

 \times FI

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Detans	
Product Status	Obsolete
Number of LABs/CLBs	-
Number of Logic Elements/Cells	20000
Total RAM Bits	405504
Number of I/O	268
Number of Gates	-
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	388-BBGA
Supplier Device Package	388-FPBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lfxp20e-3fn388i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

LatticeXP Family Data Sheet Architecture

July 2007

Data Sheet DS1001

Architecture Overview

The LatticeXP architecture contains an array of logic blocks surrounded by Programmable I/O Cells (PIC). Interspersed between the rows of logic blocks are rows of sysMEM Embedded Block RAM (EBR) as shown in Figure 2-1.

On the left and right sides of the PFU array, there are Non-volatile Memory Blocks. In configuration mode this nonvolatile memory is programmed via the IEEE 1149.1 TAP port or the sysCONFIG[™] peripheral port. On power up, the configuration data is transferred from the Non-volatile Memory Blocks to the configuration SRAM. With this technology, expensive external configuration memories are not required and designs are secured from unauthorized read-back. This transfer of data from non-volatile memory to configuration SRAM via wide busses happens in microseconds, providing an "instant-on" capability that allows easy interfacing in many applications.

There are two kinds of logic blocks, the Programmable Functional Unit (PFU) and Programmable Functional unit without RAM/ROM (PFF). The PFU contains the building blocks for logic, arithmetic, RAM, ROM and register functions. The PFF block contains building blocks for logic, arithmetic and ROM functions. Both PFU and PFF blocks are optimized for flexibility, allowing complex designs to be implemented quickly and efficiently. Logic Blocks are arranged in a two-dimensional array. Only one type of block is used per row. The PFU blocks are used on the outside rows. The rest of the core consists of rows of PFF blocks interspersed with rows of PFU blocks. For every three rows of PFF blocks there is a row of PFU blocks.

Each PIC block encompasses two PIOs (PIO pairs) with their respective sysIO interfaces. PIO pairs on the left and right edges of the device can be configured as LVDS transmit/receive pairs. sysMEM EBRs are large dedicated fast memory blocks. They can be configured as RAM or ROM.

The PFU, PFF, PIC and EBR Blocks are arranged in a two-dimensional grid with rows and columns as shown in Figure 2-1. The blocks are connected with many vertical and horizontal routing channel resources. The place and route software tool automatically allocates these routing resources.

At the end of the rows containing the sysMEM Blocks are the sysCLOCK Phase Locked Loop (PLL) Blocks. These PLLs have multiply, divide and phase shifting capability; they are used to manage the phase relationship of the clocks. The LatticeXP architecture provides up to four PLLs per device.

Every device in the family has a JTAG Port with internal Logic Analyzer (ispTRACY) capability. The sysCONFIG port which allows for serial or parallel device configuration. The LatticeXP devices are available for operation from 3.3V, 2.5V, 1.8V and 1.2V power supplies, providing easy integration into the overall system.

^{© 2007} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Table 2-4. PFU Modes of Operation

Logic	Ripple	RAM ¹	ROM
LUT 4x8 or MUX 2x1 x 8	2-bit Add x 4	SPR16x2 x 4 DPR16x2 x 2	ROM16x1 x 8
LUT 5x4 or MUX 4x1 x 4	2-bit Sub x 4	SPR16x4 x 2 DPR16x4 x 1	ROM16x2 x 4
LUT 6x 2 or MUX 8x1 x 2	2-bit Counter x 4	SPR16x8 x 1	ROM16x4 x 2
LUT 7x1 or MUX 16x1 x 1	2-bit Comp x 4		ROM16x8 x 1

1. These modes are not available in PFF blocks

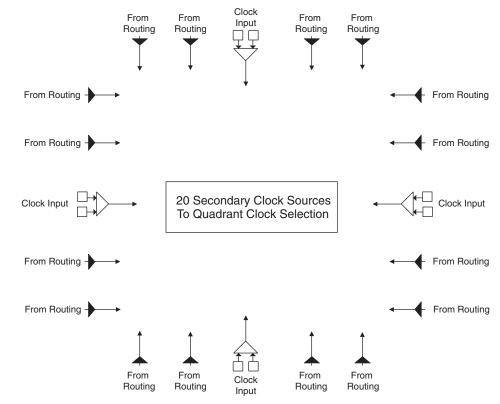
Routing

There are many resources provided in the LatticeXP devices to route signals individually or as buses with related control signals. The routing resources consist of switching circuitry, buffers and metal interconnect (routing) segments.

The inter-PFU connections are made with x1 (spans two PFU), x2 (spans three PFU) and x6 (spans seven PFU). The x1 and x2 connections provide fast and efficient connections in horizontal, vertical and diagonal directions. The x2 and x6 resources are buffered allowing both short and long connections routing between PFUs.

The ispLEVER design tool takes the output of the synthesis tool and places and routes the design. Generally, the place and route tool is completely automatic, although an interactive routing editor is available to optimize the design.

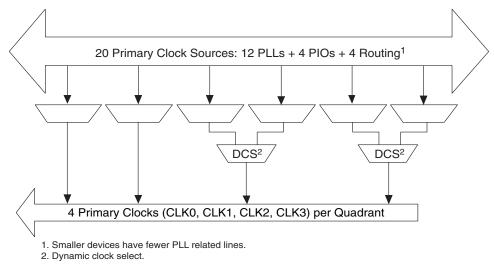
Clock Distribution Network


The clock inputs are selected from external I/O, the sysCLOCK[™] PLLs or routing. These clock inputs are fed through the chip via a clock distribution system.

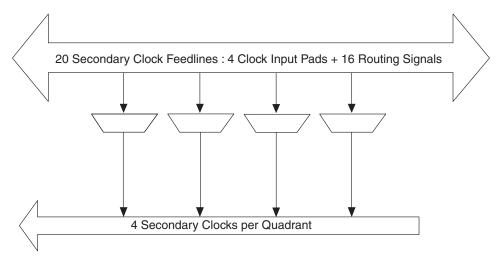
Primary Clock Sources

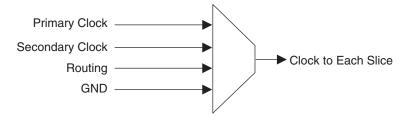
LatticeXP devices derive clocks from three primary sources: PLL outputs, dedicated clock inputs and routing. LatticeXP devices have two to four sysCLOCK PLLs, located on the left and right sides of the device. There are four dedicated clock inputs, one on each side of the device. Figure 2-5 shows the 20 primary clock sources.

