

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	-
Number of Logic Elements/Cells	20000
Total RAM Bits	405504
Number of I/O	340
Number of Gates	-
Voltage - Supply	1.71V ~ 3.465V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	484-BBGA
Supplier Device Package	484-FPBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lfxp20c-3fn484c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Slice

Each slice contains two LUT4 lookup tables feeding two registers (programmed to be in FF or Latch mode), and some associated logic that allows the LUTs to be combined to perform functions such as LUT5, LUT6, LUT7 and LUT8. There is control logic to perform set/reset functions (programmable as synchronous/asynchronous), clock select, chip-select and wider RAM/ROM functions. Figure 2-3 shows an overview of the internal logic of the slice. The registers in the slice can be configured for positive/negative and edge/level clocks.

There are 14 input signals: 13 signals from routing and one from the carry-chain (from adjacent slice or PFU). There are 7 outputs: 6 to routing and one to carry-chain (to adjacent PFU). Table 2-1 lists the signals associated with each slice.

Figure 2-3. Slice Diagram

Figure 2-17. PIC Diagram

In the LatticeXP family, seven PIOs or four (3.5) PICs are grouped together to provide two LVDS differential pairs, one PIC pair and one single I/O, as shown in Figure 2-18.

Two adjacent PIOs can be joined to provide a differential I/O pair (labeled as "T" and "C"). The PAD Labels "T" and "C" distinguish the two PIOs. Only the PIO pairs on the left and right edges of the device can be configured as LVDS transmit/receive pairs.

One of every 14 PIOs (a group of 8 PICs) contains a delay element to facilitate the generation of DQS signals as shown in Figure 2-19. The DQS signal feeds the DQS bus which spans the set of 13 PIOs (8 PICs). The DQS signal from the bus is used to strobe the DDR data from the memory into input register blocks. This interface is designed for memories that support one DQS strobe per eight bits of data.

The exact DQS pins are shown in a dual function in the Logic Signal Connections table in this data sheet. Additional detail is provided in the Signal Descriptions table in this data sheet.

Figure 2-22. INDDRXB Primitive

Output Register Block

The output register block provides the ability to register signals from the core of the device before they are passed to the sysIO buffers. The block contains a register for SDR operation that is combined with an additional latch for DDR operation. Figure 2-23 shows the diagram of the Output Register Block.

In SDR mode, ONEG0 feeds one of the flip-flops that then feeds the output. The flip-flop can be configured as a Dtype or as a latch. In DDR mode, ONEG0 is fed into one register on the positive edge of the clock and OPOS0 is latched. A multiplexer running off the same clock selects the correct register for feeding to the output (D0).

Figure 2-24 shows the design tool DDR primitives. The SDR output register has reset and clock enable available. The additional register for DDR operation does not have reset or clock enable available.

Figure 2-25. Tristate Register Block

*Latch is transparent when input is low.

Control Logic Block

The control logic block allows the selection and modification of control signals for use in the PIO block. A clock is selected from one of the clock signals provided from the general purpose routing and a DQS signal provided from the programmable DQS pin. The clock can optionally be inverted.

The clock enable and local reset signals are selected from the routing and optionally inverted. The global tristate signal is passed through this block.

DDR Memory Support

Implementing high performance DDR memory interfaces requires dedicated DDR register structures in the input (for read operations) and in the output (for write operations). As indicated in the PIO Logic section, the LatticeXP devices provide this capability. In addition to these registers, the LatticeXP devices contain two elements to simplify the design of input structures for read operations: the DQS delay block and polarity control logic.

DLL Calibrated DQS Delay Block

Source Synchronous interfaces generally require the input clock to be adjusted in order to correctly capture data at the input register. For most interfaces a PLL is used for this adjustment, however in DDR memories the clock (referred to as DQS) is not free running so this approach cannot be used. The DQS Delay block provides the required clock alignment for DDR memory interfaces.

The DQS signal (selected PIOs only) feeds from the PAD through a DQS delay element to a dedicated DQS routing resource. The DQS signal also feeds the polarity control logic which controls the polarity of the clock to the sync registers in the input register blocks. Figures 2-26 and 2-27 show how the polarity control logic are routed to the PIOs.

The temperature, voltage and process variations of the DQS delay block are compensated by a set of calibration (6-bit bus) signals from two DLLs on opposite sides of the device. Each DLL compensates DQS Delays in its half of the device as shown in Figure 2-27. The DLL loop is compensated for temperature, voltage and process variations by the system clock and feedback loop.

Polarity Control Logic

In a typical DDR Memory interface design, the phase relation between the incoming delayed DQS strobe and the internal system Clock (during the READ cycle) is unknown.

The LatticeXP family contains dedicated circuits to transfer data between these domains. To prevent setup and hold violations at the domain transfer between DQS (delayed) and the system Clock a clock polarity selector is used. This changes the edge on which the data is registered in the synchronizing registers in the input register block. This requires evaluation at the start of the each READ cycle for the correct clock polarity.

Prior to the READ operation in DDR memories DQS is in tristate (pulled by termination). The DDR memory device drives DQS low at the start of the preamble state. A dedicated circuit detects this transition. This signal is used to control the polarity of the clock to the synchronizing registers.

sysIO Buffer

Each I/O is associated with a flexible buffer referred to as a sysIO buffer. These buffers are arranged around the periphery of the device in eight groups referred to as Banks. The sysIO buffers allow users to implement the wide variety of standards that are found in today's systems including LVCMOS, SSTL, HSTL, LVDS and LVPECL.

sysIO Buffer Banks

LatticeXP devices have eight sysIO buffer banks; each is capable of supporting multiple I/O standards. Each sysIO bank has its own I/O supply voltage (V_{CCIO}), and two voltage references V_{REF1} and V_{REF2} resources allowing each bank to be completely independent from each other. Figure 2-28 shows the eight banks and their associated supplies.

In the LatticeXP devices, single-ended output buffers and ratioed input buffers (LVTTL, LVCMOS, PCI and PCI-X) are powered using V_{CCIO} . LVTTL, LVCMOS33, LVCMOS25 and LVCMOS12 can also be set as a fixed threshold input independent of V_{CCIO} . In addition to the bank V_{CCIO} supplies, the LatticeXP devices have a V_{CC} core logic power supply, and a V_{CCAUX} supply that power all differential and referenced buffers.

Each bank can support up to two separate VREF voltages, VREF1 and VREF2 that set the threshold for the referenced input buffers. In the LatticeXP devices, a dedicated pin in a bank can be configured to be a reference voltage supply pin. Each I/O is individually configurable based on the bank's supply and reference voltages.

Figure 2-28. LatticeXP Banks

Note: N and M are the maximum number of I/Os per bank.

