

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	-
Number of Logic Elements/Cells	20000
Total RAM Bits	405504
Number of I/O	188
Number of Gates	-
Voltage - Supply	1.71V ~ 3.465V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	256-BGA
Supplier Device Package	256-FPBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lfxp20c-4f256c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

LatticeXP Family Data Sheet Architecture

July 2007

Data Sheet DS1001

Architecture Overview

The LatticeXP architecture contains an array of logic blocks surrounded by Programmable I/O Cells (PIC). Interspersed between the rows of logic blocks are rows of sysMEM Embedded Block RAM (EBR) as shown in Figure 2-1.

On the left and right sides of the PFU array, there are Non-volatile Memory Blocks. In configuration mode this nonvolatile memory is programmed via the IEEE 1149.1 TAP port or the sysCONFIG[™] peripheral port. On power up, the configuration data is transferred from the Non-volatile Memory Blocks to the configuration SRAM. With this technology, expensive external configuration memories are not required and designs are secured from unauthorized read-back. This transfer of data from non-volatile memory to configuration SRAM via wide busses happens in microseconds, providing an "instant-on" capability that allows easy interfacing in many applications.

There are two kinds of logic blocks, the Programmable Functional Unit (PFU) and Programmable Functional unit without RAM/ROM (PFF). The PFU contains the building blocks for logic, arithmetic, RAM, ROM and register functions. The PFF block contains building blocks for logic, arithmetic and ROM functions. Both PFU and PFF blocks are optimized for flexibility, allowing complex designs to be implemented quickly and efficiently. Logic Blocks are arranged in a two-dimensional array. Only one type of block is used per row. The PFU blocks are used on the outside rows. The rest of the core consists of rows of PFF blocks interspersed with rows of PFU blocks. For every three rows of PFF blocks there is a row of PFU blocks.

Each PIC block encompasses two PIOs (PIO pairs) with their respective sysIO interfaces. PIO pairs on the left and right edges of the device can be configured as LVDS transmit/receive pairs. sysMEM EBRs are large dedicated fast memory blocks. They can be configured as RAM or ROM.

The PFU, PFF, PIC and EBR Blocks are arranged in a two-dimensional grid with rows and columns as shown in Figure 2-1. The blocks are connected with many vertical and horizontal routing channel resources. The place and route software tool automatically allocates these routing resources.

At the end of the rows containing the sysMEM Blocks are the sysCLOCK Phase Locked Loop (PLL) Blocks. These PLLs have multiply, divide and phase shifting capability; they are used to manage the phase relationship of the clocks. The LatticeXP architecture provides up to four PLLs per device.

Every device in the family has a JTAG Port with internal Logic Analyzer (ispTRACY) capability. The sysCONFIG port which allows for serial or parallel device configuration. The LatticeXP devices are available for operation from 3.3V, 2.5V, 1.8V and 1.2V power supplies, providing easy integration into the overall system.

^{© 2007} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Figure 2-1. LatticeXP Top Level Block Diagram

PFU and PFF Blocks

The core of the LatticeXP devices consists of PFU and PFF blocks. The PFUs can be programmed to perform Logic, Arithmetic, Distributed RAM and Distributed ROM functions. PFF blocks can be programmed to perform Logic, Arithmetic and ROM functions. Except where necessary, the remainder of the data sheet will use the term PFU to refer to both PFU and PFF blocks.

Each PFU block consists of four interconnected slices, numbered 0-3 as shown in Figure 2-2. All the interconnections to and from PFU blocks are from routing. There are 53 inputs and 25 outputs associated with each PFU block.

Figure 2-2. PFU Diagram

Lattice Semiconductor

Figure 2-8. Per Quadrant Secondary Clock Selection

Figure 2-9. Slice Clock Selection

sysCLOCK Phase Locked Loops (PLLs)

The PLL clock input, from pin or routing, feeds into an input clock divider. There are three sources of feedback signals to the feedback divider: from CLKOP (PLL internal), from clock net (CLKOP or CLKOS) or from a user clock (PIN or logic). There is a PLL_LOCK signal to indicate that VCO has locked on to the input clock signal. Figure 2-10 shows the sysCLOCK PLL diagram.

The setup and hold times of the device can be improved by programming a delay in the feedback or input path of the PLL which will advance or delay the output clock with reference to the input clock. This delay can be either programmed during configuration or can be adjusted dynamically. In dynamic mode, the PLL may lose lock after adjustment and not relock until the t_{LOCK} parameter has been satisfied. Additionally, the phase and duty cycle block allows the user to adjust the phase and duty cycle of the CLKOS output.

The sysCLOCK PLLs provide the ability to synthesize clock frequencies. Each PLL has four dividers associated with it: input clock divider, feedback divider, post scalar divider and secondary clock divider. The input clock divider is used to divide the input clock signal, while the feedback divider is used to multiply the input clock signal. The post scalar divider allows the VCO to operate at higher frequencies than the clock output, thereby increasing the frequency range. The secondary divider is used to derive lower frequency outputs.

