

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	-
Number of Logic Elements/Cells	20000
Total RAM Bits	405504
Number of I/O	340
Number of Gates	-
Voltage - Supply	1.71V ~ 3.465V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	484-BBGA
Supplier Device Package	484-FPBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lfxp20c-5fn484c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Introduction

The LatticeXP family of FPGA devices combine logic gates, embedded memory and high performance I/Os in a single architecture that is both non-volatile and infinitely reconfigurable to support cost-effective system designs.

The re-programmable non-volatile technology used in the LatticeXP family is the next generation ispXP[™] technology. With this technology, expensive external configuration memories are not required and designs are secured from unauthorized read-back. In addition, instant-on capability allows for easy interfacing in many applications.

The ispLEVER[®] design tool from Lattice allows large complex designs to be efficiently implemented using the LatticeXP family of FPGA devices. Synthesis library support for LatticeXP is available for popular logic synthesis tools. The ispLEVER tool uses the synthesis tool output along with the constraints from its floor planning tools to place and route the design in the LatticeXP device. The ispLEVER tool extracts the timing from the routing and backannotates it into the design for timing verification.

Lattice provides many pre-designed IP (Intellectual Property) ispLeverCORE[™] modules for the LatticeXP family. By using these IPs as standardized blocks, designers are free to concentrate on the unique aspects of their design, increasing their productivity.

Lattice Semiconductor

Figure 2-8. Per Quadrant Secondary Clock Selection

Figure 2-9. Slice Clock Selection

sysCLOCK Phase Locked Loops (PLLs)

The PLL clock input, from pin or routing, feeds into an input clock divider. There are three sources of feedback signals to the feedback divider: from CLKOP (PLL internal), from clock net (CLKOP or CLKOS) or from a user clock (PIN or logic). There is a PLL_LOCK signal to indicate that VCO has locked on to the input clock signal. Figure 2-10 shows the sysCLOCK PLL diagram.

The setup and hold times of the device can be improved by programming a delay in the feedback or input path of the PLL which will advance or delay the output clock with reference to the input clock. This delay can be either programmed during configuration or can be adjusted dynamically. In dynamic mode, the PLL may lose lock after adjustment and not relock until the t_{LOCK} parameter has been satisfied. Additionally, the phase and duty cycle block allows the user to adjust the phase and duty cycle of the CLKOS output.

The sysCLOCK PLLs provide the ability to synthesize clock frequencies. Each PLL has four dividers associated with it: input clock divider, feedback divider, post scalar divider and secondary clock divider. The input clock divider is used to divide the input clock signal, while the feedback divider is used to multiply the input clock signal. The post scalar divider allows the VCO to operate at higher frequencies than the clock output, thereby increasing the frequency range. The secondary divider is used to derive lower frequency outputs.

For more information on the PLL, please see details of additional technical documentation at the end of this data sheet.

Dynamic Clock Select (DCS)

The DCS is a global clock buffer with smart multiplexer functions. It takes two independent input clock sources and outputs a clock signal without any glitches or runt pulses. This is achieved irrespective of where the select signal is toggled. There are eight DCS blocks per device, located in pairs at the center of each side. Figure 2-12 illustrates the DCS Block Macro.

Figure 2-12. DCS Block Primitive

Figure 2-13 shows timing waveforms of the default DCS operating mode. The DCS block can be programmed to other modes. For more information on the DCS, please see details of additional technical documentation at the end of this data sheet.

Figure 2-13. DCS Waveforms

sysMEM Memory

The LatticeXP family of devices contain a number of sysMEM Embedded Block RAM (EBR). The EBR consists of a 9-Kbit RAM, with dedicated input and output registers.

sysMEM Memory Block

The sysMEM block can implement single port, dual port or pseudo dual port memories. Each block can be used in a variety of depths and widths as shown in Table 2-6.

The EBR memory supports three forms of write behavior for single port or dual port operation:

- 1. **Normal** data on the output appears only during read cycle. During a write cycle, the data (at the current address) does not appear on the output. This mode is supported for all data widths.
- 2. Write Through -ba copy of the input data appears at the output of the same port during a write cycle.bThis mode is supported for all data widths.
- 3. **Read-Before-Write** when new data is being written, the old content of the address appears at the output. This mode is supported for x9, x18 and x36 data widths.