LatticeXP devices contain two types of sysIO buffer pairs.

1. Top and Bottom sysIO Buffer Pair (Single-Ended Outputs Only)

The sysIO buffer pairs in the top and bottom banks of the device consist of two single-ended output drivers and two sets of single-ended input buffers (both ratioed and referenced). The referenced input buffer can also be configured as a differential input.

The two pads in the pair are described as "true" and "comp", where the true pad is associated with the positive side of the differential input buffer and the comp (complementary) pad is associated with the negative side of the differential input buffer.

Only the I/Os on the top and bottom banks have PCI clamps. Note that the PCI clamp is enabled after $V_{CC,}$ V_{CCAUX} and V_{CCIO} are at valid operating levels and the device has been configured.

2. Left and Right sysIO Buffer Pair (Differential and Single-Ended Outputs)

The sysIO buffer pairs in the left and right banks of the device consist of two single-ended output drivers, two sets of single-ended input buffers (both ratioed and referenced) and one differential output driver. The referenced input buffer can also be configured as a differential input. In these banks the two pads in the pair are described as "true" and "comp", where the true pad is associated with the positive side of the differential I/O, and the comp (complementary) pad is associated with the negative side of the differential I/O.

Select I/Os in the left and right banks have LVDS differential output drivers. Refer to the Logic Signal Connections tables for more information.

LatticeXP Family Data Sheet DC and Switching Characteristics

November 2007

Data Sheet DS1001

Absolute Maximum Ratings^{1, 2, 3, 4}

	XPE (1.2V)	XPC (1.8V/2.5V/3.3V)
Supply Voltage V _{CC}	0.5 to 1.32V	0.5 to 3.75V
Supply Voltage V _{CCP}	0.5 to 1.32V	0.5 to 3.75V
Supply Voltage V _{CCAUX}	0.5 to 3.75V	0.5 to 3.75V
Supply Voltage V _{CCJ}	0.5 to 3.75V	0.5 to 3.75V
Output Supply Voltage V _{CCIO}	0.5 to 3.75V	0.5 to 3.75V
I/O Tristate Voltage Applied ⁵	0.5 to 3.75V	0.5 to 3.75V
Dedicated Input Voltage Applied ⁵	0.5 to 3.75V	0.5 to 4.25V
Storage Temperature (Ambient)	65 to 150°C	65 to 150°C
Junction Temp. (Ti)	+125°C	+125°C

1. Stress above those listed under the "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation of the device at these or any other conditions outside of those indicated in the operational sections of this specification is not implied.

2. Compliance with the Lattice Thermal Management document is required.

3. All voltages referenced to GND.

4. All chip grounds are connected together to a common package GND plane.

5. Overshoot and undershoot of -2V to $(V_{IHMAX} + 2)$ volts is permitted for a duration of <20ns.

Recommended Operating Conditions³

Symbol	Parameter	Min.	Max.	Units
M.	Core Supply Voltage for 1.2V Devices	1.14	1.26	V
VCC	Core Supply Voltage for 1.8V/2.5V/3.3V Devices	1.71	3.465	V
V	Supply Voltage for PLL for 1.2V Devices	1.14	1.26	V
VCCP	Supply Voltage for PLL for 1.8V/2.5V/3.3V Devices	1.71	3.465	V
V _{CCAUX} ⁴	Auxiliary Supply Voltage	3.135	3.465	V
V _{CCIO} ^{1, 2}	I/O Driver Supply Voltage	1.14	3.465	V
V _{CCJ} ¹	Supply Voltage for IEEE 1149.1 Test Access Port	1.14	3.465	V
t _{JCOM}	Junction Temperature, Commercial Operation	0	85	С
t _{JIND}	Junction Temperature, Industrial Operation	-40	100	С
t _{JFLASHCOM}	Junction Temperature, Flash Programming, Commercial	0	85	С
t _{JFLASHIND}	Junction Temperature, Flash Programming, Industrial	0	85	С

If V_{CCIO} or V_{CCJ} is set to 3.3V, they must be connected to the same power supply as V_{CCAUX}. For the XPE devices (1.2V V_{CC}), if V_{CCIO} or V_{CCJ} is set to 1.2V, they must be connected to the same power supply as V_{CC}.

2. See recommended voltages by I/O standard in subsequent table.

3. The system designer must ensure that the FPGA design stays within the specified junction temperature and package thermal capabilities of the device based on the expected operating frequency, activity factor and environment conditions of the system.

4. V_{CCAUX} ramp rate must not exceed 30mV/µs during power up when transitioning between 0V and 3.3V.

^{© 2007} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

DC Electrical Characteristics

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
I., I., 1, 2, 4		$0 \le V_{IN} \le (V_{CCIO} - 0.2V)$	—	_	10	μΑ
'IL, 'IH	Input of I/O Leakage	$(V_{CCIO} - 0.2V) < V_{IN} \le 3.6V$	—	_	40	μΑ
I _{PU}	I/O Active Pull-up Current	$0 \leq V_{IN} \leq 0.7 \ V_{CCIO}$	-30	_	-150	μΑ
I _{PD}	I/O Active Pull-down Current	V_{IL} (MAX) $\leq V_{IN} \leq V_{IH}$ (MAX)	30	_	150	μΑ
I _{BHLS}	Bus Hold Low sustaining current	$V_{IN} = V_{IL}$ (MAX)	30	_	—	μΑ
I _{BHHS}	Bus Hold High sustaining current	$V_{IN} = 0.7 V_{CCIO}$	-30	_	—	μΑ
I _{BHLO}	Bus Hold Low Overdrive current	$0 \le V_{IN} \le V_{IH}$ (MAX)	—	_	150	μΑ
I _{BHHO}	Bus Hold High Overdrive current	$0 \le V_{IN} \le V_{IH}$ (MAX)	—	_	-150	μΑ
V _{BHT}	Bus Hold trip Points	$0 \le V_{IN} \le V_{IH}$ (MAX)	V_{IL} (MAX)	—	V_{IH} (MIN)	V
C1	I/O Capacitance ³		_	8	_	pf
C2	Dedicated Input Capacitance ³		_	8	_	pf

Over Recommended Operating Conditions

1. Input or I/O leakage current is measured with the pin configured as an input or as an I/O with the output driver tri-stated. It is not measured with the output driver active. Bus maintenance circuits are disabled.

2. Not applicable to SLEEPN/TOE pin.

3. T_A 25°C, f = 1.0MHz

4. When V_{IH} is higher than V_{CCIO}, a transient current typically of 30ns in duration or less with a peak current of 6mA can be expected on the high-to-low transition.

