

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	-
Number of Logic Elements/Cells	20000
Total RAM Bits	405504
Number of I/O	340
Number of Gates	
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	484-BBGA
Supplier Device Package	484-FPBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lfxp20e-3fn484c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

LatticeXP Family Data Sheet Introduction

July 2007

Features

■ Non-volatile, Infinitely Reconfigurable

- Instant-on powers up in microseconds
- No external configuration memory
- Excellent design security, no bit stream to intercept
- Reconfigure SRAM based logic in milliseconds
- SRAM and non-volatile memory programmable through system configuration and JTAG ports
- Sleep Mode
 - Allows up to 1000x static current reduction
- TransFR[™] Reconfiguration (TFR)
 In-field logic update while system operates
- Extensive Density and Package Options
 - 3.1K to 19.7K LUT4s
 - 62 to 340 I/Os
 - Density migration supported

Embedded and Distributed Memory

- 54 Kbits to 396 Kbits sysMEM[™] Embedded Block RAM
- Up to 79 Kbits distributed RAM
- Flexible memory resources:
 - Distributed and block memory

■ Flexible I/O Buffer

• Programmable sysIO[™] buffer supports wide range of interfaces:

Data Sheet DS1001

- LVCMOS 3.3/2.5/1.8/1.5/1.2
- LVTTL
- SSTL 18 Class I
- SSTL 3/2 Class I, II
- HSTL15 Class I, III
- HSTL 18 Class I, II, III
- PCI
- LVDS, Bus-LVDS, LVPECL, RSDS
- Dedicated DDR Memory Support
 - Implements interface up to DDR333 (166MHz)

■ sysCLOCK[™] PLLs

- Up to 4 analog PLLs per device
- Clock multiply, divide and phase shifting
- System Level Support
 - IEEE Standard 1149.1 Boundary Scan, plus ispTRACY™ internal logic analyzer capability
 - Onboard oscillator for configuration
 - Devices operate with 3.3V, 2.5V, 1.8V or 1.2V power supply

Device	LFXP3	LFXP6	LFXP10	LFXP15	LFXP20
PFU/PFF Rows	16	24	32	40	44
PFU/PFF Columns	24	30	38	48	56
PFU/PFF (Total)	384	720	1216	1932	2464
LUTs (K)	3	6	10	15	20
Distributed RAM (KBits)	12	23	39	61	79
EBR SRAM (KBits)	54	72	216	324	396
EBR SRAM Blocks	6	8	24	36	44
V _{CC} Voltage	1.2/1.8/2.5/3.3V	1.2/1.8/2.5/3.3V	1.2/1.8/2.5/3.3V	1.2/1.8/2.5/3.3V	1.2/1.8/2.5/3.3V
PLLs	2	2	4	4	4
Max. I/O	136	188	244	300	340
Packages and I/O Combination	ons:				
100-pin TQFP (14 x 14 mm)	62				
144-pin TQFP (20 x 20 mm)	100	100			
208-pin PQFP (28 x 28 mm)	136	142			
256-ball fpBGA (17 x 17 mm)		188	188	188	188
388-ball fpBGA (23 x 23 mm)			244	268	268
484-ball fpBGA (23 x 23 mm)				300	340

Table 1-1. LatticeXP Family Selection Guide

© 2007 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Figure 2-10. PLL Diagram

Figure 2-11 shows the available macros for the PLL. Table 2-11 provides signal description of the PLL Block.

Figure 2-11. PLL Primitive

Table 2-5.	PLL	Signal	Descri	ptions
------------	-----	--------	--------	--------

Signal	I/O	Description
CLKI	I	Clock input from external pin or routing
CLKFB	I	PLL feedback input from CLKOP (PLL internal), from clock net (CLKOP) or from a user clock (PIN or logic)
RST	I	"1" to reset input clock divider
CLKOS	0	PLL output clock to clock tree (phase shifted/duty cycle changed)
CLKOP	0	PLL output clock to clock tree (No phase shift)
CLKOK	0	PLL output to clock tree through secondary clock divider
LOCK	0	"1" indicates PLL LOCK to CLKI
DDAMODE	I	Dynamic Delay Enable. "1" Pin control (dynamic), "0": Fuse Control (static)
DDAIZR	I	Dynamic Delay Zero. "1": delay = 0, "0": delay = on
DDAILAG	I	Dynamic Delay Lag/Lead. "1": Lag, "0": Lead
DDAIDEL[2:0]	I	Dynamic Delay Input
DDAOZR	0	Dynamic Delay Zero Output
DDAOLAG	0	Dynamic Delay Lag/Lead Output
DDAODEL[2:0]	0	Dynamic Delay Output