Memory Core Reset

The memory array in the EBR utilizes latches at the A and B output ports. These latches can be reset asynchronously. RSTA and RSTB are local signals, which reset the output latches associated with Port A and Port B respectively. The Global Reset (GSRN) signal resets both ports. The output data latches and associated resets for both ports are as shown in Figure 2-15.

Figure 2-18. Group of Seven PIOs

One PIO Pair

Figure 2-19. DQS Routing

	PIO A PIO B	← PADA "T" LVDS Pair PADB "C"
 	PIO A	PADA "T"
├ ──	PIO B	← PADB "C"
┣	PIO A	PADA "T"
 	PIO B	← PADB "C"
┣───	PIO A	← PADA "T"
†	PIO B	← PADB "C"
	PIO A	SysIO Buffer Delay PADA "T" LVDS Pair
	PIO B	► PADB "C"
┣	PIO A	← PADA "T"
┣	PIO B	PADB "C"
-		
	PIO A	PADA "T"

ΡΙΟ

The PIO contains four blocks: an input register block, output register block, tristate register block and a control logic block. These blocks contain registers for both single data rate (SDR) and double data rate (DDR) operation along with the necessary clock and selection logic. Programmable delay lines used to shift incoming clock and data signals are also included in these blocks.

Input Register Block

The input register block contains delay elements and registers that can be used to condition signals before they are passed to the device core. Figure 2-20 shows the diagram of the input register block.

Input signals are fed from the sysIO buffer to the input register block (as signal DI). If desired the input signal can bypass the register and delay elements and be used directly as a combinatorial signal (INDD), a clock (INCK) and

Figure 2-22. INDDRXB Primitive

Output Register Block

The output register block provides the ability to register signals from the core of the device before they are passed to the sysIO buffers. The block contains a register for SDR operation that is combined with an additional latch for DDR operation. Figure 2-23 shows the diagram of the Output Register Block.

In SDR mode, ONEG0 feeds one of the flip-flops that then feeds the output. The flip-flop can be configured as a Dtype or as a latch. In DDR mode, ONEG0 is fed into one register on the positive edge of the clock and OPOS0 is latched. A multiplexer running off the same clock selects the correct register for feeding to the output (D0).

Figure 2-24 shows the design tool DDR primitives. The SDR output register has reset and clock enable available. The additional register for DDR operation does not have reset or clock enable available.

Characteristic	Normal	Off	Sleep
SLEEPN Pin	High	—	Low
Static Icc	Typical <100mA	0	Typical <100uA
I/O Leakage	<10µA	<1mA	<10µA
Power Supplies VCC/VCCIO/VCCAUX	Normal Range	Off	Normal Range
Logic Operation	User Defined	Non Operational	Non operational
I/O Operation	User Defined	Tri-state	Tri-state
JTAG and Programming circuitry	Operational	Non-operational	Non-operational
EBR Contents and Registers	Maintained	Non-maintained	Non-maintained

Table 2-9. Characteristics of Normal, Off and Sleep Modes

SLEEPN Pin Characteristics

The SLEEPN pin behaves as an LVCMOS input with the voltage standard appropriate to the VCC supply for the device. This pin also has a weak pull-up typically in the order of 10μ A along with a Schmidt trigger and glitch filter to prevent false triggering. An external pull-up to V_{CC} is recommended when Sleep Mode is not used to ensure the device stays in normal operation mode. Typically the device enters Sleep Mode several hundred ns after SLEEPN is held at a valid low and restarts normal operation as specified in the Sleep Mode Timing table. The AC and DC specifications portion of this data sheet show a detailed timing diagram.

Configuration and Testing

The following section describes the configuration and testing features of the LatticeXP family of devices.

IEEE 1149.1-Compliant Boundary Scan Testability

All LatticeXP devices have boundary scan cells that are accessed through an IEEE 1149.1 compliant test access port (TAP). This allows functional testing of the circuit board, on which the device is mounted, through a serial scan path that can access all critical logic nodes. Internal registers are linked internally, allowing test data to be shifted in and loaded directly onto test nodes, or test data to be captured and shifted out for verification. The test access port consists of dedicated I/Os: TDI, TDO, TCK and TMS. The test access port has its own supply voltage V_{CCJ} and can operate with LVCMOS3.3, 2.5, 1.8, 1.5 and 1.2 standards.

For more details on boundary scan test, please see information regarding additional technical documentation at the end of this data sheet.