Figure 2-10. PLL Diagram

Figure 2-11 shows the available macros for the PLL. Table 2-11 provides signal description of the PLL Block.

Figure 2-11. PLL Primitive

Table 2-5.	PLL	Signal	Descri	ptions
------------	-----	--------	--------	--------

Signal	I/O	Description
CLKI	I	Clock input from external pin or routing
CLKFB	I	PLL feedback input from CLKOP (PLL internal), from clock net (CLKOP) or from a user clock (PIN or logic)
RST	I	"1" to reset input clock divider
CLKOS	0	PLL output clock to clock tree (phase shifted/duty cycle changed)
CLKOP	0	PLL output clock to clock tree (No phase shift)
CLKOK	0	PLL output to clock tree through secondary clock divider
LOCK	0	"1" indicates PLL LOCK to CLKI
DDAMODE	I	Dynamic Delay Enable. "1" Pin control (dynamic), "0": Fuse Control (static)
DDAIZR	I	Dynamic Delay Zero. "1": delay = 0, "0": delay = on
DDAILAG	I	Dynamic Delay Lag/Lead. "1": Lag, "0": Lead
DDAIDEL[2:0]	I	Dynamic Delay Input
DDAOZR	0	Dynamic Delay Zero Output
DDAOLAG	0	Dynamic Delay Lag/Lead Output
DDAODEL[2:0]	0	Dynamic Delay Output

Table 2-6. sysMEM Block Configurations

Memory Mode	Configurations
Single Port	8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9 512 x 18 256 x 36
True Dual Port	8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9 512 x 18
Pseudo Dual Port	8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9 512 x 18 256 x 36

Bus Size Matching

All of the multi-port memory modes support different widths on each of the ports. The RAM bits are mapped LSB word 0 to MSB word 0, LSB word 1 to MSB word 1 and so on. Although the word size and number of words for each port varies, this mapping scheme applies to each port.

RAM Initialization and ROM Operation

If desired, the contents of the RAM can be pre-loaded during device configuration. By preloading the RAM block during the chip configuration cycle and disabling the write controls, the sysMEM block can also be utilized as a ROM.

Memory Cascading

Larger and deeper blocks of RAMs can be created using EBR sysMEM Blocks. Typically, the Lattice design tools cascade memory transparently, based on specific design inputs.

Single, Dual and Pseudo-Dual Port Modes

Figure 2-14 shows the four basic memory configurations and their input/output names. In all the sysMEM RAM modes the input data and address for the ports are registered at the input of the memory array. The output data of the memory is optionally registered at the output.

Figure 2-15. Memory Core Reset

For further information on sysMEM EBR block, see the details of additional technical documentation at the end of this data sheet.

EBR Asynchronous Reset

EBR asynchronous reset or GSR (if used) can only be applied if all clock enables are low for a clock cycle before the reset is applied and released a clock cycle after the reset is released, as shown in Figure 2-16. The GSR input to the EBR is always asynchronous.

Figure 2-16. EBR Asynchronous Reset (Including GSR) Timing Diagram

Reset	
Clock	
Clock Enable	

If all clock enables remain enabled, the EBR asynchronous reset or GSR may only be applied and released after the EBR read and write clock inputs are in a steady state condition for a minimum of $1/f_{MAX}$ (EBR clock). The reset release must adhere to the EBR synchronous reset setup time before the next active read or write clock edge.

If an EBR is pre-loaded during configuration, the GSR input must be disabled or the release of the GSR during device Wake Up must occur before the release of the device I/Os becoming active.

These instructions apply to all EBR RAM and ROM implementations.

Note that there are no reset restrictions if the EBR synchronous reset is used and the EBR GSR input is disabled.

Programmable I/O Cells (PICs)

Each PIC contains two PIOs connected to their respective sysIO Buffers which are then connected to the PADs as shown in Figure 2-17. The PIO Block supplies the output data (DO) and the Tri-state control signal (TO) to sysIO buffer, and receives input from the buffer.

Figure 2-17. PIC Diagram

In the LatticeXP family, seven PIOs or four (3.5) PICs are grouped together to provide two LVDS differential pairs, one PIC pair and one single I/O, as shown in Figure 2-18.

Two adjacent PIOs can be joined to provide a differential I/O pair (labeled as "T" and "C"). The PAD Labels "T" and "C" distinguish the two PIOs. Only the PIO pairs on the left and right edges of the device can be configured as LVDS transmit/receive pairs.

One of every 14 PIOs (a group of 8 PICs) contains a delay element to facilitate the generation of DQS signals as shown in Figure 2-19. The DQS signal feeds the DQS bus which spans the set of 13 PIOs (8 PICs). The DQS signal from the bus is used to strobe the DDR data from the memory into input register blocks. This interface is designed for memories that support one DQS strobe per eight bits of data.

The exact DQS pins are shown in a dual function in the Logic Signal Connections table in this data sheet. Additional detail is provided in the Signal Descriptions table in this data sheet.

