
V _{THD}	Differential Input Threshold		+/-100	_	—	mV
		$100mV \le V_{THD}$	V _{THD} /2	1.2	1.8	V
V _{CM}	Input Common Mode Voltage	$200mV \le V_{THD}$	V _{THD} /2	1.2	1.9	V
		$350mV \le V_{THD}$	V _{THD} /2	1.2	2.0	V
I _{IN}	Input current	Power on or power off	—	_	+/-10	μA
V _{OH}	Output high voltage for V_{OP} or V_{OM}	R _T = 100 ohms	—	1.38	1.60	V
V _{OL}	Output low voltage for V_{OP} or V_{OM}	R _T = 100 ohms	0.9V	1.03	—	V
V _{OD}	Output voltage differential	$(V_{OP} - V_{OM}), R_T = 100 \text{ ohms}$	250	350	450	mV
ΔV _{OD}	Change in V _{OD} between high and low		—	_	50	mV
V _{OS}	Output voltage offset	$(V_{OP} - V_{OM})/2, R_T = 100 \text{ ohms}$	1.125	1.25	1.375	V
ΔV_{OS}	Change in V _{OS} between H and L		—	_	50	mV
I _{OSD}	Output short circuit current	V _{OD} = 0V Driver outputs shorted	—	—	6	mA

Over Recommended Operating Conditions

Differential HSTL and SSTL

Differential HSTL and SSTL outputs are implemented as a pair of complementary single-ended outputs. All allowable single-ended output classes (class I and class II) are supported in this mode.

LVDS25E

The top and bottom side of LatticeXP devices support LVDS outputs via emulated complementary LVCMOS outputs in conjunction with a parallel resistor across the driver outputs. The scheme shown in Figure 3-1 is one possible solution for point-to-point signals.

Figure 3-1. LVDS25E Output Termination Example

Table 3-1. LVDS25E DC Conditions

Parameter	Description	Typical	Units
V _{OH}	Output high voltage	1.43	V
V _{OL}	Output low voltage	1.07	V
V _{OD}	Output differential voltage	0.35	V
V _{CM}	Output common mode voltage	1.25	V
Z _{BACK}	Back impedance	100	ohms
I _{DC}	DC output current	3.66	mA

BLVDS

The LatticeXP devices support BLVDS standard. This standard is emulated using complementary LVCMOS outputs in conjunction with a parallel external resistor across the driver outputs. BLVDS is intended for use when multidrop and bi-directional multi-point differential signaling is required. The scheme shown in Figure 3-2 is one possible solution for bi-directional multi-point differential signals.

Figure 3-5. DDR Timings

Figure 3-10. Read Before Write (SP Read/Write on Port A, Input Registers Only)

Note: Input data and address are registered at the positive edge of the clock and output data appears after the positive of the clock.

Figure 3-11. Write Through (SP Read/Write On Port A, Input Registers Only)

Note: Input data and address are registered at the positive edge of the clock and output data appears after the positive of the clock.

Flash Download Time

Symbol	Parar	neter	Min.	Тур.	Max.	Units
t _{REFRESH}	PROGRAMN Low-to- High. Transition to Done High.	LFXP3	—	1.1	1.7	ms
		LFXP6	—	1.4	2.0	ms
		LFXP10	—	0.9	1.5	ms
		LFXP15	—	1.1	1.7	ms
		LFXP20	—	1.3	1.9	ms

JTAG Port Timing Specifications

Over Recommended Operating Conditions

Symbol	Parameter	Min.	Max.	Units
f _{MAX}		_	25	MHz
t _{BTCP}	TCK [BSCAN] clock pulse width	40	—	ns
t _{втсрн}	TCK [BSCAN] clock pulse width high	20	_	ns
t _{BTCPL}	TCK [BSCAN] clock pulse width low	20	_	ns
t _{BTS}	TCK [BSCAN] setup time	10	—	ns
t _{BTH}	TCK [BSCAN] hold time	8	—	ns
t _{BTRF}	TCK [BSCAN] rise/fall time	50	—	ns
t _{втсо}	TAP controller falling edge of clock to valid output		10	ns
t _{BTCODIS}	TAP controller falling edge of clock to valid disable		10	ns
t _{BTCOEN}	TAP controller falling edge of clock to valid enable		10	ns
t _{BTCRS}	BSCAN test capture register setup time	8		ns
t _{BTCRH}	BSCAN test capture register hold time	25	—	ns
t _{BUTCO}	BSCAN test update register, falling edge of clock to valid output	_	25	ns
t _{BTUODIS}	BSCAN test update register, falling edge of clock to valid disable	_	25	ns
t _{BTUPOEN}	BSCAN test update register, falling edge of clock to valid enable	—	25	ns
Timing v.F0.11	•	•	•	