Lattice Semiconductor


Figure 2-6. Secondary Clock Sources

Clock Routing


The clock routing structure in LatticeXP devices consists of four Primary Clock lines and a Secondary Clock network per quadrant. The primary clocks are generated from MUXs located in each quadrant. Figure 2-7 shows this clock routing. The four secondary clocks are generated from MUXs located in each quadrant as shown in Figure 2-8. Each slice derives its clock from the primary clock lines, secondary clock lines and routing as shown in Figure 2-9.



Lattice Semiconductor

Figure 2-8. Per Quadrant Secondary Clock Selection

Figure 2-9. Slice Clock Selection

sysCLOCK Phase Locked Loops (PLLs)

The PLL clock input, from pin or routing, feeds into an input clock divider. There are three sources of feedback signals to the feedback divider: from CLKOP (PLL internal), from clock net (CLKOP or CLKOS) or from a user clock (PIN or logic). There is a PLL_LOCK signal to indicate that VCO has locked on to the input clock signal. Figure 2-10 shows the sysCLOCK PLL diagram.

The setup and hold times of the device can be improved by programming a delay in the feedback or input path of the PLL which will advance or delay the output clock with reference to the input clock. This delay can be either programmed during configuration or can be adjusted dynamically. In dynamic mode, the PLL may lose lock after adjustment and not relock until the t_{LOCK} parameter has been satisfied. Additionally, the phase and duty cycle block allows the user to adjust the phase and duty cycle of the CLKOS output.

The sysCLOCK PLLs provide the ability to synthesize clock frequencies. Each PLL has four dividers associated with it: input clock divider, feedback divider, post scalar divider and secondary clock divider. The input clock divider is used to divide the input clock signal, while the feedback divider is used to multiply the input clock signal. The post scalar divider allows the VCO to operate at higher frequencies than the clock output, thereby increasing the frequency range. The secondary divider is used to derive lower frequency outputs.

Figure 2-10. PLL Diagram

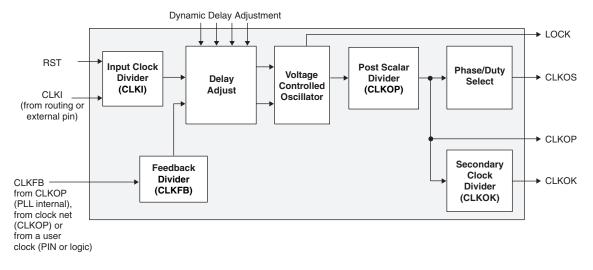
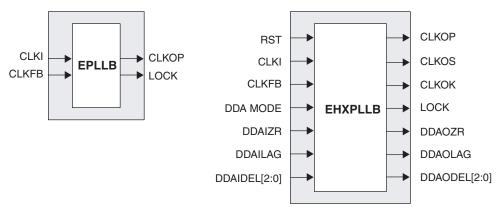
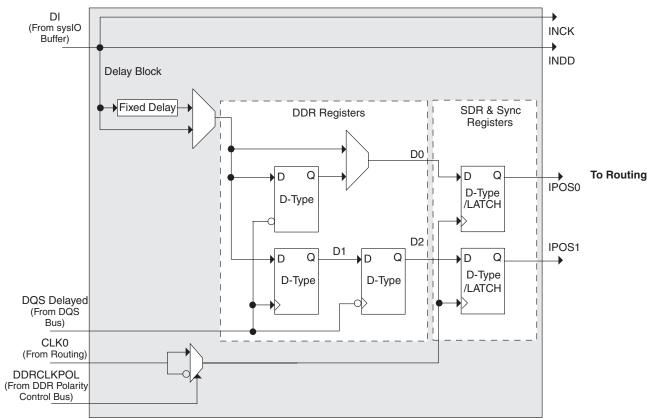



Figure 2-11 shows the available macros for the PLL. Table 2-11 provides signal description of the PLL Block.

Figure 2-11. PLL Primitive

Signal	I/O	Description
CLKI	I	Clock input from external pin or routing
CLKFB	I	PLL feedback input from CLKOP (PLL internal), from clock net (CLKOP) or from a user clock (PIN or logic)
RST	I	"1" to reset input clock divider
CLKOS	0	PLL output clock to clock tree (phase shifted/duty cycle changed)
CLKOP	0	PLL output clock to clock tree (No phase shift)
CLKOK	0	PLL output to clock tree through secondary clock divider
LOCK	0	"1" indicates PLL LOCK to CLKI
DDAMODE	I	Dynamic Delay Enable. "1" Pin control (dynamic), "0": Fuse Control (static)
DDAIZR	I	Dynamic Delay Zero. "1": delay = 0, "0": delay = on
DDAILAG	I	Dynamic Delay Lag/Lead. "1": Lag, "0": Lead
DDAIDEL[2:0]	I	Dynamic Delay Input
DDAOZR	0	Dynamic Delay Zero Output
DDAOLAG	0	Dynamic Delay Lag/Lead Output
DDAODEL[2:0]	0	Dynamic Delay Output


Lattice Semiconductor

in selected blocks the input to the DQS delay block. If one of the bypass options is not chosen, the signal first passes through an optional delay block. This delay, if selected, ensures no positive input-register hold-time requirement when using a global clock.

The input block allows two modes of operation. In the single data rate (SDR) the data is registered, by one of the registers in the single data rate sync register block, with the system clock. In the DDR Mode two registers are used to sample the data on the positive and negative edges of the DQS signal creating two data streams, D0 and D2. These two data streams are synchronized with the system clock before entering the core. Further discussion on this topic is in the DDR Memory section of this data sheet.

Figure 2-21 shows the input register waveforms for DDR operation and Figure 2-22 shows the design tool primitives. The SDR/SYNC registers have reset and clock enable available.

The signal DDRCLKPOL controls the polarity of the clock used in the synchronization registers. It ensures adequate timing when data is transferred from the DQS to the system clock domain. For further discussion of this topic, see the DDR memory section of this data sheet.