The EBR memory supports three forms of write behavior for single port or dual port operation:

- 1. **Normal** data on the output appears only during read cycle. During a write cycle, the data (at the current address) does not appear on the output. This mode is supported for all data widths.
- 2. Write Through -ba copy of the input data appears at the output of the same port during a write cycle.bThis mode is supported for all data widths.
- 3. **Read-Before-Write** when new data is being written, the old content of the address appears at the output. This mode is supported for x9, x18 and x36 data widths.

Memory Core Reset

The memory array in the EBR utilizes latches at the A and B output ports. These latches can be reset asynchronously. RSTA and RSTB are local signals, which reset the output latches associated with Port A and Port B respectively. The Global Reset (GSRN) signal resets both ports. The output data latches and associated resets for both ports are as shown in Figure 2-15.

Figure 2-15. Memory Core Reset

For further information on sysMEM EBR block, see the details of additional technical documentation at the end of this data sheet.

EBR Asynchronous Reset

EBR asynchronous reset or GSR (if used) can only be applied if all clock enables are low for a clock cycle before the reset is applied and released a clock cycle after the reset is released, as shown in Figure 2-16. The GSR input to the EBR is always asynchronous.

Figure 2-16. EBR Asynchronous Reset (Including GSR) Timing Diagram

Reset	
Clock	
Clock Enable	

If all clock enables remain enabled, the EBR asynchronous reset or GSR may only be applied and released after the EBR read and write clock inputs are in a steady state condition for a minimum of $1/f_{MAX}$ (EBR clock). The reset release must adhere to the EBR synchronous reset setup time before the next active read or write clock edge.

If an EBR is pre-loaded during configuration, the GSR input must be disabled or the release of the GSR during device Wake Up must occur before the release of the device I/Os becoming active.

These instructions apply to all EBR RAM and ROM implementations.

Note that there are no reset restrictions if the EBR synchronous reset is used and the EBR GSR input is disabled.

Programmable I/O Cells (PICs)

Each PIC contains two PIOs connected to their respective sysIO Buffers which are then connected to the PADs as shown in Figure 2-17. The PIO Block supplies the output data (DO) and the Tri-state control signal (TO) to sysIO buffer, and receives input from the buffer.

Lattice Semiconductor

in selected blocks the input to the DQS delay block. If one of the bypass options is not chosen, the signal first passes through an optional delay block. This delay, if selected, ensures no positive input-register hold-time requirement when using a global clock.

The input block allows two modes of operation. In the single data rate (SDR) the data is registered, by one of the registers in the single data rate sync register block, with the system clock. In the DDR Mode two registers are used to sample the data on the positive and negative edges of the DQS signal creating two data streams, D0 and D2. These two data streams are synchronized with the system clock before entering the core. Further discussion on this topic is in the DDR Memory section of this data sheet.

Figure 2-21 shows the input register waveforms for DDR operation and Figure 2-22 shows the design tool primitives. The SDR/SYNC registers have reset and clock enable available.

The signal DDRCLKPOL controls the polarity of the clock used in the synchronization registers. It ensures adequate timing when data is transferred from the DQS to the system clock domain. For further discussion of this topic, see the DDR memory section of this data sheet.

Figure 2-20. Input Register Diagram

Typical I/O Behavior During Power-up

The internal power-on-reset (POR) signal is deactivated when V_{CC} and V_{CCAUX} have reached satisfactory levels. After the POR signal is deactivated, the FPGA core logic becomes active. It is the user's responsibility to ensure that all other V_{CCIO} banks are active with valid input logic levels to properly control the output logic states of all the I/O banks that are critical to the application. The default configuration of the I/O pins in a blank device is tri-state with a weak pull-up to VCCIO. The I/O pins will not take on the user configuration until VCC, VCCAUX and VCCIO have reached satisfactory levels at which time the I/Os will take on the user-configured settings.

The V_{CC} and V_{CCAUX} supply the power to the FPGA core fabric, whereas the V_{CCIO} supplies power to the I/O buffers. In order to simplify system design while providing consistent and predictable I/O behavior, it is recommended that the I/O buffers be powered-up prior to the FPGA core fabric. V_{CCIO} supplies should be powered up before or together with the V_{CC} and V_{CCAUX} supplies.