Supply Current (Sleep Mode)^{1, 2, 3}

Symbol	Symbol Parameter Device				
		LFXP3C	12	65	μΑ
		LFXP6C	14	75	μA
I _{CC}	Core Power Supply	LFXP10C	16	85	μΑ
		LFXP15C	18	95	μΑ
I _{CCP}		LFXP20C	20	105	μA
I _{CCP}	PLL Power Supply (per PLL)	All LFXP 'C' Devices	1	5	μΑ
		LFXP3C	2	90	μΑ
		LFXP6C	2	100	μA
ICCAUX	Auxiliary Power Supply	LFXP10C	2	110	μΑ
		LFXP15C	3	120	μΑ
I _{CCAUX}		LFXP20C	4	130	μA
		LFXP3C	2	20	μΑ
		LFXP6C	2	22	μΑ
I _{CCIO}	Bank Power Supply ⁵	LFXP10C	2	24	μA
		LFXP15C	3	27	μΑ
		LFXP20C	4	30	μΑ
I _{CCJ}	VCCJ Power Supply	All LFXP 'C' Devices	1	5	μΑ

1. Assumes all inputs are configured as LVCMOS and held at the VCCIO or GND.

2. Frequency 0MHz.

3. User pattern: blank.

4. $T_A=25^{\circ}C$, power supplies at nominal voltage.

5. Per bank.

LatticeXP Internal Timing Parameters¹

		-5		-4		-3		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
PFU/PFF Logic	Mode Timing							
t _{LUT4_PFU}	LUT4 Delay (A to D Inputs to F Output)	—	0.28		0.34		0.40	ns
t _{LUT6_PFU}	LUT6 Delay (A to D Inputs to OFX Output)		0.44		0.53		0.63	ns
t _{LSR_PFU}	Set/Reset to Output of PFU		0.90		1.08		1.29	ns
t _{SUM_PFU}	Clock to Mux (M0,M1) Input Setup Time	0.13		0.15		0.19	_	ns
t _{HM_PFU}	Clock to Mux (M0,M1) Input Hold Time	-0.04		-0.03	—	-0.03	_	ns
t _{SUD_PFU}	Clock to D Input Setup Time	0.13		0.16		0.19	_	ns
t _{HD_PFU}	Clock to D Input Hold Time	-0.03		-0.02	—	-0.02		ns
t _{CK2Q_PFU}	Clock to Q Delay, D-type Register Configuration		0.40		0.48		0.58	ns
t _{LE2Q_PFU}	Clock to Q Delay Latch Configuration		0.53		0.64		0.76	ns
t _{LD2Q_PFU}	D to Q Throughput Delay when Latch is Enabled	—	0.55		0.66		0.79	ns
PFU Dual Port M	Nemory Mode Timing							
t _{CORAM_PFU}	Clock to Output		0.40		0.48		0.58	ns
t _{SUDATA_PFU}	Data Setup Time	-0.18		-0.14	—	-0.11	_	ns
t _{HDATA_PFU}	Data Hold Time	0.28		0.34	—	0.40	_	ns
t _{SUADDR_PFU}	Address Setup Time	-0.46		-0.37	—	-0.30	_	ns
t _{HADDR_PFU}	Address Hold Time	0.71		0.85	—	1.02	_	ns
t _{SUWREN_PFU}	Write/Read Enable Setup Time	-0.22		-0.17	—	-0.14	_	ns
t _{HWREN_PFU}	Write/Read Enable Hold Time	0.33		0.40	—	0.48	_	ns
PIC Timing								
PIO Input/Outpu	It Buffer Timing							
t _{IN_PIO}	Input Buffer Delay		0.62		0.72		0.85	ns
t _{OUT_PIO}	Output Buffer Delay	—	2.12		2.54		3.05	ns
IOLOGIC Input/	Output Timing							
t _{SUI_PIO}	Input Register Setup Time (Data Before Clock)	1.35		1.83		2.37	_	ns
t _{HI_PIO}	Input Register Hold Time (Data After Clock)	0.05		0.05	—	0.05		ns
t _{COO_PIO}	Output Register Clock to Output Delay		0.36		0.44		0.52	ns
t _{SUCE_PIO}	Input Register Clock Enable Setup Time	-0.09	—	-0.07	—	-0.06	_	ns
t _{HCE_PIO}	Input Register Clock Enable Hold Time	0.13		0.16	—	0.19	_	ns
t _{SULSR_PIO}	Set/Reset Setup Time	0.19		0.23	—	0.28	_	ns
t _{HLSR_PIO}	Set/Reset Hold Time	-0.14	—	-0.11	—	-0.09	_	ns
EBR Timing								
t _{CO_EBR}	Clock to Output from Address or Data		4.01		4.81		5.78	ns
t _{COO_EBR}	Clock to Output from EBR Output Register		0.81		0.97		1.17	ns
t _{SUDATA_EBR}	Setup Data to EBR Memory	-0.26		-0.21	—	-0.17	_	ns
t _{HDATA_EBR}	Hold Data to EBR Memory	0.41		0.49	—	0.59	_	ns
t _{SUADDR_EBR}	Setup Address to EBR Memory	-0.26		-0.21	—	-0.17	_	ns
t _{HADDR_EBR}	Hold Address to EBR Memory	0.41	—	0.49	—	0.59	—	ns
t _{SUWREN_EBR}	Setup Write/Read Enable to EBR Memory	-0.17	—	-0.13	—	-0.11	—	ns
t _{HWREN_EBR}	Hold Write/Read Enable to EBR Memory	0.26	—	0.31	—	0.37	—	ns
t _{SUCE_EBR}	Clock Enable Setup Time to EBR Output Register	0.19	—	0.23	—	0.28	—	ns
t _{HCE EBR}	Clock Enable Hold Time to EBR Output Register	-0.13	—	-0.10	—	-0.08	—	ns

Over Recommended Operating Conditions

LatticeXP Internal Timing Parameters¹ (Continued)

Over Recommended Operating Conditions

		-	5	-	4	-		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{RSTO_EBR}	Reset To Output Delay Time from EBR Output Register	_	1.61	_	1.94	_	2.32	ns
PLL Parameters								
t _{RSTREC}	Reset Recovery to Rising Clock	1.00	_	1.00	-	1.00	—	ns
t _{RSTSU}	Reset Signal Setup Time	1.00	-	1.00	_	1.00	—	ns

1. Internal parameters are characterized but not tested on every device. Timing v.F0.11

LatticeXP Family Timing Adders¹ (Continued)

Over Recommended O	perating Conditions
--------------------	---------------------