Figure 2-20. Input Register Diagram

Figure 2-26. DQS Local Bus

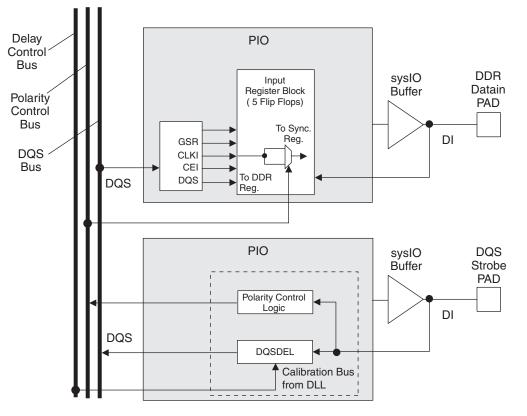
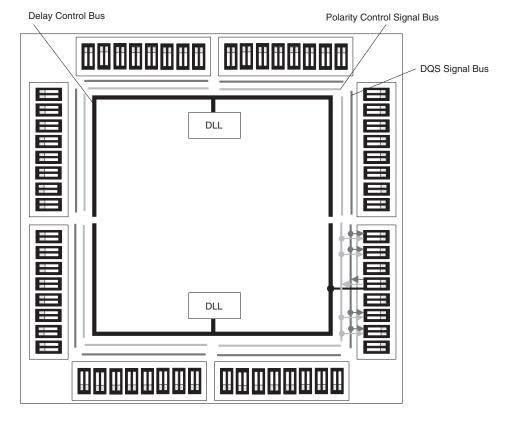



Figure 2-27. DLL Calibration Bus and DQS/DQS Transition Distribution

Polarity Control Logic

In a typical DDR Memory interface design, the phase relation between the incoming delayed DQS strobe and the internal system Clock (during the READ cycle) is unknown.

The LatticeXP family contains dedicated circuits to transfer data between these domains. To prevent setup and hold violations at the domain transfer between DQS (delayed) and the system Clock a clock polarity selector is used. This changes the edge on which the data is registered in the synchronizing registers in the input register block. This requires evaluation at the start of the each READ cycle for the correct clock polarity.

Prior to the READ operation in DDR memories DQS is in tristate (pulled by termination). The DDR memory device drives DQS low at the start of the preamble state. A dedicated circuit detects this transition. This signal is used to control the polarity of the clock to the synchronizing registers.

sysIO Buffer

Each I/O is associated with a flexible buffer referred to as a sysIO buffer. These buffers are arranged around the periphery of the device in eight groups referred to as Banks. The sysIO buffers allow users to implement the wide variety of standards that are found in today's systems including LVCMOS, SSTL, HSTL, LVDS and LVPECL.

sysIO Buffer Banks

LatticeXP devices have eight sysIO buffer banks; each is capable of supporting multiple I/O standards. Each sysIO bank has its own I/O supply voltage (V_{CCIO}), and two voltage references V_{REF1} and V_{REF2} resources allowing each bank to be completely independent from each other. Figure 2-28 shows the eight banks and their associated supplies.

In the LatticeXP devices, single-ended output buffers and ratioed input buffers (LVTTL, LVCMOS, PCI and PCI-X) are powered using V_{CCIO} . LVTTL, LVCMOS33, LVCMOS25 and LVCMOS12 can also be set as a fixed threshold input independent of V_{CCIO} . In addition to the bank V_{CCIO} supplies, the LatticeXP devices have a V_{CC} core logic power supply, and a V_{CCAUX} supply that power all differential and referenced buffers.

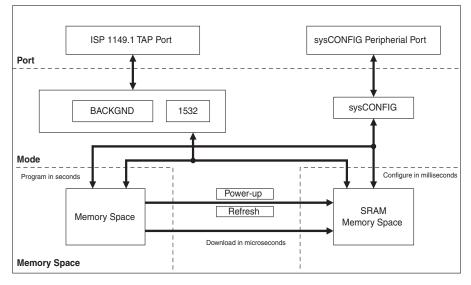
Each bank can support up to two separate VREF voltages, VREF1 and VREF2 that set the threshold for the referenced input buffers. In the LatticeXP devices, a dedicated pin in a bank can be configured to be a reference voltage supply pin. Each I/O is individually configurable based on the bank's supply and reference voltages.

Figure 2-29 provides a pictorial representation of the different programming ports and modes available in the LatticeXP devices.

On power-up, the FPGA SRAM is ready to be configured with the sysCONFIG port active. The IEEE 1149.1 serial mode can be activated any time after power-up by sending the appropriate command through the TAP port.

Leave Alone I/O

When using 1532 mode for non-volatile memory programming, users may specify I/Os as high, low, tristated or held at current value. This provides excellent flexibility for implementing systems where reprogramming occurs on-the-fly.


TransFR (Transparent Field Reconfiguration)

TransFR (TFR) is a unique Lattice technology that allows users to update their logic in the field without interrupting system operation using a single ispVM command. See Lattice technical note #TN1087, *Minimizing System Interruption During Configuration Using TransFR Technology*, for details.

Security

The LatticeXP devices contain security bits that, when set, prevent the readback of the SRAM configuration and non-volatile memory spaces. Once set, the only way to clear security bits is to erase the memory space.

For more information on device configuration, please see details of additional technical documentation at the end of this data sheet.

Figure 2-29. ispXP Block Diagram

Internal Logic Analyzer Capability (ispTRACY)

All LatticeXP devices support an internal logic analyzer diagnostic feature. The diagnostic features provide capabilities similar to an external logic analyzer, such as programmable event and trigger condition and deep trace memory. This feature is enabled by Lattice's ispTRACY. The ispTRACY utility is added into the user design at compile time.

For more information on ispTRACY, please see information regarding additional technical documentation at the end of this data sheet.

Oscillator

Every LatticeXP device has an internal CMOS oscillator which is used to derive a master serial clock for configuration. The oscillator and the master serial clock run continuously in the configuration mode. The default value of the

Initialization Supply Current^{1, 2, 3, 4, 5, 6}

Symbol	Parameter	Device	Typ. ⁷	Units
		LFXP3E	40	mA
		LFXP6E	50	mA
		LFXP10E	110	mA
		LFXP15E	140	mA
	Core Power Supply	LFXP20E	250	mA
I _{CC}	Core Power Supply	LFXP3C	60	mA
		LFXP6C	70	mA
		LFXP10C	150	mA
		LFXP15C	180	mA
		LFXP20C	290	mA
		LFXP3E/C	50	mA
		LFXP6E/C	60	mA
I _{CCAUX}	Auxiliary Power Supply V _{CCAUX} = 3.3V	LFXP10E/C	90	mA
	CCAUX - 0.0V	LFXP15 /C	110	mA
		LFXP20E/C	130	mA
ICCJ	V _{CCJ} Power Supply	All	2	mA

Over Recommended Operating Conditions

1. Until DONE signal is active.

2. For further information on supply current, please see details of additional technical documentation at the end of this data sheet.