Figure 2-18. Group of Seven PIOs

One PIO Pair

Figure 2-19. DQS Routing

	PIO A PIO B	← PADA "T" LVDS Pair PADB "C"
 	PIO A	PADA "T"
├ ──	PIO B	← PADB "C"
┣	PIO A	PADA "T"
 	PIO B	← PADB "C"
┣───	PIO A	← PADA "T"
†	PIO B	← PADB "C"
	PIO A	SysIO Buffer Delay PADA "T" LVDS Pair
	PIO B	► PADB "C"
┣	PIO A	← PADA "T"
┣	PIO B	PADB "C"
-		
	PIO A	PADA "T"

ΡΙΟ

The PIO contains four blocks: an input register block, output register block, tristate register block and a control logic block. These blocks contain registers for both single data rate (SDR) and double data rate (DDR) operation along with the necessary clock and selection logic. Programmable delay lines used to shift incoming clock and data signals are also included in these blocks.

Input Register Block

The input register block contains delay elements and registers that can be used to condition signals before they are passed to the device core. Figure 2-20 shows the diagram of the input register block.

Input signals are fed from the sysIO buffer to the input register block (as signal DI). If desired the input signal can bypass the register and delay elements and be used directly as a combinatorial signal (INDD), a clock (INCK) and

Figure 2-23. Output Register Block

*Latch is transparent when input is low.

Figure 2-24. ODDRXB Primitive

Tristate Register Block

The tristate register block provides the ability to register tri-state control signals from the core of the device before they are passed to the sysIO buffers. The block contains a register for SDR operation and an additional latch for DDR operation. Figure 2-25 shows the diagram of the Tristate Register Block.

In SDR mode, ONEG1 feeds one of the flip-flops that then feeds the output. The flip-flop can be configured a Dtype or latch. In DDR mode, ONEG1 is fed into one register on the positive edge of the clock and OPOS1 is latched. A multiplexer running off the same clock selects the correct register for feeding to the output (D0).

Typical I/O Behavior During Power-up

The internal power-on-reset (POR) signal is deactivated when V_{CC} and V_{CCAUX} have reached satisfactory levels. After the POR signal is deactivated, the FPGA core logic becomes active. It is the user's responsibility to ensure that all other V_{CCIO} banks are active with valid input logic levels to properly control the output logic states of all the I/O banks that are critical to the application. The default configuration of the I/O pins in a blank device is tri-state with a weak pull-up to VCCIO. The I/O pins will not take on the user configuration until VCC, VCCAUX and VCCIO have reached satisfactory levels at which time the I/Os will take on the user-configured settings.

The V_{CC} and V_{CCAUX} supply the power to the FPGA core fabric, whereas the V_{CCIO} supplies power to the I/O buffers. In order to simplify system design while providing consistent and predictable I/O behavior, it is recommended that the I/O buffers be powered-up prior to the FPGA core fabric. V_{CCIO} supplies should be powered up before or together with the V_{CC} and V_{CCAUX} supplies.

Supported Standards

The LatticeXP sysIO buffer supports both single-ended and differential standards. Single-ended standards can be further subdivided into LVCMOS, LVTTL and other standards. The buffers support the LVTTL, LVCMOS 1.2, 1.5, 1.8, 2.5 and 3.3V standards. In the LVCMOS and LVTTL modes, the buffer has individually configurable options for drive strength, bus maintenance (weak pull-up, weak pull-down, or a bus-keeper latch) and open drain. Other single-ended standards supported include SSTL and HSTL. Differential standards supported include LVDS, BLVDS, LVPECL, differential SSTL and differential HSTL. Tables 2-7 and 2-8 show the I/O standards (together with their supply and reference voltages) supported by the LatticeXP devices. For further information on utilizing the sysIO buffer to support a variety of standards please see the details of additional technical documentation at the end of this data sheet.

Input Standard	V _{REF} (Nom.)	V _{CCIO} ¹ (Nom.)					
Single Ended Interfaces							
LVTTL		—					
LVCMOS33 ²		—					
LVCMOS25 ²	_	—					
LVCMOS18	_	1.8					
LVCMOS15	—	1.5					
LVCMOS12 ²	—	—					
PCI	_	3.3					
HSTL18 Class I, II	0.9	—					
HSTL18 Class III	1.08	—					
HSTL15 Class I	0.75	—					
HSTL15 Class III	0.9	—					
SSTL3 Class I, II	1.5	—					
SSTL2 Class I, II	1.25	—					
SSTL18 Class I	0.9	—					
Differential Interfaces							
Differential SSTL18 Class I		—					
Differential SSTL2 Class I, II		—					
Differential SSTL3 Class I, II	—	—					
Differential HSTL15 Class I, III		_					
Differential HSTL18 Class I, II, III		_					
LVDS, LVPECL	_	—					
BLVDS		—					

Table 2-7. Supported Input Standards

1. When not specified $V_{\mbox{CCIO}}$ can be set anywhere in the valid operating range.

2. JTAG inputs do not have a fixed threshold option and always follow $V_{\mbox{CCJ.}}$

Figure 2-29 provides a pictorial representation of the different programming ports and modes available in the LatticeXP devices.