Device Configuration

All LatticeXP devices contain two possible ports that can be used for device configuration and programming. The test access port (TAP), which supports serial configuration, and the sysCONFIG port that supports both byte-wide and serial configuration.

The non-volatile memory in the LatticeXP can be configured in three different modes:

- In sysCONFIG mode via the sysCONFIG port. Note this can also be done in background mode.
- In 1532 mode via the 1149.1 port.
- In background mode via the 1149.1 port. This allows the device to be operated while reprogramming takes place.

The SRAM configuration memory can be configured in three different ways:

- At power-up via the on-chip non-volatile memory.
- In 1532 mode via the 1149.1 port SRAM direct configuration.
- In sysCONFIG mode via the sysCONFIG port SRAM direct configuration.

Typical Building Block Function Performance¹

Pin-to-Pin Performance (LVCMOS25 12 mA Drive)

Function	-5 Timing	Units
Basic Functions	· ·	
16-bit decoder	6.1	ns
32-bit decoder	7.3	ns
64-bit decoder	8.2	ns
4:1 MUX	4.9	ns
8:1 MUX	5.3	ns
16:1 MUX	5.7	ns
32:1 MUX	6.3	ns

Register to Register Performance

Function	-5 Timing	Units
Basic Functions		
16-bit decoder	351	MHz
32-bit decoder	248	MHz
64-bit decoder	237	MHz
4:1 MUX	590	MHz
8:1 MUX	523	MHz
16:1 MUX	434	MHz
32:1 MUX	355	MHz
8-bit adder	343	MHz
16-bit adder	292	MHz
64-bit adder	130	MHz
16-bit counter	388	MHz
32-bit counter	295	MHz
64-bit counter	200	MHz
64-bit accumulator	164	MHz
Embedded Memory Functions	· · · · ·	
Single Port RAM 256x36 bits	254	MHz
True-Dual Port RAM 512x18 bits	254	MHz
Distributed Memory Functions	· · · · ·	
16x2 SP RAM	434	MHz
64x2 SP RAM	332	MHz
128x4 SP RAM	235	MHz
32x2 PDP RAM	322	MHz
64x4 PDP RAM	291	MHz

1. These timing numbers were generated using the ispLEVER design tool. Exact performance may vary with design and tool version. The tool uses internal parameters that have been characterized but are not tested on every device.

Timing v.F0.11

Figure 3-5. DDR Timings

LatticeXP Internal Timing Parameters¹ (Continued)

Over Recommended Operating Conditions

		-5		-4		-3		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{RSTO_EBR}	Reset To Output Delay Time from EBR Output Register	_	1.61	_	1.94	_	2.32	ns
PLL Parameters								
t _{RSTREC}	Reset Recovery to Rising Clock	1.00	_	1.00	-	1.00	—	ns
t _{RSTSU}	Reset Signal Setup Time	1.00	-	1.00	_	1.00	—	ns

1. Internal parameters are characterized but not tested on every device. Timing v.F0.11

EBR Memory Timing Diagrams

Figure 3-8. Read Mode (Normal)

Note: Input data and address are registered at the positive edge of the clock and output data appears after the positive of the clock.

Figure 3-9. Read Mode with Input and Output Registers

LatticeXP Family Timing Adders¹ (Continued)

Over Recommended O	perating Conditions
--------------------	---------------------