Figure 3-12. JTAG Port Timing Waveforms

LatticeXP Family Data Sheet Pinout Information

November 2007

Data Sheet DS1001

Signal Descriptions

Signal Name	I/O	Descriptions
General Purpose		
		[Edge] indicates the edge of the device on which the pad is located. Valid edge designations are L (Left), B (Bottom), R (Right), T (Top).
		[Row/Column Number] indicates the PFU row or the column of the device on which the PIC exists. When Edge is T (Top) or (Bottom), only need to specify Row Number. When Edge is L (Left) or R (Right), only need to specify Column Number.
P[Edge] [Row/Column Number*]_[A/B]	I/O	[A/B] indicates the PIO within the PIC to which the pad is connected.
		Some of these user programmable pins are shared with special function pins. These pin when not used as special purpose pins can be programmed as I/ Os for user logic.
		During configuration, the user-programmable I/Os are tri-stated with an inter- nal pull-up resistor enabled. If any pin is not used (or not bonded to a pack- age pin), it is also tri-stated with an internal pull-up resistor enabled after configuration.
GSRN	I	Global RESET signal. (Active low). Any I/O pin can be configured to be GSRN.
NC	_	No connect.
GND		GND - Ground. Dedicated Pins.
V _{CC}		VCC - The power supply pins for core logic. Dedicated Pins.
V _{CCAUX}	_	V _{CCAUX} - The Auxiliary power supply pin. It powers all the differential and referenced input buffers. Dedicated Pins.
V _{CCP0}	_	Voltage supply pins for ULM0PLL (and LLM1PLL ¹).
V _{CCP1}	—	Voltage supply pins for URM0PLL (and LRM1PLL ¹).
GNDP0	—	Ground pins for ULM0PLL (and LLM1PLL ¹).
GNDP1	—	Ground pins for URM0PLL (and LRM1PLL ¹).
V _{CCIOx}		V _{CCIO} - The power supply pins for I/O bank x. Dedicated Pins.
V _{REF1(x)} , V _{REF2(x)}	_	Reference supply pins for I/O bank x. Pre-determined pins in each bank are assigned as V_{REF} inputs. When not used, they may be used as I/O pins.
PLL and Clock Functions (Used as user	progra	ammable I/O pins when not in use for PLL or clock pins)
[LOC][num]_PLL[T, C]_IN_A		Reference clock (PLL) input Pads: ULM, LLM, URM, LRM, num = row from center, T = true and C = complement, index A, B, Cat each side.
[LOC][num]_PLL[T, C]_FB_A	_	Optional feedback (PLL) input Pads: ULM, LLM, URM, LRM, num = row from center, T = true and C = complement, index A, B, Cat each side.
PCLK[T, C]_[n:0]_[3:0]	_	Primary Clock Pads, $T =$ true and $C =$ complement, n per side, indexed by bank and 0,1, 2, 3 within bank.
[LOC]DQS[num]		DQS input Pads: T (Top), R (Right), B (Bottom), L (Left), DQS, num = Ball function number. Any pad can be configured to be DQS output.

© 2007 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

LFXP3 & LFXP6 Logic Signal Connections: 144 TQFP (Cont.)