3. Assumes all outputs are tristated, all inputs are configured as LVCMOS and held at the V_{CCIO} or GND.

4. Frequency 0MHz.

5. Typical user pattern.

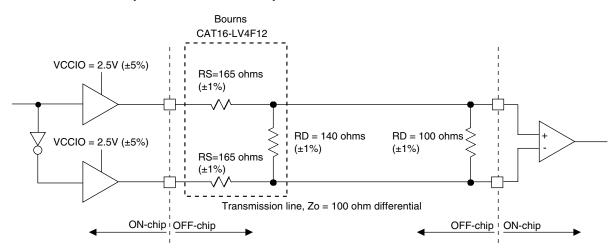
6. Assume normal bypass capacitor/decoupling capacitor across the supply.

7. $T_A=25^{\circ}C$, power supplies at nominal voltage.

sysIO Differential Electrical Characteristics LVDS

Parameter Symbol	Parameter Description	Test Conditions	Min.	Тур.	Max.	Units
V _{INP,} V _{INM}	Input Voltage		0	_	2.4	V
V _{THD}	Differential Input Threshold		+/-100	_	_	mV
		$100mV \le V_{THD}$	V _{THD} /2	1.2	1.8	V
V _{CM}	Input Common Mode Voltage	$200mV \le V_{THD}$	V _{THD} /2	1.2	1.9	V
		$350mV \le V_{THD}$	V _{THD} /2	1.2	2.0	V
I _{IN}	Input current	Power on or power off			+/-10	μA
V _{OH}	Output high voltage for V_{OP} or V_{OM}	R _T = 100 ohms	_	1.38	1.60	V
V _{OL}	Output low voltage for V_{OP} or V_{OM}	R _T = 100 ohms	0.9V	1.03	—	V
V _{OD}	Output voltage differential	$(V_{OP} - V_{OM}), R_T = 100 \text{ ohms}$	250	350	450	mV
ΔV_{OD}	Change in V _{OD} between high and low		_	_	50	mV
V _{OS}	Output voltage offset	$(V_{OP} - V_{OM})/2, R_T = 100 \text{ ohms}$	1.125	1.25	1.375	V
ΔV_{OS}	Change in V _{OS} between H and L		—	_	50	mV
I _{OSD}	Output short circuit current	V _{OD} = 0V Driver outputs shorted	_	_	6	mA

Over Recommended Operating Conditions


Differential HSTL and SSTL

Differential HSTL and SSTL outputs are implemented as a pair of complementary single-ended outputs. All allowable single-ended output classes (class I and class II) are supported in this mode.

LVDS25E

The top and bottom side of LatticeXP devices support LVDS outputs via emulated complementary LVCMOS outputs in conjunction with a parallel resistor across the driver outputs. The scheme shown in Figure 3-1 is one possible solution for point-to-point signals.

Figure 3-1. LVDS25E Output Termination Example

Table 3-1. LVDS25E DC Conditions

Parameter	Description	Typical	Units		
V _{OH}	Output high voltage	1.43	V		
V _{OL}	Output low voltage	1.07	V		
V _{OD}	Output differential voltage	0.35	V		
V _{CM}	Output common mode voltage	1.25	V		
Z _{BACK}	Back impedance	100	ohms		
I _{DC}	DC output current	3.66	mA		

BLVDS

The LatticeXP devices support BLVDS standard. This standard is emulated using complementary LVCMOS outputs in conjunction with a parallel external resistor across the driver outputs. BLVDS is intended for use when multidrop and bi-directional multi-point differential signaling is required. The scheme shown in Figure 3-2 is one possible solution for bi-directional multi-point differential signals.

Typical Building Block Function Performance¹

Pin-to-Pin Performance (LVCMOS25 12 mA Drive)

Function	-5 Timing	Units
Basic Functions		
16-bit decoder	6.1	ns
32-bit decoder	7.3	ns
64-bit decoder	8.2	ns
4:1 MUX	4.9	ns
8:1 MUX	5.3	ns
16:1 MUX	5.7	ns
32:1 MUX	6.3	ns

Register to Register Performance

Function	-5 Timing	Units
Basic Functions		
16-bit decoder	351	MHz
32-bit decoder	248	MHz
64-bit decoder	237	MHz
4:1 MUX	590	MHz
8:1 MUX	523	MHz
16:1 MUX	434	MHz
32:1 MUX	355	MHz
8-bit adder	343	MHz
16-bit adder	292	MHz
64-bit adder	130	MHz
16-bit counter	388	MHz
32-bit counter	295	MHz
64-bit counter	200	MHz
64-bit accumulator	164	MHz
Embedded Memory Functions		
Single Port RAM 256x36 bits	254	MHz
True-Dual Port RAM 512x18 bits	254	MHz
Distributed Memory Functions		
16x2 SP RAM	434	MHz
64x2 SP RAM	332	MHz
128x4 SP RAM	235	MHz
32x2 PDP RAM	322	MHz
64x4 PDP RAM	291	MHz

1. These timing numbers were generated using the ispLEVER design tool. Exact performance may vary with design and tool version. The tool uses internal parameters that have been characterized but are not tested on every device.

Timing v.F0.11

Signal Descriptions (Cont.)