Buffer Type	Description	-5	-4	-3	Units
HSTL15_I	HSTL_15 class I	0.2	0.2	0.2	ns
HSTL15_III	HSTL_15 class III	0.2	0.2	0.2	ns
HSTL15D_I	Differential HSTL 15 class I	0.2	0.2	0.2	ns
HSTL15D_III	Differential HSTL 15 class III	0.2	0.2	0.2	ns
SSTL33_I	SSTL_3 class I	0.1	0.1	0.1	ns
SSTL33_II	SSTL_3 class II	0.3	0.3	0.3	ns
SSTL33D_I	Differential SSTL_3 class I	0.1	0.1	0.1	ns
SSTL33D_II	Differential SSTL_3 class II	0.3	0.3	0.3	ns
SSTL25_I	SSTL_2 class I	-0.1	-0.1	-0.1	ns
SSTL25_II	SSTL_2 class II	0.3	0.3	0.3	ns
SSTL25D_I	Differential SSTL_2 class I	-0.1	-0.1	-0.1	ns
SSTL25D_II	Differential SSTL_2 class II	0.3	0.3	0.3	ns
SSTL18_I	SSTL_1.8 class I	0.1	0.1	0.1	ns
SSTL18D_I	Differential SSTL_1.8 class I	0.1	0.1	0.1	ns
LVTTL33_4mA	LVTTL 4mA drive	0.8	0.8	0.8	ns
LVTTL33_8mA	LVTTL 8mA drive	0.5	0.5	0.5	ns
LVTTL33_12mA	LVTTL 12mA drive	0.3	0.3	0.3	ns
LVTTL33_16mA	LVTTL 16mA drive	0.4	0.4	0.4	ns
LVTTL33_20mA	LVTTL 20mA drive	0.3	0.3	0.3	ns
LVCMOS33_2mA	LVCMOS 3.3 2mA drive	0.8	0.8	0.8	ns
LVCMOS33_4mA	LVCMOS 3.3 4mA drive	0.8	0.8	0.8	ns
LVCMOS33_8mA	LVCMOS 3.3 8mA drive	0.5	0.5	0.5	ns
LVCMOS33_12mA	LVCMOS 3.3 12mA drive	0.3	0.3	0.3	ns
LVCMOS33_16mA	LVCMOS 3.3 16mA drive	0.4	0.4	0.4	ns
LVCMOS33_20mA	LVCMOS 3.3 20mA drive	0.3	0.3	0.3	ns
LVCMOS25_2mA	LVCMOS 2.5 2mA drive	0.7	0.7	0.7	ns
LVCMOS25_4mA	LVCMOS 2.5 4mA drive	0.7	0.7	0.7	ns
LVCMOS25_8mA	LVCMOS 2.5 8mA drive	0.4	0.4	0.4	ns
LVCMOS25_12mA	LVCMOS 2.5 12mA drive	0.0	0.0	0.0	ns
LVCMOS25_16mA	LVCMOS 2.5 16mA drive	0.2	0.2	0.2	ns
LVCMOS25_20mA	LVCMOS 2.5 20mA drive	0.4	0.4	0.4	ns
LVCMOS18_2mA	LVCMOS 1.8 2mA drive	0.6	0.6	0.6	ns
LVCMOS18_4mA	LVCMOS 1.8 4mA drive	0.6	0.6	0.6	ns
LVCMOS18_8mA	LVCMOS 1.8 8mA drive	0.4	0.4	0.4	ns
LVCMOS18_12mA	LVCMOS 1.8 12mA drive	0.2	0.2	0.2	ns
LVCMOS18_16mA	LVCMOS 1.8 16mA drive	0.2	0.2	0.2	ns
LVCMOS15_2mA	LVCMOS 1.5 2mA drive	0.6	0.6	0.6	ns
LVCMOS15_4mA	LVCMOS 1.5 4mA drive	0.6	0.6	0.6	ns
LVCMOS15_8mA	LVCMOS 1.5 8mA drive	0.2	0.2	0.2	ns
LVCMOS12_2mA	LVCMOS 1.2 2mA drive	0.4	0.4	0.4	ns
LVCMOS12_6mA	LVCMOS 1.2 6mA drive	0.4	0.4	0.4	ns
PCI33	PCI33	0.3	0.3	0.3	ns

1. General timing numbers based on LVCMOS 2.5, 12mA.

Timing v.F0.11

LFXP3 Logic Signal Connections: 100 TQFP (Cont.)