Buffer Type	Description	-5	-4	-3	Units
HSTL15_I	HSTL_15 class I	0.2	0.2	0.2	ns
HSTL15_III	HSTL_15 class III	0.2	0.2	0.2	ns
HSTL15D_I	Differential HSTL 15 class I	0.2	0.2	0.2	ns
HSTL15D_III	Differential HSTL 15 class III	0.2	0.2	0.2	ns
SSTL33_I	SSTL_3 class I	0.1	0.1	0.1	ns
SSTL33_II	SSTL_3 class II	0.3	0.3	0.3	ns
SSTL33D_I	Differential SSTL_3 class I	0.1	0.1	0.1	ns
SSTL33D_II	Differential SSTL_3 class II	0.3	0.3	0.3	ns
SSTL25_I	SSTL_2 class I	-0.1	-0.1	-0.1	ns
SSTL25_II	SSTL_2 class II	0.3	0.3	0.3	ns
SSTL25D_I	Differential SSTL_2 class I	-0.1	-0.1	-0.1	ns
SSTL25D_II	Differential SSTL_2 class II	0.3	0.3	0.3	ns
SSTL18_I	SSTL_1.8 class I	0.1	0.1	0.1	ns
SSTL18D_I	Differential SSTL_1.8 class I	0.1	0.1	0.1	ns
LVTTL33_4mA	LVTTL 4mA drive	0.8	0.8	0.8	ns
LVTTL33_8mA	LVTTL 8mA drive	0.5	0.5	0.5	ns
LVTTL33_12mA	LVTTL 12mA drive	0.3	0.3	0.3	ns
LVTTL33_16mA	LVTTL 16mA drive	0.4	0.4	0.4	ns
LVTTL33_20mA	LVTTL 20mA drive	0.3	0.3	0.3	ns
LVCMOS33_2mA	LVCMOS 3.3 2mA drive	0.8	0.8	0.8	ns
LVCMOS33_4mA	LVCMOS 3.3 4mA drive	0.8	0.8	0.8	ns
LVCMOS33_8mA	LVCMOS 3.3 8mA drive	0.5	0.5	0.5	ns
LVCMOS33_12mA	LVCMOS 3.3 12mA drive	0.3	0.3	0.3	ns
LVCMOS33_16mA	LVCMOS 3.3 16mA drive	0.4	0.4	0.4	ns
LVCMOS33_20mA	LVCMOS 3.3 20mA drive	0.3	0.3	0.3	ns
LVCMOS25_2mA	LVCMOS 2.5 2mA drive	0.7	0.7	0.7	ns
LVCMOS25_4mA	LVCMOS 2.5 4mA drive	0.7	0.7	0.7	ns
LVCMOS25_8mA	LVCMOS 2.5 8mA drive	0.4	0.4	0.4	ns
LVCMOS25_12mA	LVCMOS 2.5 12mA drive	0.0	0.0	0.0	ns
LVCMOS25_16mA	LVCMOS 2.5 16mA drive	0.2	0.2	0.2	ns
LVCMOS25_20mA	LVCMOS 2.5 20mA drive	0.4	0.4	0.4	ns
LVCMOS18_2mA	LVCMOS 1.8 2mA drive	0.6	0.6	0.6	ns
LVCMOS18_4mA	LVCMOS 1.8 4mA drive	0.6	0.6	0.6	ns
LVCMOS18_8mA	LVCMOS 1.8 8mA drive	0.4	0.4	0.4	ns
LVCMOS18_12mA	LVCMOS 1.8 12mA drive	0.2	0.2	0.2	ns
LVCMOS18_16mA	LVCMOS 1.8 16mA drive	0.2	0.2	0.2	ns
LVCMOS15_2mA	LVCMOS 1.5 2mA drive	0.6	0.6	0.6	ns
LVCMOS15_4mA	LVCMOS 1.5 4mA drive	0.6	0.6	0.6	ns
LVCMOS15_8mA	LVCMOS 1.5 8mA drive	0.2	0.2	0.2	ns
LVCMOS12_2mA	LVCMOS 1.2 2mA drive	0.4	0.4	0.4	ns
LVCMOS12_6mA	LVCMOS 1.2 6mA drive	0.4	0.4	0.4	ns
PCI33	PCI33	0.3	0.3	0.3	ns

1. General timing numbers based on LVCMOS 2.5, 12mA.

Timing v.F0.11

Pin Information Summary¹ (Cont.)

		XF	210		XP15		XP20			
Pin Ty	pe	256 fpBGA	388 fpBGA	256 fpBGA	388 fpBGA	484 fpBGA	256 fpBGA	388 fpBGA	484 fpBGA	
Single Ended l	Jser I/O	188	244	188	268	300	188	268	340	
Differential Pai	r User I/O ²	76	104	76	112	128	76	112	144	
Configuration	Dedicated	11	11	11	11	11	11	11	11	
Configuration	Muxed	14	14	14	14	14	14	14	14	
TAP		5	5	5	5	5	5	5	5	
Dedicated (total without s	upplies)	6	6	6	6	6	6	6	6	
V _{CC}		8	14	8	14	28	8	14	28	
V _{CCAUX}		4	4	4	4	12	4	4	12	
V _{CCPLL}		2	2	2	2	2	2	2	2	
	Bank0	2	5	2	5	4	2	5	4	
	Bank1	2	5	2	5	4	2	5	4	
	Bank2	2	4	2	4	4	2	4	4	
V	Bank3	2	4	2	4	4	2	4	4	
V CCIO	Bank4	2	5	2	5	4	2	5	4	
	Bank5	2	5	2	5	4	2	5	4	
	Bank6	2	4	2	4	4	2	4	4	
	Bank7	2	4	2	4	4	2	4	4	
GND		24	50	24	50	56	24	50	56	
GND _{PLL}		2	2	2	2	2	2	2	2	
NC		0	24	0	0	40	0	0	0	
	Bank0	26/11	33/14	26/11	39/16	40/17	26/11	39/16	47/20	
	Bank1	26/11	33/14	26/11	39/16	40/17	26/11	39/16	47/20	
	Bank2	21/8	28/12	21/8	28/12	35/15	21/8	28/12	38/16	
Single Ended/	Bank3	21/8	28/12	21/8	28/12	35/15	21/8	28/12	38/16	
per Bank ²	Bank4	26/11	33/14	26/11	39/16	40/17	26/11	39/16	47/20	
	Bank5	26/11	33/14	26/11	39/16	40/17	26/11	39/16	47/20	
	Bank6	21/8	28/12	21/8	28/12	35/15	21/8	28/12	38/16	
	Bank7	21/8	28/12	21/8	28/12	35/15	21/8	28/12	38/16	
V _{CCJ}		1	1	1	1	1	1	1	1	

1. During configuration the user-programmable I/Os are tri-stated with an internal pull-up resistor enabled. If any pin is not used (or not bonded to a package pin), it is also tri-stated with an internal pull-up resistor enabled after configuration.