On power-up, the FPGA SRAM is ready to be configured with the sysCONFIG port active. The IEEE 1149.1 serial mode can be activated any time after power-up by sending the appropriate command through the TAP port.

Leave Alone I/O

When using 1532 mode for non-volatile memory programming, users may specify I/Os as high, low, tristated or held at current value. This provides excellent flexibility for implementing systems where reprogramming occurs on-the-fly.

TransFR (Transparent Field Reconfiguration)

TransFR (TFR) is a unique Lattice technology that allows users to update their logic in the field without interrupting system operation using a single ispVM command. See Lattice technical note #TN1087, *Minimizing System Interruption During Configuration Using TransFR Technology*, for details.

Security

The LatticeXP devices contain security bits that, when set, prevent the readback of the SRAM configuration and non-volatile memory spaces. Once set, the only way to clear security bits is to erase the memory space.

For more information on device configuration, please see details of additional technical documentation at the end of this data sheet.

Figure 2-29. ispXP Block Diagram

Internal Logic Analyzer Capability (ispTRACY)

All LatticeXP devices support an internal logic analyzer diagnostic feature. The diagnostic features provide capabilities similar to an external logic analyzer, such as programmable event and trigger condition and deep trace memory. This feature is enabled by Lattice's ispTRACY. The ispTRACY utility is added into the user design at compile time.

For more information on ispTRACY, please see information regarding additional technical documentation at the end of this data sheet.

Oscillator

Every LatticeXP device has an internal CMOS oscillator which is used to derive a master serial clock for configuration. The oscillator and the master serial clock run continuously in the configuration mode. The default value of the

Differential HSTL and SSTL

Differential HSTL and SSTL outputs are implemented as a pair of complementary single-ended outputs. All allowable single-ended output classes (class I and class II) are supported in this mode.

LVDS25E

The top and bottom side of LatticeXP devices support LVDS outputs via emulated complementary LVCMOS outputs in conjunction with a parallel resistor across the driver outputs. The scheme shown in Figure 3-1 is one possible solution for point-to-point signals.

Figure 3-1. LVDS25E Output Termination Example

Table 3-1. LVDS25E DC Conditions

Parameter	Description	Typical	Units
V _{OH}	Output high voltage	1.43	V
V _{OL}	Output low voltage	1.07	V
V _{OD}	Output differential voltage	0.35	V
V _{CM}	Output common mode voltage	1.25	V
Z _{BACK}	Back impedance	100	ohms
I _{DC}	DC output current	3.66	mA

BLVDS

The LatticeXP devices support BLVDS standard. This standard is emulated using complementary LVCMOS outputs in conjunction with a parallel external resistor across the driver outputs. BLVDS is intended for use when multidrop and bi-directional multi-point differential signaling is required. The scheme shown in Figure 3-2 is one possible solution for bi-directional multi-point differential signals.

Figure 3-10. Read Before Write (SP Read/Write on Port A, Input Registers Only)

Note: Input data and address are registered at the positive edge of the clock and output data appears after the positive of the clock.

Figure 3-11. Write Through (SP Read/Write On Port A, Input Registers Only)

Note: Input data and address are registered at the positive edge of the clock and output data appears after the positive of the clock.

LFXP3 Logic Signal Connections: 100 TQFP (Cont.)

Pin Number	Pin Function	Bank	Differential	Dual Function
44	GNDIO4	4	-	-
45	PB15A	4	Т	PCLKT4_0
46	PB15B	4	С	PCLKC4_0
47	VCCIO4	4	-	-
48	PB19A	4	Т	DQS
49	PB19B	4	С	VREF1_4
50	PB24A	4	-	VREF2_4
51	PR18B	3	C ³	-
52	GNDIO3	3	-	-
53	PR18A	3	T ³	-
54	PR15B	3	-	VREF1_3
55	PR14A	3	-	VREF2_3
56	PR13B	3	С	-
57	PR13A	3	Т	-
58	VCCIO3	3	-	-
59	GNDP1	-	-	-
60	VCCP1	-	-	-
61	PR9B	2	С	PCLKC2_0
62	PR9A	2	Т	PCLKT2_0
63	PR8B	2	С	RUM0_PLLC_IN_A
64	PR8A	2	Т	RUM0_PLLT_IN_A
65	VCCIO2	2	-	-
66	PR6B	2	-	VREF1_2
67	PR5A	2	-	VREF2_2
68	GNDIO2	2	-	-
69	PR3B	2	С	RUM0_PLLC_FB_A
70	PR3A	2	Т	RUM0_PLLT_FB_A
71	VCCAUX	-	-	-
72	TDO	-	-	-
73	VCCJ	-	-	-
74	TDI	-	-	-
75	TMS	-	-	-
76	TCK	-	-	-
77	VCC	-	-	-
78	PT24A	1	-	-
79	PT23A	1	-	D0
80	PT22B	1	-	D1
81	PT21A	1	-	D2
82	VCCIO1	1	-	-
83	PT20B	1	-	D3
84	GNDIO1	1	-	-
85	PT17A	1	-	D4
86	PT16A	1	-	D5
87	PT15B	1	-	D6