Pin Number	Pin Function	Bank	Differential	Dual Function
44	GNDIO4	4	-	-
45	PB15A	4	Т	PCLKT4_0
46	PB15B	4	С	PCLKC4_0
47	VCCIO4	4	-	-
48	PB19A	4	Т	DQS
49	PB19B	4	С	VREF1_4
50	PB24A	4	-	VREF2_4
51	PR18B	3	C ³	-
52	GNDIO3	3	-	-
53	PR18A	3	T ³	-
54	PR15B	3	-	VREF1_3
55	PR14A	3	-	VREF2_3
56	PR13B	3	С	-
57	PR13A	3	Т	-
58	VCCIO3	3	-	-
59	GNDP1	-	-	-
60	VCCP1	-	-	-
61	PR9B	2	С	PCLKC2_0
62	PR9A	2	Т	PCLKT2_0
63	PR8B	2	С	RUM0_PLLC_IN_A
64	PR8A	2	Т	RUM0_PLLT_IN_A
65	VCCIO2	2	-	-
66	PR6B	2	-	VREF1_2
67	PR5A	2	-	VREF2_2
68	GNDIO2	2	-	-
69	PR3B	2	С	RUM0_PLLC_FB_A
70	PR3A	2	Т	RUM0_PLLT_FB_A
71	VCCAUX	-	-	-
72	TDO	-	-	-
73	VCCJ	-	-	-
74	TDI	-	-	-
75	TMS	-	-	-
76	TCK	-	-	-
77	VCC	-	-	-
78	PT24A	1	-	-
79	PT23A	1	-	D0
80	PT22B	1	-	D1
81	PT21A	1	-	D2
82	VCCIO1	1	-	-
83	PT20B	1	-	D3
84	GNDIO1	1	-	-
85	PT17A	1	-	D4
86	PT16A	1	-	D5
87	PT15B	1	-	D6

LFXP3 & LFXP6 Logic Signal Connections: 144 TQFP

Pin	LFXP3			LFXP6				
Number	Pin Function	Bank	Differential	Dual Function	Pin Function	Bank	Differential	Dual Function
1	PROGRAMN	7	-	-	PROGRAMN	7	-	-
2	CCLK	7	-	-	CCLK	7	-	-
3	GND	-	-	-	GND	-	-	-
4	PL2A	7	T ³	-	PL2A	7	T ³	-
5	PL2B	7	C ³	-	PL2B	7	C ³	-
6	PL3A	7	Т	LUM0_PLLT_FB_A	PL3A	7	Т	LUM0_PLLT_FB_A
7	PL3B	7	С	LUM0_PLLC_FB_A	PL3B	7	C	LUM0_PLLC_FB_A
8	VCCIO7	7	-	-	VCCIO7	7	-	-
9	PL5A	7	-	VREF1_7	PL5A	7	-	VREF1_7
10	PL6B	7	-	VREF2_7	PL6B	7	-	VREF2_7
11	GNDIO7	7	-	-	GNDIO7	7	-	-
12	PL7A	7	T ³	DQS	PL7A	7	T ³	DQS
13	PL7B	7	C ³	-	PL7B	7	C ³	-
14	VCC	-	-	-	VCC	-	-	-
15	PL8A	7	Т	LUM0_PLLT_IN_A	PL8A	7	Т	LUM0_PLLT_IN_A
16	PL8B	7	С	LUM0_PLLC_IN_A	PL8B	7	C	LUM0_PLLC_IN_A
17	PL9A	7	T ³	-	PL9A	7	T ³	-
18	PL9B	7	C ³	-	PL9B	7	C ³	-
19	VCCP0	-	-	-	VCCP0	-	-	-
20	GNDP0	-	-	-	GNDP0	-	-	-
21	VCCIO6	6	-	-	VCCIO6	6	-	-
22	PL11A	6	T ³	-	PL16A	6	T ³	-
23	PL11B	6	C ³	-	PL16B	6	C ³	-
24	PL12A	6	Т	PCLKT6_0	PL17A	6	Т	PCLKT6_0
25	PL12B	6	C	PCLKC6_0	PL17B	6	C	PCLKC6_0
26	PL13A	6	T ³	-	PL18A	6	T ³	-
27	PL13B	6	C ³	-	PL18B	6	C ³	-
28	GNDIO6	6	-	-	GNDIO6	6	-	-
29	PL14A	6	-	VREF1_6	PL22A	6	-	VREF1_6
30	PL15B	6	-	VREF2_6	PL23B	6	-	VREF2_6
31	PL16A	6	T°	DQS	PL24A	6	T°	DQS
32	PL16B	6	C³	-	PL24B	6	C³	-
33	PL17A	6	-	-	PL25A	6	-	-
34	PL18A	6	T ³	-	PL26A	6	T ³	-
35	PL18B	6	C ³	-	PL26B	6	C ³	-
36	VCCAUX	-	-	-	VCCAUX	-	-	-
37	SLEEPN ¹ /TOE ²	-	-	-	SLEEPN ¹ /TOE ²	-	-	-
38	INITN	5	-	-	INITN	5	-	-
39	VCC	-	-	-	VCC	-	-	-
40	PB2B	5	-	VREF1_5	PB5B	5	-	VREF1_5
41	PB5B	5	-	VREF2_5	PB8B	5	-	VREF2_5
42	PB7A	5	Т	-	PB10A	5	Т	-
43	PB7B	5	C	-	PB10B	5	C	-
44	GNDIO5	5	-	-	GNDIO5	5	-	-
45	PB9A	5	-	-	PB12A	5	-	-
46	PB10B	5	-	-	PB13B	5	-	-

LFXP3 & LFXP6 Logic Signal Connections: 208 PQFP (Cont.)