2. The differential I/O per bank includes both dedicated LVDS and emulated LVDS pin pairs. Please see the Logic Signal Connections table for more information.

LFXP3 & LFXP6 Logic Signal Connections: 144 TQFP

Pin			LFXP3		LFXP6			
Number	Pin Function	Bank	Differential	Dual Function	Pin Function	Bank	Differential	Dual Function
1	PROGRAMN	7	-	-	PROGRAMN	7	-	-
2	CCLK	7	-	-	CCLK	7	-	-
3	GND	-	-	-	GND	-	-	-
4	PL2A	7	T ³	-	PL2A	7	T ³	-
5	PL2B	7	C ³	-	PL2B	7	C ³	-
6	PL3A	7	Т	LUM0_PLLT_FB_A	PL3A	7	Т	LUM0_PLLT_FB_A
7	PL3B	7	С	LUM0_PLLC_FB_A	PL3B	7	C	LUM0_PLLC_FB_A
8	VCCIO7	7	-	-	VCCIO7	7	-	-
9	PL5A	7	-	VREF1_7	PL5A	7	-	VREF1_7
10	PL6B	7	-	VREF2_7	PL6B	7	-	VREF2_7
11	GNDIO7	7	-	-	GNDIO7	7	-	-
12	PL7A	7	T ³	DQS	PL7A	7	T ³	DQS
13	PL7B	7	C ³	-	PL7B	7	C ³	-
14	VCC	-	-	-	VCC	-	-	-
15	PL8A	7	Т	LUM0_PLLT_IN_A	PL8A	7	Т	LUM0_PLLT_IN_A
16	PL8B	7	С	LUM0_PLLC_IN_A	PL8B	7	C	LUM0_PLLC_IN_A
17	PL9A	7	T ³	-	PL9A	7	T ³	-
18	PL9B	7	C ³	-	PL9B	7	C ³	-
19	VCCP0	-	-	-	VCCP0	-	-	-
20	GNDP0	-	-	-	GNDP0	-	-	-
21	VCCIO6	6	-	-	VCCIO6	6	-	-
22	PL11A	6	T ³	-	PL16A	6	T ³	-
23	PL11B	6	C ³	-	PL16B	6	C ³	-
24	PL12A	6	Т	PCLKT6_0	PL17A	6	Т	PCLKT6_0
25	PL12B	6	C	PCLKC6_0	PL17B	6	C	PCLKC6_0
26	PL13A	6	T ³	-	PL18A	6	T ³	-
27	PL13B	6	C ³	-	PL18B	6	C ³	-
28	GNDIO6	6	-	-	GNDIO6	6	-	-
29	PL14A	6	-	VREF1_6	PL22A	6	-	VREF1_6
30	PL15B	6	-	VREF2_6	PL23B	6	-	VREF2_6
31	PL16A	6	T ³	DQS	PL24A	6	T°	DQS
32	PL16B	6	C³	-	PL24B	6	C³	-
33	PL17A	6	-	-	PL25A	6	-	-
34	PL18A	6	T ³	-	PL26A	6	T ³	-
35	PL18B	6	C ³	-	PL26B	6	C ³	-
36	VCCAUX	-	-	-	VCCAUX	-	-	-
37	SLEEPN ¹ /TOE ²	-	-	-	SLEEPN ¹ /TOE ²	-	-	-
38	INITN	5	-	-	INITN	5	-	-
39	VCC	-	-	-	VCC	-	-	-
40	PB2B	5	-	VREF1_5	PB5B	5	-	VREF1_5
41	PB5B	5	-	VREF2_5	PB8B	5	-	VREF2_5
42	PB7A	5	Т	-	PB10A	5	Т	-
43	PB7B	5	С	-	PB10B	5	C	-
44	GNDIO5	5	-	-	GNDIO5	5	-	-
45	PB9A	5	-	-	PB12A	5	-	-
46	PB10B	5	-	-	PB13B	5	-	-

LFXP3 & LFXP6 Logic Signal Connections: 208 PQFP (Cont.)

Din			LFXP3		LFXP6			
Number	Pin Function	Bank	Differential	Dual Function	Pin Function	Bank	Differential	Dual Function
139	PR7A	2	Т³	DQS	PR7A	2	T ³	DQS
140	VCCIO2	2	-	-	VCCIO2	2	-	-
141	PR6B	2	-	VREF1_2	PR6B	2	-	VREF1_2
142	PR5A	2	-	VREF2_2	PR5A	2	-	VREF2_2
143	GNDIO2	2	-	-	GNDIO2	2	-	-
144	PR4B	2	C ³	-	PR4B	2	C³	-
145	PR4A	2	T ³	-	PR4A	2	T ³	-
146	PR3B	2	С	RUM0_PLLC_FB_A	PR3B	2	С	RUM0_PLLC_FB_A
147	PR3A	2	Т	RUM0_PLLT_FB_A	PR3A	2	Т	RUM0_PLLT_FB_A
148	PR2B	2	C ³	-	PR2B	2	C ³	-
149	VCCIO2	2	-	-	VCCIO2	2	-	-
150	PR2A	2	T ³	-	PR2A	2	T ³	-
151	VCC	-	-	-	VCC	-	-	-
152	VCCAUX	-	-	-	VCCAUX	-	-	-
153	TDO	-	-	-	TDO	-	-	-
154	VCCJ	-	-	-	VCCJ	-	-	-
155	TDI	-	-	-	TDI	-	-	-
156	TMS	-	-	-	TMS	-	-	-
157	ТСК	-	-	-	TCK	-	-	-
158	VCC	-	-	-	VCC	-	-	-
159	PT25A	1	-	VREF1_1	PT28A	1	-	VREF1_1
160	PT24B	1	С	-	PT27B	1	С	-
161	PT24A	1	Т	-	PT27A	1	Т	-
162	PT23A	1	-	D0	PT26A	1	-	D0
163	GNDIO1	1	-	-	GNDIO1	1	-	-
164	PT22B	1	С	D1	PT25B	1	С	D1
165	PT22A	1	Т	VREF2_1	PT25A	1	Т	VREF2_1
166	PT21A	1	-	D2	PT24A	1	-	D2
167	VCCIO1	1	-	-	VCCIO1	1	-	-
168	PT20B	1	С	D3	PT23B	1	С	D3
169	PT20A	1	Т	-	PT23A	1	Т	-
170	PT19B	1	С	-	PT22B	1	С	-
171	PT19A	1	Т	DQS	PT22A	1	Т	DQS
172	GNDIO1	1	-	-	GNDIO1	1	-	-
173	PT18B	1	-	-	PT21B	1	-	-
174	PT17A	1	-	D4	PT20A	1	-	D4
175	PT16B	1	С	-	PT19B	1	С	-
176	PT16A	1	Т	D5	PT19A	1	Т	D5
177	VCCIO1	1	-	-	VCCIO1	1	-	-
178	PT15B	1	С	D6	PT18B	1	С	D6
179	PT15A	1	Т	-	PT18A	1	Т	-
180	PT14B	1	-	D7	PT17B	1	-	D7
181	GND	-	-	-	GND	-	-	-
182	VCC	-	-	-	VCC	-	-	-
183	PT13B	0	С	BUSY	PT16B	0	С	BUSY
184	GNDIO0	0	-	-	GNDIO0	0	-	-

LFXP6 & LFXP10 Logic Signal Connections: 256 fpBGA (Cont.)