LFXP3 & LFXP6 Logic Signal Connections: 144 TQFP

Pin	LFXP3		LFXP6					
Number	Pin Function	Bank	Differential	Dual Function	Pin Function	Bank	Differential	Dual Function
1	PROGRAMN	7	-	-	PROGRAMN	7	-	-
2	CCLK	7	-	-	CCLK	7	-	-
3	GND	-	-	-	GND	-	-	-
4	PL2A	7	T ³	-	PL2A	7	T ³	-
5	PL2B	7	C ³	-	PL2B	7	C ³	-
6	PL3A	7	Т	LUM0_PLLT_FB_A	PL3A	7	Т	LUM0_PLLT_FB_A
7	PL3B	7	С	LUM0_PLLC_FB_A	PL3B	7	C	LUM0_PLLC_FB_A
8	VCCIO7	7	-	-	VCCIO7	7	-	-
9	PL5A	7	-	VREF1_7	PL5A	7	-	VREF1_7
10	PL6B	7	-	VREF2_7	PL6B	7	-	VREF2_7
11	GNDIO7	7	-	-	GNDIO7	7	-	-
12	PL7A	7	T ³	DQS	PL7A	7	T ³	DQS
13	PL7B	7	C ³	-	PL7B	7	C ³	-
14	VCC	-	-	-	VCC	-	-	-
15	PL8A	7	Т	LUM0_PLLT_IN_A	PL8A	7	Т	LUM0_PLLT_IN_A
16	PL8B	7	С	LUM0_PLLC_IN_A	PL8B	7	C	LUM0_PLLC_IN_A
17	PL9A	7	T ³	-	PL9A	7	T ³	-
18	PL9B	7	C ³	-	PL9B	7	C ³	-
19	VCCP0	-	-	-	VCCP0	-	-	-
20	GNDP0	-	-	-	GNDP0	-	-	-
21	VCCIO6	6	-	-	VCCIO6	6	-	-
22	PL11A	6	T ³	-	PL16A	6	T ³	-
23	PL11B	6	C ³	-	PL16B	6	C ³	-
24	PL12A	6	Т	PCLKT6_0	PL17A	6	Т	PCLKT6_0
25	PL12B	6	C	PCLKC6_0	PL17B	6	C	PCLKC6_0
26	PL13A	6	T ³	-	PL18A	6	T ³	-
27	PL13B	6	C ³	-	PL18B	6	C ³	-
28	GNDIO6	6	-	-	GNDIO6	6	-	-
29	PL14A	6	-	VREF1_6	PL22A	6	-	VREF1_6
30	PL15B	6	-	VREF2_6	PL23B	6	-	VREF2_6
31	PL16A	6	T ³	DQS	PL24A	6	T°	DQS
32	PL16B	6	C³	-	PL24B	6	C³	-
33	PL17A	6	-	-	PL25A	6	-	-
34	PL18A	6	T ³	-	PL26A	6	T ³	-
35	PL18B	6	C ³	-	PL26B	6	C ³	-
36	VCCAUX	-	-	-	VCCAUX	-	-	-
37	SLEEPN ¹ /TOE ²	-	-	-	SLEEPN ¹ /TOE ²	-	-	-
38	INITN	5	-	-	INITN	5	-	-
39	VCC	-	-	-	VCC	-	-	-
40	PB2B	5	-	VREF1_5	PB5B	5	-	VREF1_5
41	PB5B	5	-	VREF2_5	PB8B	5	-	VREF2_5
42	PB7A	5	Т	-	PB10A	5	Т	-
43	PB7B	5	С	-	PB10B	5	C	-
44	GNDIO5	5	-	-	GNDIO5	5	-	-
45	PB9A	5	-	-	PB12A	5	-	-
46	PB10B	5	-	-	PB13B	5	-	-

LFXP3 & LFXP6 Logic Signal Connections: 144 TQFP (Cont.)