Din		LFXP3					LFXP6			
Number	Pin Function	Bank	Differential	Dual Function	Pin Function	Bank	Differential	Dual Function		
185	PT13A	0	Т	CS1N	PT16A	0	Т	CS1N		
186	PT12B	0	С	PCLKC0_0	PT15B	0	С	PCLKC0_0		
187	PT12A	0	Т	PCLKT0_0	PT15A	0	Т	PCLKT0_0		
188	PT11B	0	С	-	PT14B	0	С	-		
189	VCCIO0	0	-	-	VCCIO0	0	-	-		
190	PT11A	0	Т	DQS	PT14A	0	Т	DQS		
191	PT10B	0	-	-	PT13B	0	-	-		
192	PT9A	0	-	DOUT	PT12A	0	-	DOUT		
193	PT8B	0	С	-	PT11B	0	С	-		
194	GNDIO0	0	-	-	GNDIO0	0	-	-		
195	PT8A	0	Т	WRITEN	PT11A	0	Т	WRITEN		
196	PT7B	0	С	-	PT10B	0	С	-		
197	PT7A	0	Т	VREF1_0	PT10A	0	Т	VREF1_0		
198	PT6B	0	С	-	PT9B	0	С	-		
199	VCCIO0	0	-	-	VCCIO0	0	-	-		
200	PT6A	0	Т	DI	PT9A	0	Т	DI		
201	PT5B	0	С	-	PT8B	0	С	-		
202	PT5A	0	Т	CSN	PT8A	0	Т	CSN		
203	PT4B	0	С	-	PT7B	0	С	-		
204	PT4A	0	Т	-	PT7A	0	Т	-		
205	PT3B	0	-	VREF2_0	PT6B	0	-	VREF2_0		
206	PT2B	0	-	-	PT5B	0	-	-		
207	GND	-	-	-	GND	-	-	-		
208	CFG0	0	-	-	CFG0	0	-	-		

Applies to LFXP "C" only.
Applies to LFXP "E" only.