Dia			LFXP3				LFXP6	
Number	Pin Function	Bank	Differential	Dual Function	Pin Function	Bank	Differential	Dual Function
47	PB11A	5	Т	DQS	PB14A	5	Т	DQS
48	PB11B	5	С	-	PB14B	5	С	-
49	VCCIO5	5	-	-	VCCIO5	5	-	-
50	PB12A	5	Т	-	PB15A	5	Т	-
51	PB12B	5	С	-	PB15B	5	С	-
52	PB13A	5	Т	-	PB16A	5	Т	-
53	PB13B	5	С	-	PB16B	5	С	-
54	GND	-	-	-	GND	-	-	-
55	PB14A	4	Т	-	PB17A	4	Т	-
56	GNDIO4	4	-	-	GNDIO4	4	-	-
57	PB14B	4	С	-	PB17B	4	С	-
58	PB15A	4	Т	PCLKT4_0	PB18A	4	Т	PCLKT4_0
59	PB15B	4	С	PCLKC4_0	PB18B	4	С	PCLKC4_0
60	PB16A	4	Т	-	PB19A	4	Т	-
61	VCCIO4	4	-	-	VCCIO4	4	-	-
62	PB16B	4	С	-	PB19B	4	С	-
63	PB19A	4	Т	DQS	PB22A	4	Т	DQS
64	GNDIO4	4	-	-	GNDIO4	4	-	-
65	PB19B	4	С	VREF1_4	PB22B	4	С	VREF1_4
66	PB20A	4	Т	-	PB23A	4	Т	-
67	PB20B	4	С	-	PB23B	4	С	-
68	VCCIO4	4	-	-	VCCIO4	4	-	-
69	PB22A	4	-	-	PB25A	4	-	-
70	PB24A	4	Т	VREF2_4	PB27A	4	Т	VREF2_4
71	PB24B	4	C	-	PB27B	4	С	-
72	PB25A	4	-	-	PB28A	4	-	-
73	VCC	-	-	-	VCC	-	-	-
74	PR18B	3	C ³	-	PR26B	3	C ³	-
75	GNDIO3	3	-	-	GNDIO3	3	-	-
76	PR18A	3	T ³	-	PR26A	3	T ³	-
77	PR17B	3	C	-	PR25B	3	С	-
78	PR17A	3	T	-	PR25A	3	T	-
79	PR16B	3	C ³	-	PR24B	3	C ³	-
80	PR16A	3	T٩	DQS	PR24A	3	T ³	DQS
81	PR15B	3	-	VREF1_3	PR23B	3	-	VREF1_3
82	PR14A	3	-	VREF2_3	PR22A	3	-	VREF2_3
83	PR13B	3	C T	-	PR21B	3	C ³	-
84	PR13A	3	l	-	PR21A	3	13	-
85	GND	-	-	-	GND	-	-	-
86	PR12A	3	-	-	PR20A	3	-	-
87	PR11B	3	C	-	PR19B	3	C³	-
88	VCCIO3	3	-	-	VCCIO3	3	-	-
89	PR11A	3	Т	-	PR19A	3	T ³	-
90	GNDP1	-	-	-	GNDP1	-	-	-
91	VCCP1	-	-	-	VCCP1	-	-	-
92	PR9B	2	С	PCLKC2_0	PR12B	2	С	PCLKC2_0

LFXP6 & LFXP10 Logic Signal Connections: 256 fpBGA

		LFXP6		LFXP10				
Ball	Ball			Dual	Ball			Dual
Number	Function	Bank	Differential	Function	Function	Bank	Differential	Function
C2	PROGRAMN	7	-	-	PROGRAMN	7	-	-
C1	CCLK	7	-	-	CCLK	7	-	-
-	GNDIO7	7	-	-	GNDIO7	7	-	-
D2	PL3A	7	Т	LUM0_PLLT_FB_A	PL3A	7	Т	LUM0_PLLT_FB_A
D3	PL3B	7	С	LUM0_PLLC_FB_A	PL3B	7	С	LUM0_PLLC_FB_A
D1	PL2A	7	T ³	-	PL5A	7	-	-
E2	PL5A	7	-	VREF1_7	PL6B	7	-	VREF1_7
-	GNDIO7	7	-	-	GNDIO7	7	-	-
E1	PL7A	7	Τ³	DQS	PL7A	7	T³	DQS
F1	PL7B	7	C ³	-	PL7B	7	C ³	-
E3	PL12A	7	Т	-	PL8A	7	Т	-
F4	PL12B	7	С	-	PL8B	7	С	-
F3	PL4A	7	T ³	-	PL9A	7	T ³	-
F2	PL4B	7	C ³	-	PL9B	7	C ³	-
-	GNDIO7	7	-	-	GNDIO7	7	-	-
G1	PL2B	7	C ³	-	PL11B	7	-	-
G3	PL8A	7	Т	LUM0_PLLT_IN_A	PL12A	7	Т	LUM0_PLLT_IN_A
G2	PL8B	7	С	LUM0_PLLC_IN_A	PL12B	7	С	LUM0_PLLC_IN_A
H1	PL9A	7	T ³	-	PL13A	7	T ³	-
H2	PL9B	7	C ³	-	PL13B	7	C ³	-
G4	PL6B	7	-	VREF2_7	PL14A	7	-	VREF2_7
G5	PL14A	7	-	-	PL15B	7	-	-
-	GNDIO7	7	-	-	GNDIO7	7	-	-
J1	PL11A	7	T ³	-	PL16A	7	T ³	DQS
J2	PL11B	7	C ³	-	PL16B	7	C ³	-
H3	PL13A	7	T³	-	PL18A	7	T³	-
J3	PL13B	7	C ³	-	PL18B	7	C ³	-
H4	VCCP0	-	-	-	VCCP0	-	-	-
H5	GNDP0	-	-	-	GNDP0	-	-	-
K1	PL17A	6	Т	PCLKT6_0	PL20A	6	Т	PCLKT6_0
K2	PL17B	6	С	PCLKC6_0	PL20B	6	С	PCLKC6_0
-	GNDIO6	6	-	-	GNDIO6	6	-	-
J4	PL15B	6	-	-	PL22A	6	-	-
J5	PL22A	6	-	VREF1 6	PL23B	6	-	VREF1 6
L1	PL16A	6	T ³	-	PL24A	6	T ³	DQS
L2	PL16B	6	C ³	-	PL24B	6	C ³	-
M1	PL18A	6	T ³	-	PL25A	6	Т	LLM0_PLLT IN A
M2	PL18B	6	C ³	-	PL25B	6	С	LLM0_PLLC IN A
K3	PL19A	6	T ³	-	PL26A	6	T ³	
-	GNDIO6	6	-	-	GNDIO6	6	-	-
L3	PL19B	6	C ³	-	PL26B	6	C ³	-
 L4	PL21A	6	 T ³	-	PL28A	6	-	-
	/.	,				,		