Signal Name	I/O	Descriptions
Test and Programming (Dedicated pins.	Pull-up	b is enabled on input pins during configuration.)
TMS	I	Test Mode Select input, used to control the 1149.1 state machine.
тск	I	Test Clock input pin, used to clock the 1149.1 state machine.
TDI	I	Test Data in pin, used to load data into device using 1149.1 state machine. After power-up, this TAP port can be activated for configuration by sending appropriate command. (Note: once a configuration port is selected it is locked. Another configuration port cannot be selected until the power-up sequence).
TDO	0	Output pin -Test Data out pin used to shift data out of device using 1149.1.
V _{CCJ}	—	V _{CCJ} - The power supply pin for JTAG Test Access Port.
Configuration Pads (used during sysCO	NFIG)	
CFG[1:0]	I	Mode pins used to specify configuration modes values latched on rising edge of INITN. During configuration, a pull-up is enabled.
INITN	I/O	Open Drain pin - Indicates the FPGA is ready to be configured. During con- figuration, a pull-up is enabled. If CFG1 and CFG0 are high (SDM) then this pin is pulled low.
PROGRAMN	I	Initiates configuration sequence when asserted low. This pin always has an active pull-up.
DONE	I/O	Open Drain pin - Indicates that the configuration sequence is complete, and the startup sequence is in progress.
CCLK	I/O	Configuration Clock for configuring an FPGA in sysCONFIG mode.
BUSY	I/O	Generally not used. After configuration it is a user-programmable I/O pin.
CSN	I	sysCONFIG chip select (Active low). During configuration, a pull-up is enabled. After configuration it is user a programmable I/O pin.
CS1N	I	sysCONFIG chip select (Active Low). During configuration, a pull-up is enabled. After configuration it is user programmable I/O pin
WRITEN	I	Write Data on Parallel port (Active low). After configuration it is a user pro- grammable I/O pin
D[7:0]	I/O	sysCONFIG Port Data I/O. After configuration these are user programmable I/O pins.
DOUT, CSON	0	Output for serial configuration data (rising edge of CCLK) when using sys- CONFIG port. After configuration, it is a user-programmable I/O pin.
DI	I	Input for serial configuration data (clocked with CCLK) when using sysCON- FIG port. During configuration, a pull-up is enabled. After configuration it is a user-programmable I/O pin.
SLEEPN ²	I	Sleep Mode pin - Active low sleep pin.b When this pin is held high, the device operates normally.b When driven low, the device moves into Sleep Mode after a specified time. This pin has a weak internal pull-up, but when not used an external pull-up to V_{CC} is recommended.
TOE ³	I	Test Output Enable tri-states all I/O pins when driven low. This pin has a weak internal pull-up, but when not used an external pull-up to $V_{\rm CC}$ is recommended.

Applies tob LFXP10, LFXP15 and LFXP20 only.
Applies to LFXP "C" devices only.
Applies to LFXP "E" devices only.

LFXP3 & LFXP6 Logic Signal Connections: 208 PQFP (Cont.)

Pin	LFXP3				LFXP6				
Number	Pin Function	Bank	Differential	Dual Function	Pin Function	Bank	Differential	Dual Function	
139	PR7A	2	T ³	DQS	PR7A	2	T ³	DQS	
140	VCCIO2	2	-	-	VCCIO2	2	-	-	
141	PR6B	2	-	VREF1_2	PR6B	2	-	VREF1_2	
142	PR5A	2	-	VREF2_2	PR5A	2	-	VREF2_2	
143	GNDIO2	2	-	-	GNDIO2	2	-	-	
144	PR4B	2	C ³	-	PR4B	2	C ³	-	
145	PR4A	2	T ³	-	PR4A	2	T ³	-	
146	PR3B	2	С	RUM0_PLLC_FB_A	PR3B	2	С	RUM0_PLLC_FB_A	
147	PR3A	2	Т	RUM0_PLLT_FB_A	PR3A	2	Т	RUM0_PLLT_FB_A	
148	PR2B	2	C ³	-	PR2B	2	C ³	-	
149	VCCIO2	2	-	-	VCCIO2	2	-	-	
150	PR2A	2	T ³	-	PR2A	2	T ³	-	
151	VCC	-	-	-	VCC	-	-	-	
152	VCCAUX	-	-	-	VCCAUX	-	-	-	
153	TDO	-	-	-	TDO	-	-	-	
154	VCCJ	-	-	-	VCCJ	-	-	-	
155	TDI	-	-	-	TDI	-	-	-	
156	TMS	-	-	-	TMS	-	-	-	
157	ТСК	-	-	-	ТСК	-	-	-	
158	VCC	-	-	-	VCC	-	-	-	
159	PT25A	1	-	VREF1_1	PT28A	1	-	VREF1_1	
160	PT24B	1	С	-	PT27B	1	С	-	
161	PT24A	1	Т	-	PT27A	1	Т	-	
162	PT23A	1	-	D0	PT26A	1	-	D0	
163	GNDIO1	1	-	-	GNDIO1	1	-	-	
164	PT22B	1	С	D1	PT25B	1	С	D1	
165	PT22A	1	Т	VREF2_1	PT25A	1	Т	VREF2_1	
166	PT21A	1	-	D2	PT24A	1	-	D2	
167	VCCIO1	1	-	-	VCCIO1	1	-	-	
168	PT20B	1	С	D3	PT23B	1	С	D3	
169	PT20A	1	Т	-	PT23A	1	Т	-	
170	PT19B	1	С	-	PT22B	1	С	-	
171	PT19A	1	Т	DQS	PT22A	1	Т	DQS	
172	GNDIO1	1	-	-	GNDIO1	1	-	-	
173	PT18B	1	-	-	PT21B	1	-	-	
174	PT17A	1	-	D4	PT20A	1	-	D4	
175	PT16B	1	С	-	PT19B	1	С	-	
176	PT16A	1	Т	D5	PT19A	1	Т	D5	
177	VCCIO1	1	-	-	VCCIO1	1	-	-	
178	PT15B	1	С	D6	PT18B	1	С	D6	
179	PT15A	1	Т	-	PT18A	1	Т	-	
180	PT14B	1	-	D7	PT17B	1	-	D7	
181	GND	-	-	-	GND	-	-	-	
182	VCC	-	-	-	VCC	-	-	-	
183	PT13B	0	С	BUSY	PT16B	0	С	BUSY	
184	GNDIO0	0	-	-	GNDIO0	0	-	-	

LFXP6 & LFXP10 Logic Signal Connections: 256 fpBGA (Cont.)