			LFXP6		LFXP10				
Ball Number	Ball Function	Bank	Differential	Dual Function	Ball Function	Bank	Differential	Dual Function	
L15	PR21B	3	C ³	-	PR28B	3	C ³	-	
L14	PR21A	3	T ³	-	PR28A	3	T ³	-	
-	GNDIO3	3	-	-	GNDIO3	3	-	-	
L12	PR17B	3	С	-	PR26A	3	-	-	
M16	PR20B	3	С	-	PR25B	3	С	RLM0_PLLC_IN_A	
N16	PR20A	3	Т	-	PR25A	3	Т	RLM0_PLLT_IN_A	
K14	PR19B	3	C ³	-	PR24B	3	C ³	-	
K15	PR19A	3	T ³	-	PR24A	3	T ³	DQS	
K12	PR17A	3	Т	-	PR23B	3	-	-	
K13	PR22A	3	-	VREF2_3	PR22A	3	-	VREF2_3	
-	GNDIO3	3	-	-	GNDIO3	3	-	-	
L16	PR18B	3	C ³	-	PR21B	3	C ³	-	
K16	PR18A	3	T ³	-	PR21A	3	T ³	-	
J15	PR16B	3	C ³	-	PR19B	3	C ³	-	
J14	PR16A	3	T ³	-	PR19A	3	T ³	-	
J13	GNDP1	-	-	-	GNDP1	-	-	-	
J12	VCCP1	-	-	-	VCCP1	-	-	-	
-	GNDIO2	2	-	-	GNDIO2	2	-	-	
J16	PR12B	2	С	PCLKC2_0	PR17B	2	С	PCLKC2_0	
H16	PR12A	2	Т	PCLKT2_0	PR17A	2	Т	PCLKT2_0	
H13	PR13B	2	C ³	-	PR16B	2	C ³	-	
H12	PR13A	2	T ³	-	PR16A	2	T ³	DQS	
H15	PR2B	2	C ³	-	PR15B	2	-	-	
H14	PR6B	2	-	VREF1_2	PR14A	2	-	VREF1_2	
-	GNDIO2	2	-	-	GNDIO2	2	-	-	
G15	PR11B	2	C ³	-	PR13B	2	C ³	-	
G14	PR11A	2	T ³	-	PR13A	2	T ³	-	
G16	PR8B	2	С	RUM0_PLLC_IN_A	PR12B	2	С	RUM0_PLLC_IN_A	
F16	PR8A	2	Т	RUM0_PLLT_IN_A	PR12A	2	Т	RUM0_PLLT_IN_A	
G13	PR2A	2	T ³	-	PR11B	2	-	-	
-	GNDIO2	2	-	-	GNDIO2	2	-	-	
G12	PR9B	2	C ³	-	PR8B	2	С	-	
F13	PR9A	2	T ³	-	PR8A	2	Т	-	
B16	PR7B	2	C ³	-	PR7B	2	C ³	-	
C16	PR7A	2	T ³	DQS	PR7A	2	T ³	DQS	
F15	PR14A	2	-	-	PR6B	2	-	-	
E15	PR5A	2	-	VREF2_2	PR5A	2	-	VREF2_2	
-	GNDIO2	2	-	-	GNDIO2	2	-	-	
F14	PR4B	2	C ³	-	PR4B	2	C ³	-	
E14	PR4A	2	T ³	-	PR4A	2	T ³	-	
D15	PR3B	2	С	RUM0_PLLC_FB_A	PR3B	2	С	RUM0_PLLC_FB_A	
C15	PR3A	2	Т	RUM0_PLLT_FB_A	PR3A	2	Т	RUM0_PLLT_FB_A	

LFXP15 & LFXP20 Logic Signal Connections: 484 fpBGA (Cont.)

			LFXP15		LFXP20				
Ball Number	Ball Function	Bank	Differential	Dual Function	Ball Function	Bank	Differential	Dual Function	
R18	PR38B	3	С	RLM0_PLLC_FB_A	PR42B	3	С	RLM0_PLLC_FB_A	
R17	PR38A	3	Т	RLM0_PLLT_FB_A	PR42A	3	Т	RLM0_PLLT_FB_A	
Y22	PR37B	3	C ³	-	PR41B	3	C ³	-	
Y21	PR37A	3	T ³	DQS	PR41A	3	T ³	DQS	
W22	PR36B	3	-	-	PR40B	3	-	-	
W21	PR35A	3	-	VREF1_3	PR39A	3	-	VREF1_3	
P17	PR34B	3	C ³	-	PR38B	3	C ³	-	
P18	PR34A	3	T ³	-	PR38A	3	T ³	-	
-	GNDIO3	3	-	-	GNDIO3	3	-	-	
R19	PR33B	3	С	-	PR37B	3	С	-	
R20	PR33A	3	Т	-	PR37A	3	Т	-	
V22	PR32B	3	C ³	-	PR36B	3	C ³	-	
V21	PR32A	3	T ³	-	PR36A	3	T ³	-	
U22	PR30B	3	C ³	-	PR34B	3	C ³	-	
U21	PR30A	3	T ³	-	PR34A	3	T ³	-	
P19	PR29B	3	С	RLM0_PLLC_IN_A	PR33B	3	С	RLM0_PLLC_IN_A	
P20	PR29A	3	Т	RLM0_PLLT_IN_A	PR33A	3	Т	RLM0_PLLT_IN_A	
-	GNDIO3	3	-	-	GNDIO3	3	-	-	
T22	PR28B	3	C ³	-	PR32B	3	C ³	-	
T21	PR28A	3	T ³	DQS	PR32A	3	T ³	DQS	
R22	PR27B	3	-	-	PR31B	3	-	-	
R21	PR26A	3	-	VREF2_3	PR30A	3	-	VREF2_3	
N19	PR25B	3	C ³	-	PR29B	3	C ³	-	
N20	PR25A	3	T ³	-	PR29A	3	T ³	-	
N18	PR24B	3	С	-	PR28B	3	С	-	
M18	PR24A	3	Т	-	PR28A	3	Т	-	
-	GNDIO3	3	-	-	GNDIO3	3	-	-	
P22	PR23B	3	C ³	-	PR27B	3	C ³	-	
P21	PR23A	3	T ³	-	PR27A	3	T ³	-	
N22	-	-	-	-	PR26B	3	C ³	-	
N21	-	-	-	-	PR26A	3	T ³	-	
M19	-	-	-	-	PR25B	3	-	-	
M20	GNDP1	-	-	-	GNDP1	-	-	-	
L18	VCCP1	-	-	-	VCCP1	-	-	-	
M21	-	-	-	-	PR24A	2	-	-	
M22	PR22B	2	C ³	-	PR23B	2	C ³	-	
L22	PR22A	2	T ³	-	PR23A	2	T ³	-	
-	GNDIO2	2	-	-	GNDIO2	2	-	-	
L19	-	-	-	-	PR22B	2	C ³	-	
L20	-	-	-	-	PR22A	2	T ³	-	
L21	PR21B	2	С	PCLKC2_0	PR21B	2	С	PCLKC2_0	
K22	PR21A	2	Т	PCLKT2_0	PR21A	2	Т	PCLKT2_0	