LFXP6 & LFXP10 Logic Signal Connections: 256 fpBGA (Cont.)

			LFXP6		LFXP10				
Ball Number	Ball Function	Bank	Differential	Dual Function	Ball Function	Bank	Differential	Dual Function	
R8	PB16A	5	Т	-	PB20A	5	Т	-	
Т9	PB16B	5	С	-	PB20B	5	С	-	
R9	PB17A	4	Т	-	PB21A	4	Т	-	
-	GNDIO4	4	-	-	GNDIO4	4	-	-	
P9	PB17B	4	С	-	PB21B	4	С	-	
T10	PB18A	4	Т	PCLKT4_0	PB22A	4	Т	PCLKT4_0	
T11	PB18B	4	С	PCLKC4_0	PB22B	4	С	PCLKC4_0	
R10	PB19A	4	Т	-	PB23A	4	Т	-	
P10	PB19B	4	С	-	PB23B	4	С	-	
N9	PB20A	4	-	-	PB24A	4	-	-	
M9	PB21B	4	-	-	PB25B	4	-	-	
R12	PB22A	4	Т	DQS	PB26A	4	Т	DQS	
-	GNDIO4	4	-	-	GNDIO4	4	-	-	
T12	PB22B	4	С	VREF1_4	PB26B	4	С	VREF1_4	
P13	PB23A	4	Т	-	PB27A	4	Т	-	
R13	PB23B	4	С	-	PB27B	4	С	-	
M11	PB24A	4	Т	-	PB28A	4	Т	-	
N11	PB24B	4	С	-	PB28B	4	С	-	
N10	PB25A	4	Т	-	PB29A	4	Т	-	
M10	PB25B	4	С	-	PB29B	4	С	-	
T13	PB26A	4	Т	-	PB30A	4	Т	-	
-	GNDIO4	4	-	-	GNDIO4	4	-	-	
P14	PB26B	4	С	-	PB30B	4	С	-	
R11	PB27A	4	Т	VREF2_4	PB31A	4	Т	VREF2_4	
P12	PB27B	4	С	-	PB31B	4	С	-	
T14	PB28A	4	-	-	PB32A	4	-	-	
R14	PB29B	4	-	-	PB33B	4	-	-	
P11	PB30A	4	Т	DQS	PB34A	4	Т	DQS	
N12	PB30B	4	С	-	PB34B	4	С	-	
T15	PB31A	4	Т	-	PB35A	4	Т	-	
-	GNDIO4	4	-	-	GNDIO4	4	-	-	
R15	PB31B	4	С	-	PB35B	4	С	-	
-	GNDIO3	3	-	-	GNDIO3	3	-	-	
P15	PR26B	3	C ³	-	PR34B	3	С	RLM0_PLLC_FB_A	
N15	PR26A	3	T ³	-	PR34A	3	Т	RLM0_PLLT_FB_A	
P16	PR24B	3	C³	-	PR33B	3	C ³	-	
R16	PR24A	3	T ³	DQS	PR33A	3	T ³	DQS	
M15	PR15B	3	-	-	PR32B	3	-	-	
N14	PR23B	3	-	VREF1_3	PR31A	3	-	VREF1_3	
-	GNDIO3	3	-	-	GNDIO3	3	-	-	
M14	PR25B	3	С	-	PR29B	3	С	-	
L13	PR25A	3	Т	-	PR29A	3	Т	-	