3. Supports dedicated LVDS outputs.

LFXP15 & LFXP20 Logic Signal Connections: 256 fpBGA

			LFXP15		LFXP20			
Ball Number	Ball Function	Bank	Differential	Dual Function	Ball Function	Bank	Differential	Dual Function
C2	PROGRAMN	7	-	-	PROGRAMN	7	-	-
C1	CCLK	7	-	-	CCLK	7	-	-
-	GNDIO7	7	-	-	GNDIO7	7	-	-
-	GNDIO7	7	-	-	GNDIO7	7	-	-
D2	PL7A	7	Т	LUM0_PLLT_FB_A	PL7A	7	Т	LUM0_PLLT_FB_A
D3	PL7B	7	С	LUM0_PLLC_FB_A	PL7B	7	С	LUM0_PLLC_FB_A
D1	PL9A	7	-	-	PL9A	7	-	-
E2	PL10B	7	-	VREF1_7	PL10B	7	-	VREF1_7
E1	PL11A	7	T ³	DQS	PL11A	7	T ³	DQS
F1	PL11B	7	C ³	-	PL11B	7	C ³	-
-	GNDIO7	7	-	-	GNDIO7	7	-	-
E3	PL12A	7	Т	-	PL12A	7	Т	-
F4	PL12B	7	С	-	PL12B	7	С	-
F3	PL13A	7	T ³	-	PL13A	7	T ³	-
F2	PL13B	7	C ³	-	PL13B	7	C ³	-
G1	PL15B	7	-	-	PL15B	7	-	-
-	GNDIO7	7	-	-	GNDIO7	7	-	-
G3	PL16A	7	Т	LUM0_PLLT_IN_A	PL16A	7	Т	LUM0_PLLT_IN_A
G2	PL16B	7	С	LUM0_PLLC_IN_A	PL16B	7	С	LUM0_PLLC_IN_A
H1	PL17A	7	Т³	-	PL17A	7	T ³	-
H2	PL17B	7	C ³	-	PL17B	7	C ³	-
G4	PL18A	7	-	VREF2_7	PL18A	7	-	VREF2_7
G5	PL19B	7	-	-	PL19B	7	-	-
J1	PL20A	7	Т³	DQS	PL20A	7	T ³	DQS
-	GNDIO7	7	-	-	GNDIO7	7	-	-
J2	PL20B	7	C ³	-	PL20B	7	C ³	-
H3	PL22A	7	T³	-	PL22A	7	T ³	-
J3	PL22B	7	C ³	-	PL22B	7	C ³	-
H4	VCCP0	-	-	-	VCCP0	-	-	-
H5	GNDP0	-	-	-	GNDP0	-	-	-
K1	PL24A	6	Т	PCLKT6_0	PL28A	6	Т	PCLKT6_0
-	GNDIO6	6	-	-	GNDIO6	6	-	-
K2	PL24B	6	С	PCLKC6_0	PL28B	6	С	PCLKC6_0
J4	PL26A	6	-	-	PL30A	6	-	-
J5	PL27B	6	-	VREF1_6	PL31B	6	-	VREF1_6
L1	PL28A	6	T ³	DQS	PL32A	6	T ³	DQS
L2	PL28B	6	C ³	-	PL32B	6	C ³	-
-	GNDIO6	6	-	-	GNDIO6	6	-	-
M1	PL29A	6	Т	LLM0_PLLT_IN_A	PL33A	6	Т	LLM0_PLLT_IN_A
M2	PL29B	6	С	LLM0_PLLC_IN_A	PL33B	6	С	LLM0_PLLC_IN_A
K3	PL30A	6	T ³	-	PL34A	6	T ³	-
L3	PL30B	6	C ³	-	PL34B	6	C ³	-

LFXP15 & LFXP20 Logic Signal Connections: 256 fpBGA (Cont.)

	LFXP15				LFXP20				
Ball Number	Ball Function	Bank	Differential	Dual Function	Ball Function	Bank	Differential	Dual Function	
L7	VCCIO5	5	-	-	VCCIO5	5	-	-	
L8	VCCIO5	5	-	-	VCCIO5	5	-	-	
J6	VCCIO6	6	-	-	VCCIO6	6	-	-	
K6	VCCIO6	6	-	-	VCCIO6	6	-	-	
G6	VCCIO7	7	-	-	VCCI07	7	-	-	
H6	VCCIO7	7	-	-	VCCI07	7	-	-	

Applies to LFXP "C" only.
Applies to LFXP "E" only.

3. Supports dedicated LVDS outputs.

LFXP15 & LFXP20 Logic Signal Connections: 484 fpBGA (Cont.)