LFXP15 & LFXP20 Logic Signal Connections: 484 fpBGA (Cont.)

			LFXP15		LFXP20				
Ball Number	Ball Function	Bank	Differential	Dual Function	Ball Function	Bank	Differential	Dual Function	
A14	PT30B	1	-	-	PT34B	1	-	-	
B14	PT29A	1	-	D4	PT33A	1	-	D4	
C12	PT28B	1	С	-	PT32B	1	С	-	
B12	PT28A	1	Т	D5	PT32A	1	Т	D5	
-	GNDIO1	1	-	-	GNDIO1	1	-	-	
D12	PT27B	1	С	D6	PT31B	1	С	D6	
E12	PT27A	1	Т	-	PT31A	1	Т	-	
A13	PT26B	1	С	D7	PT30B	1	С	D7	
A12	PT26A	1	Т	-	PT30A	1	Т	-	
A11	PT25B	0	С	BUSY	PT29B	0	С	BUSY	
-	GNDIO0	0	-	-	GNDIO0	0	-	-	
A10	PT25A	0	Т	CS1N	PT29A	0	Т	CS1N	
D11	PT24B	0	С	PCLKC0_0	PT28B	0	С	PCLKC0_0	
E11	PT24A	0	Т	PCLKT0_0	PT28A	0	Т	PCLKT0_0	
B11	PT23B	0	С	-	PT27B	0	С	-	
C11	PT23A	0	Т	DQS	PT27A	0	Т	DQS	
B9	PT22B	0	-	-	PT26B	0	-	-	
A9	PT21A	0	-	DOUT	PT25A	0	-	DOUT	
B8	PT20B	0	С	-	PT24B	0	С	-	
-	GNDIO0	0	-	-	GNDIO0	0	-	-	
A8	PT20A	0	Т	WRITEN	PT24A	0	Т	WRITEN	
E10	PT19B	0	С	-	PT23B	0	С	-	
D10	PT19A	0	Т	VREF1_0	PT23A	0	Т	VREF1_0	
C10	PT18B	0	С	-	PT22B	0	С	-	
B10	PT18A	0	Т	DI	PT22A	0	Т	DI	
B7	PT17B	0	С	-	PT21B	0	C	-	
A7	PT17A	0	Т	CSN	PT21A	0	Т	CSN	
C9	PT16B	0	С	-	PT20B	0	С	-	
D9	PT16A	0	Т	-	PT20A	0	Т	-	
B6	PT15B	0	С	VREF2_0	PT19B	0	C	VREF2_0	
A6	PT15A	0	Т	DQS	PT19A	0	Т	DQS	
F9	PT14B	0	-	-	PT18B	0	-	-	
E9	PT13A	0	-	-	PT17A	0	-	-	
-	GNDIO0	0	-	-	GNDIO0	0	-	-	
B5	PT12B	0	С	-	PT16B	0	С	-	
A5	PT12A	0	Т	-	PT16A	0	Т	-	
C8	PT11B	0	С	-	PT15B	0	С	-	
D8	PT11A	0	Т	-	PT15A	0	Т	-	
B4	PT10B	0	С	-	PT14B	0	С	-	
A4	PT10A	0	Т	-	PT14A	0	Т	-	
F8	PT9B	0	С	-	PT13B	0	С	-	
E8	PT9A	0	Т	-	PT13A	0	Т	-	

			•	,			
Part Number	l/Os	Voltage	Grade	Package	Pins	Temp.	LUTs
LFXP6E-3F256C	188	1.2V	-3	fpBGA	256	COM	5.8K
LFXP6E-4F256C	188	1.2V	-4	fpBGA	256	COM	5.8K
LFXP6E-5F256C	188	1.2V	-5	fpBGA	256	COM	5.8K
LFXP6E-3Q208C	142	1.2V	-3	PQFP	208	COM	5.8K
LFXP6E-4Q208C	142	1.2V	-4	PQFP	208	COM	5.8K
LFXP6E-5Q208C	142	1.2V	-5	PQFP	208	COM	5.8K
LFXP6E-3T144C	100	1.2V	-3	TQFP	144	COM	5.8K
LFXP6E-4T144C	100	1.2V	-4	TQFP	144	COM	5.8K
LFXP6E-5T144C	100	1.2V	-5	TQFP	144	COM	5.8K

Part Number	I/Os	Voltage	Grade	Package	Pins	Temp.	LUTs
LFXP10E-3F388C	244	1.2V	-3	fpBGA	388	COM	9.7K
LFXP10E-4F388C	244	1.2V	-4	fpBGA	388	COM	9.7K
LFXP10E-5F388C	244	1.2V	-5	fpBGA	388	COM	9.7K
LFXP10E-3F256C	188	1.2V	-3	fpBGA	256	COM	9.7K
LFXP10E-4F256C	188	1.2V	-4	fpBGA	256	COM	9.7K
LFXP10E-5F256C	188	1.2V	-5	fpBGA	256	COM	9.7K

Part Number	l/Os	Voltage	Grade	Package	Pins	Temp.	LUTs
LFXP15E-3F484C	300	1.2V	-3	fpBGA	484	COM	15.5K
LFXP15E-4F484C	300	1.2V	-4	fpBGA	484	COM	15.5K
LFXP15E-5F484C	300	1.2V	-5	fpBGA	484	COM	15.5K
LFXP15E-3F388C	268	1.2V	-3	fpBGA	388	COM	15.5K
LFXP15E-4F388C	268	1.2V	-4	fpBGA	388	COM	15.5K
LFXP15E-5F388C	268	1.2V	-5	fpBGA	388	COM	15.5K
LFXP15E-3F256C	188	1.2V	-3	fpBGA	256	COM	15.5K
LFXP15E-4F256C	188	1.2V	-4	fpBGA	256	COM	15.5K
LFXP15E-5F256C	188	1.2V	-5	fpBGA	256	COM	15.5K

Commercial (Cont.)