LFXP10, LFXP15 & LFXP20 Logic Signal Connections: 388 fpBGA (Cont.)

)	LFXP15				LFXP20					
Ball Number	Ball Function	Bank	Diff.	Dual Function	Ball Function	Bank	Diff.	Dual Function	Ball Function	Bank	Diff.	Dual Function
A7	PT13A	0	Т	DI	PT18A	0	Т	DI	PT22A	0	Т	DI
B7	PT12B	0	С	-	PT17B	0	С	-	PT21B	0	С	-
C6	PT12A	0	Т	CSN	PT17A	0	Т	CSN	PT21A	0	Т	CSN
C10	PT11B	0	С	-	PT16B	0	С	-	PT20B	0	С	-
C9	PT11A	0	Т	-	PT16A	0	Т	-	PT20A	0	Т	-
A6	PT10B	0	С	VREF2_0	PT15B	0	С	VREF2_0	PT19B	0	С	VREF2_0
B6	PT10A	0	Т	DQS	PT15A	0	Т	DQS	PT19A	0	Т	DQS
A5	PT9B	0	-	-	PT14B	0	-	-	PT18B	0	-	-
B5	PT8A	0	-	-	PT13A	0	-	-	PT17A	0	-	-
-	GNDIO0	0	-	-	GNDIO0	0	-	-	GNDIO0	0	-	-
C5	PT7B	0	С	-	PT12B	0	С	-	PT16B	0	С	-
A4	PT7A	0	Т	-	PT12A	0	Т	-	PT16A	0	Т	-
D9	PT6B	0	С	-	PT11B	0	С	-	PT15B	0	С	-
D8	PT6A	0	Т	-	PT11A	0	Т	-	PT15A	0	Т	-
B4	PT5B	0	С	-	PT10B	0	С	-	PT14B	0	С	-
A2	PT5A	0	Т	-	PT10A	0	Т	-	PT14A	0	Т	-
A3	PT4B	0	С	-	PT9B	0	С	-	PT13B	0	С	-
B3	PT4A	0	Т	-	PT9A	0	Т	-	PT13A	0	Т	-
C4	PT3B	0	С	-	PT8B	0	С	-	PT12B	0	С	-
C3	PT3A	0	Т	-	PT8A	0	Т	-	PT12A	0	Т	-
-	GNDIO0	0	-	-	GNDIO0	0	-	-	GNDIO0	0	-	-
C2	-	-	-	-	PT7B	0	С	-	PT11B	0	С	-
D3	PT2A	0	-	-	PT7A	0	Т	DQS	PT11A	0	Т	DQS
D7	-	-	-	-	PT6B	0	-	-	PT10B	0	-	-
D6	-	-	-	-	PT5A	0	-	-	PT9A	0	-	-
E4	-	-	-	-	PT4B	0	С	-	PT8B	0	С	-
D4	-	-	-	-	PT4A	0	Т	-	PT8A	0	Т	-
D5	-	-	-	-	PT3B	0	-	-	PT7B	0	-	-
-	GNDIO0	0	-	-	GNDIO0	0	-	-	GNDIO0	0	-	-
-	GNDIO0	0	-	-	GNDIO0	0	-	-	GNDIO0	0	-	-
C1	CFG0	0	-	-	CFG0	0	-	-	CFG0	0	-	-
B2	CFG1	0	-	-	CFG1	0	-	-	CFG1	0	-	-
B1	DONE	0	-	-	DONE	0	-	-	DONE	0	-	-
A1	GND	-	-	-	GND	-	-	-	GND	-	-	-
A22	GND	-	-	-	GND	-	-	-	GND	-	-	-
AB1	GND	-	-	-	GND	-	-	-	GND	-	-	-
AB22	GND	-	-	-	GND	-	-	-	GND	-	-	-
H10	GND	-	-	-	GND	-	-	-	GND	-	-	-
H11	GND	-	-	-	GND	-	-	-	GND	-	-	-
H12	GND	-	-	-	GND	-	-	-	GND	-	-	-
H13	GND	-	-	-	GND	-	-	-	GND	-	-	-
H14	GND	-	-	-	GND	-	-	-	GND	-	-	-
J10	GND	-	-	-	GND	-	-	-	GND	-	-	-
J11	GND	- 1	-	-	GND	-	-	-	GND	-	-	-
J12	GND	-	-	-	GND	-	-	-	GND	-	-	-
J13	GND	-	-	-	GND	-	-	-	GND	-	-	-
J14	GND	-	-	-	GND	-	-	-	GND	-	-	-
J9	GND	-	-	-	GND	-	-	-	GND	-	-	-
K10	GND	-	-	-	GND	-	-	-	GND	-	-	-
L		1	I	1			L			1	L	1