Supported Standards

The LatticeXP sysIO buffer supports both single-ended and differential standards. Single-ended standards can be further subdivided into LVCMOS, LVTTL and other standards. The buffers support the LVTTL, LVCMOS 1.2, 1.5, 1.8, 2.5 and 3.3V standards. In the LVCMOS and LVTTL modes, the buffer has individually configurable options for drive strength, bus maintenance (weak pull-up, weak pull-down, or a bus-keeper latch) and open drain. Other single-ended standards supported include SSTL and HSTL. Differential standards supported include LVDS, BLVDS, LVPECL, differential SSTL and differential HSTL. Tables 2-7 and 2-8 show the I/O standards (together with their supply and reference voltages) supported by the LatticeXP devices. For further information on utilizing the sysIO buffer to support a variety of standards please see the details of additional technical documentation at the end of this data sheet.

Input Standard	V _{REF} (Nom.)	V _{CCIO} ¹ (Nom.)			
Single Ended Interfaces					
LVTTL		—			
LVCMOS33 ²		—			
LVCMOS25 ²	_	—			
LVCMOS18	_	1.8			
LVCMOS15	—	1.5			
LVCMOS12 ²	—	—			
PCI	_	3.3			
HSTL18 Class I, II	0.9	—			
HSTL18 Class III	1.08	—			
HSTL15 Class I	0.75	—			
HSTL15 Class III	0.9	—			
SSTL3 Class I, II	1.5	—			
SSTL2 Class I, II	1.25	—			
SSTL18 Class I	0.9	—			
Differential Interfaces					
Differential SSTL18 Class I		—			
Differential SSTL2 Class I, II		—			
Differential SSTL3 Class I, II	—	—			
Differential HSTL15 Class I, III		—			
Differential HSTL18 Class I, II, III		_			
LVDS, LVPECL	_	—			
BLVDS		—			

Table 2-7. Supported Input Standards

1. When not specified $V_{\mbox{CCIO}}$ can be set anywhere in the valid operating range.

2. JTAG inputs do not have a fixed threshold option and always follow $V_{\mbox{CCJ.}}$

Table 2-8. Supported	Output Standards
----------------------	-------------------------

Output Standard	Drive	V _{CCIO} (Nom.)			
Single-ended Interfaces					
LVTTL	4mA, 8mA, 12mA, 16mA, 20mA	3.3			
LVCMOS33	4mA, 8mA, 12mA 16mA, 20mA	3.3			
LVCMOS25	4mA, 8mA, 12mA 16mA, 20mA	2.5			
LVCMOS18	4mA, 8mA, 12mA 16mA	1.8			
LVCMOS15	4mA, 8mA	1.5			
LVCMOS12	2mA, 6mA	1.2			
LVCMOS33, Open Drain	4mA, 8mA, 12mA 16mA, 20mA	—			
LVCMOS25, Open Drain	4mA, 8mA, 12mA 16mA, 20mA	—			
LVCMOS18, Open Drain	4mA, 8mA, 12mA 16mA	—			
LVCMOS15, Open Drain	4mA, 8mA	—			
LVCMOS12, Open Drain	2mA. 6mA	—			
PCI33	N/A	3.3			
HSTL18 Class I, II, III	N/A	1.8			
HSTL15 Class I, III	N/A	1.5			
SSTL3 Class I, II	N/A	3.3			
SSTL2 Class I, II	N/A	2.5			
SSTL18 Class I	N/A	1.8			
Differential Interfaces	•				
Differential SSTL3, Class I, II	N/A	3.3			
Differential SSTL2, Class I, II	N/A	2.5			
Differential SSTL18, Class I	N/A	1.8			
Differential HSTL18, Class I, II, III	N/A	1.8			
Differential HSTL15, Class I, III	N/A	1.5			
LVDS	N/A	2.5			
BLVDS ¹	N/A	2.5			
LVPECL ¹	N/A	3.3			

1. Emulated with external resistors.

Hot Socketing

The LatticeXP devices have been carefully designed to ensure predictable behavior during power-up and powerdown. Power supplies can be sequenced in any order. During power up and power-down sequences, the I/Os remain in tristate until the power supply voltage is high enough to ensure reliable operation. In addition, leakage into I/O pins is controlled to within specified limits, which allows easy integration with the rest of the system. These capabilities make the LatticeXP ideal for many multiple power supply and hot-swap applications.