	LFXP15					LFXP20				
Ball Number	Ball Function	Bank	Differential	Dual Function	Ball Function	Bank	Differential	Dual Function		
D18	-	-	-	-	PT55B	1	С	-		
E18	-	-	-	-	PT55A	1	Т	-		
C19	-	-	-	-	PT54B	1	C	-		
C18	-	-	-	-	PT54A	1	Т	-		
C21	-	-	-	-	PT53B	1	C	-		
-	GNDIO1	1	-	-	GNDIO1	1	-	-		
B21	-	-	-	-	PT53A	1	Т	-		
E17	PT48B	1	С	-	PT52B	1	C	-		
E16	PT48A	1	Т	-	PT52A	1	Т	-		
C17	PT47B	1	С	-	PT51B	1	C	-		
D17	PT47A	1	Т	DQS	PT51A	1	Т	DQS		
F17	PT46B	1	-	-	PT50B	1	-	-		
F16	PT45A	1	-	-	PT49A	1	-	-		
C16	PT44B	1	С	-	PT48B	1	C	-		
D16	PT44A	1	Т	-	PT48A	1	Т	-		
A20	PT43B	1	С	-	PT47B	1	C	-		
-	GNDIO1	1	-	-	GNDIO1	1	-	-		
B20	PT43A	1	Т	-	PT47A	1	Т	-		
A19	PT42B	1	С	-	PT46B	1	C	-		
B19	PT42A	1	Т	-	PT46A	1	Т	-		
C15	PT41B	1	С	-	PT45B	1	C	-		
D15	PT41A	1	Т	-	PT45A	1	Т	-		
A18	PT40B	1	С	-	PT44B	1	C	-		
B18	PT40A	1	Т	-	PT44A	1	Т	-		
F15	PT39B	1	С	VREF1_1	PT43B	1	C	VREF1_1		
-	GNDIO1	1	-	-	GNDIO1	1	-	-		
E15	PT39A	1	Т	DQS	PT43A	1	Т	DQS		
A17	PT38B	1	-	-	PT42B	1	-	-		
B17	PT37A	1	-	-	PT41A	1	-	-		
E14	PT36B	1	С	-	PT40B	1	C	-		
F14	PT36A	1	Т	-	PT40A	1	Т	-		
D14	PT35B	1	С	-	PT39B	1	C	-		
C14	PT35A	1	Т	D0	PT39A	1	Т	D0		
A16	PT34B	1	С	D1	PT38B	1	C	D1		
B16	PT34A	1	Т	VREF2_1	PT38A	1	Т	VREF2_1		
A15	PT33B	1	С	-	PT37B	1	C	-		
B15	PT33A	1	Т	D2	PT37A	1	Т	D2		
-	GNDIO1	1	-	-	GNDIO1	1	-	-		
E13	PT32B	1	С	D3	PT36B	1	C	D3		
D13	PT32A	1	Т	-	PT36A	1	Т	-		
C13	PT31B	1	С	-	PT35B	1	C	-		
B13	PT31A	1	Т	DQS	PT35A	1	Т	DQS		

LFXP15 & LFXP20 Logic Signal Connections: 484 fpBGA (Cont.)

		LFXP15		LFXP20				
Ball Number	Ball Function	Bank	Differential	Dual Function	Ball Function	Bank	Differential	Dual Function
H13	VCCIO1	1	-	-	VCCIO1	1	-	-
K15	VCCIO2	2	-	-	VCCIO2	2	-	-
L15	VCCIO2	2	-	-	VCCIO2	2	-	-
L16	VCCIO2	2	-	-	VCCIO2	2	-	-
L17	VCCIO2	2	-	-	VCCIO2	2	-	-
M15	VCCIO3	3	-	-	VCCIO3	3	-	-
M16	VCCIO3	3	-	-	VCCIO3	3	-	-
M17	VCCIO3	3	-	-	VCCIO3	3	-	-
N15	VCCIO3	3	-	-	VCCIO3	3	-	-
R12	VCCIO4	4	-	-	VCCIO4	4	-	-
R13	VCCIO4	4	-	-	VCCIO4	4	-	-
T12	VCCIO4	4	-	-	VCCIO4	4	-	-
U12	VCCIO4	4	-	-	VCCIO4	4	-	-
R10	VCCIO5	5	-	-	VCCIO5	5	-	-
R11	VCCIO5	5	-	-	VCCIO5	5	-	-
T11	VCCIO5	5	-	-	VCCIO5	5	-	-
U11	VCCIO5	5	-	-	VCCIO5	5	-	-
M6	VCCIO6	6	-	-	VCCIO6	6	-	-
M7	VCCIO6	6	-	-	VCCIO6	6	-	-
M8	VCCIO6	6	-	-	VCCIO6	6	-	-
N8	VCCIO6	6	-	-	VCCIO6	6	-	-
K8	VCCIO7	7	-	-	VCCI07	7	-	-
L6	VCCIO7	7	-	-	VCCIO7	7	-	-
L7	VCCIO7	7	-	-	VCCI07	7	-	-
L8	VCCIO7	7	-	-	VCCIO7	7	-	-

1. Applies to LFXP "C" only.

Applies to LFXP "E" only.
Supports dedicated LVDS outputs.

LatticeXP Family Data Sheet Ordering Information

December 2005

Data Sheet DS1001

Part Number Description

Ordering Information (Contact Factory for Specific Device Availability)

Note:pLatticeXP devices are dual marked. For example, the commercial speed grade LFXP10E-4F256C is also marked with industrial grade -3I (LFXP10E-3F256I). The commercial grade is one speed grade faster than the associated dual mark industrial grade. The slowest commercial speed grade does not have industrial markings. The markings appear as follows:

Lattice
LFXP10E- 4F256C-3I
Datecode

^{© 2005} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.