			LFXP6		LFXP10				
Ball Number	Ball Function Bank		Dual Differential Function		Ball Function	Bank	Differential	Dual Function	
E16	TDO	-	-	-	TDO	-	-	-	
D16	VCCJ	-	-	-	VCCJ	-	-	-	
D14	TDI	-	-	-	TDI	-	-	-	
C14	TMS	-	-	-	TMS	-	-	-	
B14	ТСК	-	-	-	ТСК	-	-	-	
-	GNDIO1	1	-	-	GNDIO1	1	-	-	
A15	PT31B	1	С	-	PT35B	1	С	-	
B15	PT31A	1	Т	-	PT35A	1	Т	-	
-	GNDIO1	1	-	-	GNDIO1	1	-	-	
D12	PT28A	1	-	VREF1_1	PT34B	1	С	VREF1_1	
C11	PT30A	1	Т	DQS	PT34A	1	Т	DQS	
A14	PT29B	1	-	-	PT33B	1	-	-	
B13	PT30B	1	С	-	PT32A	1	-	-	
F12	PT27B	1	С	-	PT31B	1	С	-	
E11	PT27A	1	Т	-	PT31A	1	Т	-	
A13	PT26B	1	С	-	PT30B	1	С	-	
C13	PT26A	1	Т	D0	PT30A	1	Т	D0	
-	GNDIO1	1	-	-	GNDIO1	1	-	-	
C10	PT25B	1	С	D1	PT29B	1	С	D1	
E10	PT25A	1	Т	VREF2_1	PT29A	1	Т	VREF2_1	
A12	PT24B	1	С	-	PT28B	1	С	-	
B12	PT24A	1	Т	D2	PT28A	1	Т	D2	
C12	PT23B	1	С	D3	PT27B	1	С	D3	
A11	PT23A	1	Т	-	PT27A	1	Т	-	
B11	PT22B	1	С	-	PT26B	1	С	-	
D11	PT22A	1	Т	DQS	PT26A	1	Т	DQS	
-	GNDIO1	1	-	-	GNDIO1	1	-	-	
B9	PT21B	1	-	-	PT25B	1	-	-	
D9	PT20A	1	-	D4	PT24A	1	-	D4	
A10	PT19B	1	С	-	PT23B	1	С	-	
B10	PT19A	1	Т	D5	PT23A	1	T	D5	
D10	PT18B	1	С	D6	PT22B	1	С	D6	
A9	PT18A	1	Т	-	PT22A	1	T	-	
C9	PT17B	1	С	D7	PT21B	1	С	D7	
C8	PT17A	1	Т	-	PT21A	1	Т	-	
E9	PT16B	0	C	BUSY	PT20B	0	C	BUSY	
-	GNDIO0	0	-	-	GNDIO0	0	-	-	
B8	PT16A	0	Т	CS1N	PT20A	0	Т	CS1N	
A8	PT15B	0	C	PCLKC0_0	PT19B	0	C	PCLKC0_0	
A7	PT15A	0	T	PCLKT0_0	PT19A	0	T	PCLKT0_0	
B7	PT14B	0	C	-	PT18B	0	C	-	
C7	PT14A	0	T	DQS	PT18A	0	T	DQS	

LFXP15 & LFXP20 Logic Signal Connections: 256 fpBGA (Cont.)

			LFXP15		LFXP20					
Ball Number			Differential	Dual Function	Ball Function	Bank	Differential	Dual Function		
-	GNDIO2	2	-	-	GNDIO2	2	-	-		
F15	PR10B	2	-	-	PR10B	2	-	-		
E15	PR9A	2	-	VREF2_2	PR9A	2	-	VREF2_2		
F14	PR8B	2	C ³	-	PR8B	2	C ³	-		
E14	PR8A	2	T³	-	PR8A	2	T³	-		
D15	PR7B	2	С	RUM0_PLLC_FB_A	PR7B	2	С	RUM0_PLLC_FB_A		
C15	PR7A	2	Т	RUM0_PLLT_FB_A	PR7A	2	Т	RUM0_PLLT_FB_A		
-	GNDIO2	2	-	-	GNDIO2	2	-	-		
E16	TDO	-	-	-	TDO	-	-	-		
D16	VCCJ	-	-	-	VCCJ	-	-	-		
D14	TDI	-	-	-	TDI	-	-	-		
C14	TMS	-	-	-	TMS	-	-	-		
B14	TCK	-	-	-	ТСК	-	-	-		
-	GNDIO1	1	-	-	GNDIO1	1	-	-		
-	GNDIO1	1	-	-	GNDIO1	1	-	-		
-	GNDIO1	1	-	-	GNDIO1	1	-	-		
A15	PT40B	1	С	-	PT44B	1	С	-		
B15	PT40A	1	Т	-	PT44A 1		Т	-		
D12	PT39B	1	С	VREF1_1	PT43B	1	С	VREF1_1		
-	GNDIO1	1	-	-	GNDIO1	1	-	-		
C11	PT39A	1	Т	DQS	PT43A	1	Т	DQS		
A14	PT38B	1	-	-	PT42B	1	-	-		
B13	PT37A	1	-	-	PT41A	1	-	-		
F12	PT36B	1	С	-	PT40B	1	С	-		
E11	PT36A	1	Т	-	PT40A	1	Т	-		
A13	PT35B	1	С	-	PT39B	1	С	-		
C13	PT35A	1	Т	D0	PT39A	1	Т	D0		
C10	PT34B	1	С	D1	PT38B	1	С	D1		
E10	PT34A	1	Т	VREF2_1	PT38A	1	Т	VREF2_1		
A12	PT33B	1	С	-	PT37B	1	С	-		
B12	PT33A	1	Т	D2	PT37A	1	Т	D2		
-	GNDIO1	1	-	-	GNDIO1	1	-	-		
C12	PT32B	1	С	D3	PT36B	1	С	D3		
A11	PT32A	1	Т	-	PT36A	1	Т	-		
B11	PT31B	1	С	-	PT35B	1	С	-		
D11	PT31A	1	Т	DQS PT35A 1		1	Т	DQS		
B9	PT30B	1	-	-	PT34B	1	-	-		
D9	PT29A	1	-	D4	PT33A	1	-	D4		
A10	PT28B	1	С	-	PT32B	1	С	-		
B10	PT28A	1	Т	D5	PT32A	1	Т	D5		
-	GNDIO1	1	-	-	GNDIO1	1	-	-		
D10	PT27B	1	С	D6	PT31B	1	С	D6		

LFXP10, LFXP15 & LFXP20 Logic Signal Connections: 388 fpBGA (Cont.)