LFXP15 & LFXP20 Logic Signal Connections: 484 fpBGA (Cont.)

			LFXP15		LFXP20			
Ball Number	Ball Function	Bank	Differential	Dual Function	Ball Function	Bank	Differential	Dual Function
R18	PR38B	3	С	RLM0_PLLC_FB_A	PR42B	3	С	RLM0_PLLC_FB_A
R17	PR38A	3	Т	RLM0_PLLT_FB_A	PR42A	3	Т	RLM0_PLLT_FB_A
Y22	PR37B	3	C ³	-	PR41B	3	C ³	-
Y21	PR37A	3	T ³	DQS	PR41A	3	T ³	DQS
W22	PR36B	3	-	-	PR40B	3	-	-
W21	PR35A	3	-	VREF1_3	PR39A	3	-	VREF1_3
P17	PR34B	3	C ³	-	PR38B	3	C ³	-
P18	PR34A	3	T ³	-	PR38A	3	T ³	-
-	GNDIO3	3	-	-	GNDIO3	3	-	-
R19	PR33B	3	С	-	PR37B	3	С	-
R20	PR33A	3	Т	-	PR37A	3	Т	-
V22	PR32B	3	C ³	-	PR36B	3	C ³	-
V21	PR32A	3	T ³	-	PR36A	3	T ³	-
U22	PR30B	3	C ³	-	PR34B	3	C ³	-
U21	PR30A	3	T ³	-	PR34A	3	T ³	-
P19	PR29B	3	С	RLM0_PLLC_IN_A	PR33B	3	С	RLM0_PLLC_IN_A
P20	PR29A	3	Т	RLM0_PLLT_IN_A	PR33A	3	Т	RLM0_PLLT_IN_A
-	GNDIO3	3	-	-	GNDIO3	3	-	-
T22	PR28B	3	C ³	-	PR32B	3	C ³	-
T21	PR28A	3	T ³	DQS	PR32A	3	T ³	DQS
R22	PR27B	3	-	-	PR31B	3	-	-
R21	PR26A	3	-	VREF2_3	PR30A	3	-	VREF2_3
N19	PR25B	3	C ³	-	PR29B	3	C ³	-
N20	PR25A	3	T ³	-	PR29A	3	T ³	-
N18	PR24B	3	С	-	PR28B	3	С	-
M18	PR24A	3	Т	-	PR28A	3	Т	-
-	GNDIO3	3	-	-	GNDIO3	3	-	-
P22	PR23B	3	C ³	-	PR27B	3	C ³	-
P21	PR23A	3	T ³	-	PR27A	3	T ³	-
N22	-	-	-	-	PR26B	3	C ³	-
N21	-	-	-	-	PR26A	3	T ³	-
M19	-	-	-	-	PR25B	3	-	-
M20	GNDP1	-	-	-	GNDP1	-	-	-
L18	VCCP1	-	-	-	VCCP1	-	-	-
M21	-	-	-	-	PR24A	2	-	-
M22	PR22B	2	C ³	-	PR23B	2	C ³	-
L22	PR22A	2	T ³	-	PR23A	2	T ³	-
-	GNDIO2	2	-	-	GNDIO2	2	-	-
L19	-	-	-	-	PR22B	2	C ³	-
L20	-	-	-	-	PR22A	2	T ³	-
L21	PR21B	2	С	PCLKC2_0	PR21B	2	С	PCLKC2_0
K22	PR21A	2	Т	PCLKT2_0	PR21A	2	Т	PCLKT2_0

LFXP15 & LFXP20 Logic Signal Connections: 484 fpBGA (Cont.)