Din	LFXP3			LFXP6				
Number	Pin Function	Bank	Differential	Dual Function	Pin Function	Bank	Differential	Dual Function
93	PR9A	2	Т	PCLKT2_0	PR12A	2	Т	PCLKT2_0
94	PR8B	2	С	RUM0_PLLC_IN_A	PR8B	2	С	RUM0_PLLC_IN_A
95	PR8A	2	Т	RUM0_PLLT_IN_A	PR8A	2	Т	RUM0_PLLT_IN_A
96	PR7B	2	C ³	-	PR7B	2	C ³	-
97	PR7A	2	T ³	DQS	PR7A	2	T ³	DQS
98	VCCIO2	2	-	-	VCCIO2	2	-	-
99	PR6B	2	-	VREF1_2	PR6B	2	-	VREF1_2
100	PR5A	2	-	VREF2_2	PR5A	2	-	VREF2_2
101	GNDIO2	2	-	-	GNDIO2	2	-	-
102	PR3B	2	С	RUM0_PLLC_FB_A	PR3B	2	С	RUM0_PLLC_FB_A
103	PR3A	2	Т	RUM0_PLLT_FB_A	PR3A	2	Т	RUM0_PLLT_FB_A
104	PR2B	2	C ³	-	PR2B	2	C ³	-
105	PR2A	2	T ³	-	PR2A	2	T ³	-
106	VCCAUX	-	-	-	VCCAUX	-	-	-
107	TDO	-	-	-	TDO	-	-	-
108	VCCJ	-	-	-	VCCJ	-	-	-
109	TDI	-	-	-	TDI	-	-	-
110	TMS	-	-	-	TMS	-	-	-
111	ТСК	-	-	-	TCK	-	-	-
112	VCC	-	-	-	VCC	-	-	-
113	PT25A	1	-	VREF1_1	PT28A	1	-	VREF1_1
114	PT24A	1	-	-	PT27A	1	-	-
115	PT23A	1	-	D0	PT26A	1	-	D0
116	PT22B	1	С	D1	PT25B	1	С	D1
117	PT22A	1	Т	VREF2_1	PT25A	1	Т	VREF2_1
118	PT21A	1	-	D2	PT24A	1	-	D2
119	VCCIO1	1	-	-	VCCI01	1	-	-
120	PT20B	1	-	D3	PT23B	1	-	D3
121	GNDIO1	1	-	-	GNDIO1	1	-	-
122	PT17A	1	-	D4	PT20A	1	-	D4
123	PT16A	1	-	D5	PT19A	1	-	D5
124	PT15B	1	С	D6	PT18B	1	С	D6
125	PT15A	1	Т	-	PT18A	1	Т	-
126	PT14B	1	-	D7	PT17B	1	-	D7
127	GND	-	-	-	GND	-	-	-
128	PT13B	0	С	BUSY	PT16B	0	С	BUSY
129	PT13A	0	Т	CS1N	PT16A	0	Т	CS1N
130	PT12B	0	С	PCLKC0_0	PT15B	0	С	PCLKC0_0
131	PT12A	0	Т	PCLKT0_0	PT15A	0	Т	PCLKT0_0
132	PT11B	0	С	-	PT14B	0	С	-
133	VCCIO0	0	-	-	VCCIO0	0	-	-
134	PT11A	0	Т	DQS	PT14A	0	Т	DQS
135	PT9A	0	-	DOUT	PT12A	0	-	DOUT
136	GNDIO0	0	-	-	GNDIO0	0	-	-
137	PT8A	0	-	WRITEN	PT11A	0	-	WRITEN
138	PT7A	0	-	VREF1_0	PT10A	0	-	VREF1_0

LFXP10, LFXP15 & LFXP20 Logic Signal Connections: 388 fpBGA (Cont.)

)	LFXP15				LFXP20					
Ball Number	Ball Function	Bank	Diff.	Dual Function	Ball Function	Bank	Diff.	Dual Function	Ball Function	Bank	Diff.	Dual Function
K11	GND	-	-	-	GND	-	-	-	GND	-	-	-
K12	GND	-	-	-	GND	-	-	-	GND	-	-	-
K13	GND	-	-	-	GND	-	-	-	GND	-	-	-
K14	GND	-	-	-	GND	-	-	-	GND	-	-	-
K9	GND	-	-	-	GND	-	-	-	GND	-	-	-
L10	GND	-	-	-	GND	-	-	-	GND	-	-	-
L11	GND	-	-	-	GND	-	-	-	GND	-	-	-
L12	GND	-	-	-	GND	-	-	-	GND	-	-	-
L13	GND	-	-	-	GND	-	-	-	GND	-	-	-
L14	GND	-	-	-	GND	-	-	-	GND	-	-	-
L9	GND	-	-	-	GND	-	-	-	GND	-	-	-
M10	GND	-	-	-	GND	-	-	-	GND	-	-	-
M11	GND	-	-	-	GND	-	-	-	GND	-	-	-
M12	GND	-	-	-	GND	-	-	-	GND	-	-	-
M13	GND	-	-	-	GND	-	-	-	GND	-	-	-
M14	GND	-	-	-	GND	-	-	-	GND	-	-	-
M9	GND	-	-	-	GND	-	-	-	GND	-	-	-
N10	GND	-	-	-	GND	-	-	-	GND	-	-	-
N11	GND	-	-	-	GND	-	-	-	GND	-	-	-
N12	GND	-	-	-	GND	-	-	-	GND	-	-	-
N13	GND	-	-	-	GND	-	-	-	GND	-	-	-
N14	GND	-	-	-	GND	-	-	-	GND	-	-	-
N9	GND	-	-	-	GND	-	-	-	GND	-	-	-
P10	GND	-	-	-	GND	-	-	-	GND	-	-	-
P11	GND	-	-	-	GND	-	-	-	GND	-	-	-
P12	GND	-	-	-	GND	-	-	-	GND	-	-	-
P13	GND	-	-	-	GND	-	-	-	GND	-	-	-
P14	GND	-	-	-	GND	-	-	-	GND	-	-	-
P9	GND	-	-	-	GND	-	-	-	GND	-	-	-
R10	GND	-	-	-	GND	-	-	-	GND	-	-	-
R11	GND	-	-	-	GND	-	-	-	GND	-	-	-
R12	GND	-	-	-	GND	-	-	-	GND	-	-	-
R13	GND	-	-	-	GND	-	-	-	GND	-	-	-
R14	GND	-	-	-	GND	-	-	-	GND	-	-	-
H9	VCC	-	-	-	VCC	-	-	-	VCC	-	-	-
J15	VCC	-	-	-	VCC	-	-	-	VCC	-	-	-
J8	VCC	-	-	-	VCC	-	-	-	VCC	-	-	-
K15	VCC	-	-	-	VCC	-	-	-	VCC	-	-	-
K8	VCC	-	-	-	VCC	-	-	-	VCC	-	-	-
L15	VCC	-	-	-	VCC	-	-	-	VCC	-	-	-
L8	VCC	-	-	-	VCC	-	-	-	VCC	-	-	-
M15	VCC	-	-	-	VCC	-	-	-	VCC	-	-	-
M8	VCC	-	-	-	VCC	-	-	-	VCC	-	-	-
N15	VCC	-	-	-	VCC	-	-	-	VCC	-	-	-
N8	VCC	-	-	-	VCC	-	-	-	VCC	-	-	-
P15	VCC	-	-	-	VCC	-	-	-	VCC	-	-	-
P8	VCC	-	-	-	VCC	-	-	-	VCC	-	-	-
R9	VCC	-	-	-	VCC	-	-	-	VCC	-	-	-
G16	VCCAUX	-	-	-	VCCAUX	-	-	-	VCCAUX	-	-	-
L		۱		1		t						