	LFXP10					;	LFXP20						
Ball Ball			Dente Diff. D. 1.5. 11		Ball					Ball Evention Bank Diff Dual			
Number	Function	Bank		Dual Function	Function	Bank		Dual Function	Function	Bank	Diff.	Dual Function	
C20	PT38A	1	Т	-	PT43A	1	Т	-	PT47A	1	Т	-	
C21	PT37B	1	С	-	PT42B	1	С	-	PT46B	1	С	-	
C22	PT37A	1	Т	-	PT42A	1	Т	-	PT46A	1	Т	-	
B22	PT36B	1	С	-	PT41B	1	С	-	PT45B	1	С	-	
A21	PT36A	1	Т	-	PT41A	1	Т	-	PT45A	1	Т	-	
D15	PT35B	1	С	-	PT40B	1	С	-	PT44B	1	С	-	
D14	PT35A	1	Т	-	PT40A	1	Т	-	PT44A	1	Т	-	
B21	PT34B	1	С	VREF1_1	PT39B	1	С	VREF1_1	PT43B	1	С	VREF1_1	
-	GNDIO1	1	-	-	GNDIO1	1	-	-	GNDIO1	1	-	-	
A20	PT34A	1	Т	DQS	PT39A	1	Т	DQS	PT43A	1	Т	DQS	
B20	PT33B	1	-	-	PT38B	1	-	-	PT42B	1	-	-	
A19	PT32A	1	-	-	PT37A	1	-	-	PT41A	1	-	-	
B19	PT31B	1	С	-	PT36B	1	С	-	PT40B	1	С	-	
A18	PT31A	1	Т	-	PT36A	1	Т	-	PT40A	1	Т	-	
C14	PT30B	1	С	-	PT35B	1	С	-	PT39B	1	С	-	
C13	PT30A	1	Т	D0	PT35A	1	Т	D0	PT39A	1	Т	D0	
B18	PT29B	1	С	D1	PT34B	1	С	D1	PT38B	1	С	D1	
A17	PT29A	1	Т	VREF2_1	PT34A	1	Т	VREF2 1	PT38A	1	Т	VREF2_1	
B17	PT28B	1	С	-	PT33B	1	С	-	PT37B	1	С	-	
A16	PT28A	1	Т	D2	PT33A	1	Т	D2	PT37A	1	Т	D2	
-	GNDIO1	1	-		GNDIO1	1	_		GNDIO1	1	-		
B16	PT27B	1	С	D3	PT32B	1	С	D3	PT36B	1	С	D3	
A15	PT27A	1	T	-	PT32A	1	T	-	PT36A	1	T	-	
B15	PT26B	1	C		PT31B	1	C	-	PT35B	1	C		
A14	PT26A	1	T	DQS	PT31A	1	T	DQS	PT35A	1	T	DQS	
D13	PT25B	1	-	DQ3	PT30B	1	-	-	PT34B	1	-	-	
D13	PT24A	1	-	- D4	PT29A	1	-	 D4	PT34B PT33A	1	-	- D4	
B14		1	C	-			C	-	PT32B	1	C		
	PT23B	1	Т		PT28B	1	Т				Т		
A13	PT23A		-	D5	PT28A	1		D5	PT32A	1		D5	
-	GNDIO1	1		-	GNDIO1	1	-	-	GNDIO1	1	-	-	
B13	PT22B	1	C	D6	PT27B	1	C	D6	PT31B	1	C	D6	
A12	PT22A	1	Т	-	PT27A	1	Т	-	PT31A	1	Т	-	
B12	PT21B	1	С	D7	PT26B	1	С	D7	PT30B	1	С	D7	
C12	PT21A	1	Т	-	PT26A	1	Т	-	PT30A	1	Т	-	
C11	PT20B	0	С	BUSY	PT25B	0	С	BUSY	PT29B	0	С	BUSY	
-	GNDIO0	0	-	-	GNDIO0	0	-	-	GNDIO0	0	-	-	
B11	PT20A	0	Т	CS1N	PT25A	0	Т	CS1N	PT29A	0	Т	CS1N	
A11	PT19B	0	С	PCLKC0_0	PT24B	0	С	PCLKC0_0	PT28B	0	С	PCLKC0_0	
A10	PT19A	0	Т	PCLKT0_0	PT24A	0	Т	PCLKT0_0	PT28A	0	Т	PCLKT0_0	
B10	PT18B	0	С	-	PT23B	0	С	-	PT27B	0	С	-	
B9	PT18A	0	Т	DQS	PT23A	0	Т	DQS	PT27A	0	Т	DQS	
D11	PT17B	0	-	-	PT22B	0	-	-	PT26B	0	-	-	
D10	PT16A	0	-	DOUT	PT21A	0	-	DOUT	PT25A	0	-	DOUT	
A9	PT15B	0	С	-	PT20B	0	С	-	PT24B	0	С	-	
-	GNDIO0	0	-	-	GNDIO0	0	-	-	GNDIO0	0	-	-	
C8	PT15A	0	Т	WRITEN	PT20A	0	Т	WRITEN	PT24A	0	Т	WRITEN	
B8	PT14B	0	С	-	PT19B	0	С	-	PT23B	0	С	-	
A8	PT14A	0	Т	VREF1_0	PT19A	0	Т	VREF1_0	PT23A	0	Т	VREF1_0	
C7	PT13B	0	С	-	PT18B	0	С	-	PT22B	0	С	-	

LFXP15 & LFXP20 Logic Signal Connections: 484 fpBGA (Cont.)