			LFXP15		LFXP20				
Ball Number	Ball Function	Bank	Differential	Dual Function	Ball Function	Bank	Differential	Dual Function	
J21	PR20B	2	C ³	-	PR20B	2	C ³	-	
J22	PR20A	2	T ³	DQS	PR20A	2	T ³	DQS	
K18	PR19B	2	-	-	PR19B	2	-	-	
K19	PR18A	2	-	VREF1_2	PR18A	2	-	VREF1_2	
-	GNDIO2	2	-	-	GNDIO2	2	-	-	
K21	PR17B	2	C ³	-	PR17B	2	C ³	-	
K20	PR17A	2	T ³	-	PR17A	2	T ³	-	
H21	PR16B	2	С	RUM0_PLLC_IN_A	PR16B	2	С	RUM0_PLLC_IN_A	
H22	PR16A	2	Т	RUM0_PLLT_IN_A	PR16A	2	Т	RUM0_PLLT_IN_A	
J20	PR15B	2	C ³	-	PR15B	2	C ³	-	
J19	PR15A	2	T ³	-	PR15A	2	T ³	-	
-	GNDIO2	2	-	-	GNDIO2	2	-	-	
J17	PR13B	2	C ³	-	PR13B	2	C ³	-	
J18	PR13A	2	T ³	-	PR13A	2	T ³	-	
G21	PR12B	2	С	-	PR12B	2	С	-	
G22	PR12A	2	Т	-	PR12A	2	Т	-	
F21	PR11B	2	C ³	-	PR11B	2	C ³	-	
F22	PR11A	2	T ³	DQS	PR11A	2	T ³	DQS	
-	GNDIO2	2	-	-	GNDIO2	2	-	-	
H20	PR10B	2	-	-	PR10B	2	-	-	
H19	PR9A	2	-	VREF2_2	PR9A	2	-	VREF2_2	
H17	PR8B	2	C ³	-	PR8B	2	C ³	-	
H18	PR8A	2	T ³	-	PR8A	2	T ³	-	
E21	PR7B	2	С	RUM0_PLLC_FB_A	PR7B	2	С	RUM0_PLLC_FB_A	
E22	PR7A	2	Т	RUM0_PLLT_FB_A	PR7A	2	Т	RUM0_PLLT_FB_A	
D21	PR6B	2	C ³	-	PR6B	2	C ³	-	
D22	PR6A	2	T ³	-	PR6A	2	T ³	-	
G20	PR5B	2	C ³	-	PR5B	2	C ³	-	
G19	PR5A	2	T ³	-	PR5A	2	T ³	-	
G17	PR4B	2	С	-	PR4B	2	С	-	
G18	PR4A	2	Т	-	PR4A	2	Т	-	
-	GNDIO2	2	-	-	GNDIO2	2	-	-	
F18	PR3B	2	C ³	-	PR3B	2	C ³	-	
F19	PR3A	2	T ³	-	PR3A	2	T ³	-	
C22	PR2B	2	-	-	PR2B	2	-	-	
F20	TDO	-	-	-	TDO	-	-	-	
E20	VCCJ	-	-	-	VCCJ	-	-	-	
D19	TDI	-	-	-	TDI	-	-	-	
E19	TMS	-	-	-	TMS	-	-	-	
D20	TCK	-	-	-	TCK	-	-	-	
C20	-	-	-	-	PT56A	1	-	-	
-	GNDIO1	1	-	-	GNDIO1	1	-	-	
L		1	1			1	1		

LFXP15 & LFXP20 Logic Signal Connections: 484 fpBGA (Cont.)