LFXP15 & LFXP20 Logic Signal Connections: 484 fpBGA (Cont.)

			LFXP15		LFXP20				
Ball Number	Ball Function	Bank	Differential	Dual Function	Ball Function	Bank	Differential	Dual Function	
A14	PT30B	1	-	-	PT34B	1	-	-	
B14	PT29A	1	-	D4	PT33A	1	-	D4	
C12	PT28B	1	С	-	PT32B	1	С	-	
B12	PT28A	1	Т	D5	PT32A	1	Т	D5	
-	GNDIO1	1	-	-	GNDIO1	1	-	-	
D12	PT27B	1	С	D6	PT31B	1	С	D6	
E12	PT27A	1	Т	-	PT31A	1	Т	-	
A13	PT26B	1	С	D7	PT30B	1	С	D7	
A12	PT26A	1	Т	-	PT30A	1	Т	-	
A11	PT25B	0	С	BUSY	PT29B	0	С	BUSY	
-	GNDIO0	0	-	-	GNDIO0	0	-	-	
A10	PT25A	0	Т	CS1N	PT29A	0	Т	CS1N	
D11	PT24B	0	С	PCLKC0_0	PT28B	0	С	PCLKC0_0	
E11	PT24A	0	Т	PCLKT0_0	PT28A	0	Т	PCLKT0_0	
B11	PT23B	0	С	-	PT27B	0	С	-	
C11	PT23A	0	Т	DQS	PT27A	0	Т	DQS	
B9	PT22B	0	-	-	PT26B	0	-	-	
A9	PT21A	0	-	DOUT	PT25A	0	-	DOUT	
B8	PT20B	0	С	-	PT24B	0	С	-	
-	GNDIO0	0	-	-	GNDIO0	0	-	-	
A8	PT20A	0	Т	WRITEN	PT24A	0	Т	WRITEN	
E10	PT19B	0	С	-	PT23B	0	С	-	
D10	PT19A	0	Т	VREF1_0	PT23A	0	Т	VREF1_0	
C10	PT18B	0	С	-	PT22B	0	С	-	
B10	PT18A	0	Т	DI	PT22A	0	Т	DI	
B7	PT17B	0	С	-	PT21B	0	C	-	
A7	PT17A	0	Т	CSN	PT21A	0	Т	CSN	
C9	PT16B	0	С	-	PT20B	0	С	-	
D9	PT16A	0	Т	-	PT20A	0	Т	-	
B6	PT15B	0	С	VREF2_0	PT19B	0	C	VREF2_0	
A6	PT15A	0	Т	DQS	PT19A	0	Т	DQS	
F9	PT14B	0	-	-	PT18B	0	-	-	
E9	PT13A	0	-	-	PT17A	0	-	-	
-	GNDIO0	0	-	-	GNDIO0	0	-	-	
B5	PT12B	0	С	-	PT16B	0	С	-	
A5	PT12A	0	Т	-	PT16A	0	Т	-	
C8	PT11B	0	С	-	PT15B	0	С	-	
D8	PT11A	0	Т	-	PT15A	0	Т	-	
B4	PT10B	0	С	-	PT14B	0	С	-	
A4	PT10A	0	Т	-	PT14A	0	Т	-	
F8	PT9B	0	С	-	PT13B	0	С	-	
E8	PT9A	0	Т	-	PT13A	0	Т	-	

LFXP15 & LFXP20 Logic Signal Connections: 484 fpBGA (Cont.)