			LFXP15		LFXP20				
Ball Number	Ball Function	Bank	Differential	Dual Function	Ball Function	Bank	Differential	Dual Function	
AB5	PB16A	5	Т	-	PB20A	5	Т	-	
AB6	PB16B	5	С	-	PB20B	5	С	-	
AA8	PB17A	5	Т	-	PB21A	5	Т	-	
AA9	PB17B	5	С	VREF2_5	PB21B	5	С	VREF2_5	
W10	PB18A	5	Т	-	PB22A	5	Т	-	
-	GNDIO5	5	-	-	GNDIO5	5	-	-	
V10	PB18B	5	С	-	PB22B	5	С	-	
AB7	PB19A	5	Т	-	PB23A	5	Т	-	
AB8	PB19B	5	С	-	PB23B	5	С	-	
AB9	PB20A	5	Т	-	PB24A	5	Т	-	
AB10	PB20B	5	С	-	PB24B	5	С	-	
Y10	PB21A	5	-	-	PB25A	5	-	-	
AA10	PB22B	5	-	-	PB26B	5	-	-	
W11	PB23A	5	Т	DQS	PB27A	5	Т	DQS	
V11	PB23B	5	С	-	PB27B	5	С	-	
-	GNDIO5	5	-	-	GNDIO5	5	-	-	
Y11	PB24A	5	Т	-	PB28A	5	Т	-	
AA11	PB24B	5	С	-	PB28B	5	С	-	
AB11	PB25A	5	Т	-	PB29A	5	Т	-	
AB12	PB25B	5	С	-	PB29B	5	С	-	
Y12	PB26A	4	Т	-	PB30A	4	Т	-	
AA12	PB26B	4	С	-	PB30B	4	С	-	
W12	PB27A	4	Т	PCLKT4_0	PB31A	4	Т	PCLKT4_0	
V12	PB27B	4	С	PCLKC4_0	PB31B	4	С	PCLKC4_0	
-	GNDIO4	4	-	-	GNDIO4	4	-	-	
AB13	PB28A	4	Т	-	PB32A	4	Т	-	
AB14	PB28B	4	С	-	PB32B	4	С	-	
AA13	PB29A	4	-	-	PB33A	4	-	-	
Y13	PB30B	4	-	-	PB34B	4	-	-	
AB15	PB31A	4	Т	DQS	PB35A	4	Т	DQS	
AB16	PB31B	4	С	VREF1_4	PB35B	4	С	VREF1_4	
V13	PB32A	4	Т	-	PB36A	4	Т	-	
W13	PB32B	4	С	-	PB36B	4	С	-	
AA14	PB33A	4	Т	-	PB37A	4	Т	-	
-	GNDIO4	4	-	-	GNDIO4	4	-	-	
AA15	PB33B	4	С	-	PB37B	4	С	-	
AB17	PB34A	4	Т	-	PB38A	4	Т	-	
AB18	PB34B	4	С	-	PB38B	4	С	-	
W14	PB35A	4	Т	-	PB39A	4	Т	-	
Y14	PB35B	4	С	-	PB39B	4	С	-	
U14	PB36A	4	Т	VREF2_4	PB40A	4	Т	VREF2_4	
V14	PB36B	4	С	-	PB40B	4	С	-	

Lead-free Packaging

Commercial I/Os Part Number Voltage Grade Package Pins Temp. LUTs LFXP3C-3QN208C PQFP 136 1.8/2.5/3.3V -3 208 COM 3.1K LFXP3C-4QN208C 136 1.8/2.5/3.3V PQFP 208 COM -4 3.1K LFXP3C-5QN208C 136 -5 PQFP 208 COM 1.8/2.5/3.3V 3.1K LFXP3C-3TN144C COM 100 1.8/2.5/3.3V -3 TQFP 144 3.1K LFXP3C-4TN144C COM 100 1.8/2.5/3.3V -4 TQFP 144 3.1K LFXP3C-5TN144C 100 1.8/2.5/3.3V -5 TQFP 144 COM 3.1K LFXP3C-3TN100C 62 1.8/2.5/3.3V TQFP 100 COM 3.1K -3 LFXP3C-4TN100C TQFP 100 COM 62 1.8/2.5/3.3V -4 3.1K LFXP3C-5TN100C 62 -5 TQFP 100 COM 1.8/2.5/3.3V 3.1K

Part Number	l/Os	Voltage	Grade	Package	Pins	Temp.	LUTs
LFXP6C-3FN256C	188	1.8/2.5/3.3V	-3	fpBGA	256	COM	5.8K
LFXP6C-4FN256C	188	1.8/2.5/3.3V	-4	fpBGA	256	COM	5.8K
LFXP6C-5FN256C	188	1.8/2.5/3.3V	-5	fpBGA	256	COM	5.8K
LFXP6C-3QN208C	142	1.8/2.5/3.3V	-3	PQFP	208	COM	5.8K
LFXP6C-4QN208C	142	1.8/2.5/3.3V	-4	PQFP	208	COM	5.8K
LFXP6C-5QN208C	142	1.8/2.5/3.3V	-5	PQFP	208	COM	5.8K
LFXP6C-3TN144C	100	1.8/2.5/3.3V	-3	TQFP	144	COM	5.8K
LFXP6C-4TN144C	100	1.8/2.5/3.3V	-4	TQFP	144	COM	5.8K
LFXP6C-5TN144C	100	1.8/2.5/3.3V	-5	TQFP	144	COM	5.8K

Part Number	I/Os	Voltage	Grade	Package	Pins	Temp.	LUTs
LFXP10C-3FN388C	244	1.8/2.5/3.3V	-3	fpBGA	388	COM	9.7K
LFXP10C-4FN388C	244	1.8/2.5/3.3V	-4	fpBGA	388	COM	9.7K
LFXP10C-5FN388C	244	1.8/2.5/3.3V	-5	fpBGA	388	COM	9.7K
LFXP10C-3FN256C	188	1.8/2.5/3.3V	-3	fpBGA	256	COM	9.7K
LFXP10C-4FN256C	188	1.8/2.5/3.3V	-4	fpBGA	256	COM	9.7K
LFXP10C-5FN256C	188	1.8/2.5/3.3V	-5	fpBGA	256	COM	9.7K

Part Number	l/Os	Voltage	Grade	Package	Pins	Temp.	LUTs
LFXP15C-3FN484C	300	1.8/2.5/3.3V	-3	fpBGA	484	COM	15.5K
LFXP15C-4FN484C	300	1.8/2.5/3.3V	-4	fpBGA	484	COM	15.5K
LFXP15C-5FN484C	300	1.8/2.5/3.3V	-5	fpBGA	484	COM	15.5K
LFXP15C-3FN388C	268	1.8/2.5/3.3V	-3	fpBGA	388	COM	15.5K
LFXP15C-4FN388C	268	1.8/2.5/3.3V	-4	fpBGA	388	COM	15.5K
LFXP15C-5FN388C	268	1.8/2.5/3.3V	-5	fpBGA	388	COM	15.5K
LFXP15C-3FN256C	188	1.8/2.5/3.3V	-3	fpBGA	256	COM	15.5K
LFXP15C-4FN256C	188	1.8/2.5/3.3V	-4	fpBGA	256	COM	15.5K
LFXP15C-5FN256C	188	1.8/2.5/3.3V	-5	fpBGA	256	COM	15.5K