			LFXP15		LFXP20				
Ball Number	Ball Function	Bank	Differential	Dual Function	Ball Function	Bank	Differential	Dual Function	
H13	VCCIO1	1	-	-	VCCIO1	1	-	-	
K15	VCCIO2	2	-	-	VCCIO2	2	-	-	
L15	VCCIO2	2	-	-	VCCIO2	2	-	-	
L16	VCCIO2	2	-	-	VCCIO2	2	-	-	
L17	VCCIO2	2	-	-	VCCIO2	2	-	-	
M15	VCCIO3	3	-	-	VCCIO3	3	-	-	
M16	VCCIO3	3	-	-	VCCIO3	3	-	-	
M17	VCCIO3	3	-	-	VCCIO3	3	-	-	
N15	VCCIO3	3	-	-	VCCIO3	3	-	-	
R12	VCCIO4	4	-	-	VCCIO4	4	-	-	
R13	VCCIO4	4	-	-	VCCIO4	4	-	-	
T12	VCCIO4	4	-	-	VCCIO4	4	-	-	
U12	VCCIO4	4	-	-	VCCIO4	4	-	-	
R10	VCCIO5	5	-	-	VCCIO5	5	-	-	
R11	VCCIO5	5	-	-	VCCIO5	5	-	-	
T11	VCCIO5	5	-	-	VCCIO5	5	-	-	
U11	VCCIO5	5	-	-	VCCIO5	5	-	-	
M6	VCCIO6	6	-	-	VCCIO6	6	-	-	
M7	VCCIO6	6	-	-	VCCIO6	6	-	-	
M8	VCCIO6	6	-	-	VCCIO6	6	-	-	
N8	VCCIO6	6	-	-	VCCIO6	6	-	-	
K8	VCCIO7	7	-	-	VCCI07	7	-	-	
L6	VCCIO7	7	-	-	VCCI07	7	-	-	
L7	VCCIO7	7	-	-	VCCI07	7	-	-	
L8	VCCI07	7	-	-	VCCI07	7	-	-	

1. Applies to LFXP "C" only.

Applies to LFXP "E" only.
Supports dedicated LVDS outputs.

Date	Version	Section	Change Summary
September 2005 (cont.)	03.0 (cont.)	DC and Switching Characteristics (cont.)	Updated Typical Building Block Function Performance timing numbers.
			Updated External Switching Characteristics timing numbers.
			Updated Internal Timing Parameters.
			Updated LatticeXP Family timing adders.
			Updated LatticeXP "C" Sleep Mode timing numbers.
			Updated JTAG Port Timing numbers.
		Pinout Information	Added clarification to SLEEPN and TOE description.
			Clarification of dedicated LVDS outputs.
		Supplemental Information	Updated list of technical notes.
September 2005	03.1	Pinout Information	Power Supply and NC Connections table corrected VCCP1 pin number for 208 PQFP.
December 2005	04.0	Introduction	Moved data sheet from Advance to Final.
		Architecture	Added clarification to Typical I/O Behavior During Power-up section.
		DC and Switching Characteristics	Added clarification to Recommended Operating Conditions.
			Updated timing numbers.
		Pinout Information	Updated Signal Descriptions table.
			Added clarification to Differential I/O Per Bank.
			Updated Differential dedicated LVDS output support.
		Ordering Information	Added 208 PQFP lead-free package and ordering part numbers.
February 2006	04.1	Pinout Information	Corrected description of Signal Names VREF1(x) and VREF2(x).
March 2006	04.2	DC and Switching Characteristics	Corrected condition for IIL and IIH.
March 2006	04.3	DC and Switching Characteristics	Added clarification to Recommended Operating Conditions for VCCAUX.
April 2006	04.4	Pinout Information	Removed Bank designator "5" from SLEEPN/TOE ball function.
May 2006	04.5	DC and Switching Characteristics	Added footnote 2 regarding threshold level for PROGRAMN to sysCON- FIG Port Timing Specifications table.
June 2006	04.6	DC and Switching Characteristics	Corrected LVDS25E Output Termination Example.
August 2006	04.7	Architecture	Added clarification to Typical I/O Behavior During Power-Up section.
			Added clarification to Left and Right sysIO Buffer Pair section.
		DC and Switching Characteristics	Changes to LVDS25E Output Termination Example diagram.
December 2006	04.8	Architecture	EBR Asynchronous Reset section added.
February 2007	04.9	Architecture	Updated EBR Asynchronous Reset section.
July 2007	05.0	Introduction	Updated LatticeXP Family Selection Guide table.
		Architecture	Updated Typical I/O Behavior During Power-up text section.
		DC and Switching Characteristics	Updated sysIO Single-Ended DC Electrical Characteristics table. Split out LVCMOS 1.2 by supply voltage.
November 2007	05.1	DC and Switching Characteristics	Added JTAG Port Timing Waveforms diagram.
		Pinout Information	Added Thermal Management text section.
		Supplemental Information	Updated title list.