			LFXP15		LFXP20				
Ball Number	Ball Function	Bank	Differential	Dual Function	Ball Function	Bank	Differential	Dual Function	
B3	PT8B	0	С	-	PT12B	0	С	-	
A3	PT8A	0	Т	-	PT12A	0	Т	-	
-	GNDIO0	0	-	-	GNDIO0	0	-	-	
D7	PT7B	0	С	-	PT11B	0	С	-	
C7	PT7A	0	Т	DQS	PT11A	0	Т	DQS	
B2	PT6B	0	-	-	PT10B	0	-	-	
C2	PT5A	0	-	-	PT9A	0	-	-	
C3	PT4B	0	С	-	PT8B	0	С	-	
D3	PT4A	0	Т	-	PT8A	0	Т	-	
F7	PT3B	0	С	-	PT7B	0	С	-	
E7	PT3A	0	Т	-	PT7A	0	Т	-	
-	GNDIO0	0	-	-	GNDIO0	0	-	-	
C6	-	-	-	-	PT6B	0	С	-	
D6	-	-	-	-	PT6A	0	Т	-	
C5	-	-	-	-	PT5B	0	С	-	
C4	-	-	-	-	PT5A	0	Т	-	
F6	-	-	-	-	PT4B	0	С	-	
E6	-	-	-	-	PT4A	0	Т	-	
-	GNDIO0	0	-	-	GNDIO0	0	-	-	
E4	-	-	-	-	PT3B	0	-	-	
E5	CFG0	0	-	-	CFG0	0	-	-	
D4	CFG1	0	-	-	CFG1	0	-	-	
D5	DONE	0	-	-	DONE	0	-	-	
A1	GND	-	-	-	GND	-	-	-	
A2	GND	-	-	-	GND	-	-	-	
A21	GND	-	-	-	GND	-	-	-	
A22	GND	-	-	-	GND	-	-	-	
AA1	GND	-	-	-	GND	-	-	-	
AA22	GND	-	-	-	GND	-	-	-	
AB1	GND	-	-	-	GND	-	-	-	
AB2	GND	-	-	-	GND	-	-	-	
AB21	GND	-	-	-	GND	-	-	-	
AB22	GND	-	-	-	GND	-	-	-	
B1	GND	-	-	-	GND	-	-	-	
B22	GND	-	-	-	GND	-	-	-	
H14	GND	-	-	-	GND	-	-	-	
H9	GND	-	-	-	GND	-	-	-	
J10	GND	-	-	-	GND	-	-	-	
J11	GND	-	-	-	GND	-	-	-	
J12	GND	-	-	-	GND	-	-	-	
J13	GND	-	-	-	GND	-	-	-	
J14	GND	-	-	-	GND	-	-	-	

LFXP15 & LFXP20 Logic Signal Connections: 484 fpBGA (Cont.)

		LFXP15		LFXP20				
Ball Number	Ball Function	Bank	Differential	Dual Function	Ball Function	Bank	Differential	Dual Function
H13	VCCIO1	1	-	-	VCCIO1	1	-	-
K15	VCCIO2	2	-	-	VCCIO2	2	-	-
L15	VCCIO2	2	-	-	VCCIO2	2	-	-
L16	VCCIO2	2	-	-	VCCIO2	2	-	-
L17	VCCIO2	2	-	-	VCCIO2	2	-	-
M15	VCCIO3	3	-	-	VCCIO3	3	-	-
M16	VCCIO3	3	-	-	VCCIO3	3	-	-
M17	VCCIO3	3	-	-	VCCIO3	3	-	-
N15	VCCIO3	3	-	-	VCCIO3	3	-	-
R12	VCCIO4	4	-	-	VCCIO4	4	-	-
R13	VCCIO4	4	-	-	VCCIO4	4	-	-
T12	VCCIO4	4	-	-	VCCIO4	4	-	-
U12	VCCIO4	4	-	-	VCCIO4	4	-	-
R10	VCCIO5	5	-	-	VCCIO5	5	-	-
R11	VCCIO5	5	-	-	VCCIO5	5	-	-
T11	VCCIO5	5	-	-	VCCIO5	5	-	-
U11	VCCIO5	5	-	-	VCCIO5	5	-	-
M6	VCCIO6	6	-	-	VCCIO6	6	-	-
M7	VCCIO6	6	-	-	VCCIO6	6	-	-
M8	VCCIO6	6	-	-	VCCIO6	6	-	-
N8	VCCIO6	6	-	-	VCCIO6	6	-	-
K8	VCCIO7	7	-	-	VCCI07	7	-	-
L6	VCCIO7	7	-	-	VCCIO7	7	-	-
L7	VCCIO7	7	-	-	VCCI07	7	-	-
L8	VCCIO7	7	-	-	VCCIO7	7	-	-

1. Applies to LFXP "C" only.

Applies to LFXP "E" only.
Supports dedicated LVDS outputs.