			-	-			
Part Number	I/Os	Voltage	Grade	Package	Pins	Temp.	LUTs
LFXP20E-3F484C	340	1.2V	-3	fpBGA	484	COM	19.7K
LFXP20E-4F484C	340	1.2V	-4	fpBGA	484	COM	19.7K
LFXP20E-5F484C	340	1.2V	-5	fpBGA	484	COM	19.7K
LFXP20E-3F388C	268	1.2V	-3	fpBGA	388	COM	19.7K
LFXP20E-4F388C	268	1.2V	-4	fpBGA	388	COM	19.7K
LFXP20E-5F388C	268	1.2V	-5	fpBGA	388	COM	19.7K
LFXP20E-3F256C	188	1.2V	-3	fpBGA	256	COM	19.7K
LFXP20E-4F256C	188	1.2V	-4	fpBGA	256	COM	19.7K
LFXP20E-5F256C	188	1.2V	-5	fpBGA	256	COM	19.7K

Commercial (Cont.)

Industrial

Part Number	l/Os	Voltage	Grade	Package	Pins	Temp.	LUTs
LFXP3C-3Q208I	136	1.8/2.5/3.3V	-3	PQFP	208	IND	3.1K
LFXP3C-4Q208I	136	1.8/2.5/3.3V	-4	PQFP	208	IND	3.1K
LFXP3C-3T144I	100	1.8/2.5/3.3V	-3	TQFP	144	IND	3.1K
LFXP3C-4T144I	100	1.8/2.5/3.3V	-4	TQFP	144	IND	3.1K
LFXP3C-3T100I	62	1.8/2.5/3.3V	-3	TQFP	100	IND	3.1K
LFXP3C-4T100I	62	1.8/2.5/3.3V	-4	TQFP	100	IND	3.1K

Part Number	l/Os	Voltage	Grade	Package	Pins	Temp.	LUTs
LFXP6C-3F256I	188	1.8/2.5/3.3V	-3	fpBGA	256	IND	5.8K
LFXP6C-4F256I	188	1.8/2.5/3.3V	-4	fpBGA	256	IND	5.8K
LFXP6C-3Q208I	142	1.8/2.5/3.3V	-3	PQFP	208	IND	5.8K
LFXP6C-4Q208I	142	1.8/2.5/3.3V	-4	PQFP	208	IND	5.8K
LFXP6C-3T144I	100	1.8/2.5/3.3V	-3	TQFP	144	IND	5.8K
LFXP6C-4T144I	100	1.8/2.5/3.3V	-4	TQFP	144	IND	5.8K

Part Number	l/Os	Voltage	Grade	Package	Pins	Temp.	LUTs
LFXP10C-3F388I	244	1.8/2.5/3.3V	-3	fpBGA	388	IND	9.7K
LFXP10C-4F388I	244	1.8/2.5/3.3V	-4	fpBGA	388	IND	9.7K
LFXP10C-3F256I	188	1.8/2.5/3.3V	-3	fpBGA	256	IND	9.7K
LFXP10C-4F256I	188	1.8/2.5/3.3V	-4	fpBGA	256	IND	9.7K

Date	Version	Section	Change Summary
September 2005 (cont.)	03.0 (cont.)	DC and Switching Characteristics (cont.)	Updated Typical Building Block Function Performance timing numbers.
			Updated External Switching Characteristics timing numbers.
			Updated Internal Timing Parameters.
			Updated LatticeXP Family timing adders.
			Updated LatticeXP "C" Sleep Mode timing numbers.
			Updated JTAG Port Timing numbers.
		Pinout Information	Added clarification to SLEEPN and TOE description.
			Clarification of dedicated LVDS outputs.
		Supplemental Information	Updated list of technical notes.
September 2005	03.1	Pinout Information	Power Supply and NC Connections table corrected VCCP1 pin number for 208 PQFP.
December 2005	04.0	Introduction	Moved data sheet from Advance to Final.
		Architecture	Added clarification to Typical I/O Behavior During Power-up section.
		DC and Switching Characteristics	Added clarification to Recommended Operating Conditions.
			Updated timing numbers.
		Pinout Information	Updated Signal Descriptions table.
			Added clarification to Differential I/O Per Bank.
			Updated Differential dedicated LVDS output support.
		Ordering Information	Added 208 PQFP lead-free package and ordering part numbers.
February 2006	04.1	Pinout Information	Corrected description of Signal Names VREF1(x) and VREF2(x).
March 2006	04.2	DC and Switching Characteristics	Corrected condition for IIL and IIH.
March 2006	04.3	DC and Switching Characteristics	Added clarification to Recommended Operating Conditions for VCCAUX.
April 2006	04.4	Pinout Information	Removed Bank designator "5" from SLEEPN/TOE ball function.
May 2006	04.5	DC and Switching Characteristics	Added footnote 2 regarding threshold level for PROGRAMN to sysCON- FIG Port Timing Specifications table.
June 2006	04.6	DC and Switching Characteristics	Corrected LVDS25E Output Termination Example.
August 2006	04.7	Architecture	Added clarification to Typical I/O Behavior During Power-Up section.
			Added clarification to Left and Right sysIO Buffer Pair section.
		DC and Switching Characteristics	Changes to LVDS25E Output Termination Example diagram.
December 2006	04.8	Architecture	EBR Asynchronous Reset section added.
February 2007	04.9	Architecture	Updated EBR Asynchronous Reset section.
July 2007	05.0	Introduction	Updated LatticeXP Family Selection Guide table.
		Architecture	Updated Typical I/O Behavior During Power-up text section.
		DC and Switching Characteristics	Updated sysIO Single-Ended DC Electrical Characteristics table. Split out LVCMOS 1.2 by supply voltage.
November 2007	05.1	DC and Switching Characteristics	Added JTAG Port Timing Waveforms diagram.
		Pinout Information	Added Thermal Management text section.
		Supplemental Information	Updated title list.