Sleep Mode

The LatticeXP "C" devices ($V_{CC} = 1.8/2.5/3.3V$) have a sleep mode that allows standby current to be reduced by up to three orders of magnitude during periods of system inactivity. Entry and exit to Sleep Mode is controlled by the SLEEPN pin.

During Sleep Mode, the FPGA logic is non-operational, registers and EBR contents are not maintained and I/Os are tri-stated. Do not enter Sleep Mode during device programming or configuration operation. In Sleep Mode, power supplies can be maintained in their normal operating range, eliminating the need for external switching of power supplies. Table 2-9 compares the characteristics of Normal, Off and Sleep Modes.

master serial clock is 2.5MHz. Table 2-10 lists all the available Master Serial Clock frequencies. When a different Master Serial Clock is selected during the design process, the following sequence takes place:

- 1. User selects a different Master Serial Clock frequency for configuration.
- 2. During configuration the device starts with the default (2.5MHz) Master Serial Clock frequency.
- 3. The clock configuration settings are contained in the early configuration bit stream.
- 4. The Master Serial Clock frequency changes to the selected frequency once the clock configuration bits are received.

For further information on the use of this oscillator for configuration, please see details of additional technical documentation at the end of this data sheet.

Table 2-10. Selectable Master Serial Clock (CCLK) Frequencies During Configuration

CCLK (MHz)	CCLK (MHz)	CCLK (MHz)
2.5 ¹	13	45
4.3	15	51
5.4	20	55
6.9	26	60
8.1	30	130
9.2	34	—
10.0	41	—
1. Default	•	•

Density Shifting

The LatticeXP family has been designed to ensure that different density devices in the same package have the same pin-out. Furthermore, the architecture ensures a high success rate when performing design migration from lower density parts to higher density parts. In many cases, it is also possible to shift a lower utilization design targeted for a high-density device to a lower density device. However, the exact details of the final resource utilization will impact the likely success in each case.

LatticeXP Family Timing Adders¹

Over Recommended Opera	ating Conditions
------------------------	------------------

Buffer Type	Description	-5	-4	-3	Units	
Input Adjusters						
LVDS25E	LVDS 2.5 Emulated	0.5	0.5	0.5	ns	
LVDS25	LVDS	0.4	0.4	0.4	ns	
BLVDS25	BLVDS	0.5	0.5	0.5	ns	
LVPECL33	LVPECL	0.6	0.6	0.6	ns	
HSTL18_I	HSTL_18 class I	0.4	0.4	0.4	ns	
HSTL18_II	HSTL_18 class II	0.4	0.4	0.4	ns	
HSTL18_III	HSTL_18 class III	0.4	0.4	0.4	ns	
HSTL18D_I	Differential HSTL 18 class I	0.4	0.4	0.4	ns	
HSTL18D_II	Differential HSTL 18 class II	0.4	0.4	0.4	ns	
HSTL18D_III	Differential HSTL 18 class III	0.4	0.4	0.4	ns	
HSTL15_I	HSTL_15 class I	0.5	0.5	0.5	ns	
HSTL15_III	HSTL_15 class III	0.5	0.5	0.5	ns	
HSTL15D_I	Differential HSTL 15 class I	0.5	0.5	0.5	ns	
HSTL15D_III	Differential HSTL 15 class III	0.5	0.5	0.5	ns	
SSTL33_I	SSTL_3 class I	0.6	0.6	0.6	ns	
SSTL33_II	SSTL_3 class II	0.6	0.6	0.6	ns	
SSTL33D_I	Differential SSTL_3 class I	0.6	0.6	0.6	ns	
SSTL33D_II	Differential SSTL_3 class II	0.6	0.6	0.6	ns	
SSTL25_I	SSTL_2 class I	0.5	0.5	0.5	ns	
SSTL25_II	SSTL_2 class II	0.5	0.5	0.5	ns	
SSTL25D_I	Differential SSTL_2 class I	0.5	0.5	0.5	ns	
SSTL25D_II	Differential SSTL_2 class II	0.5	0.5	0.5	ns	
SSTL18_I	SSTL_18 class I	0.5	0.5	0.5	ns	
SSTL18D_I	Differential SSTL_18 class I	0.5	0.5	0.5	ns	
LVTTL33	LVTTL	0.2	0.2	0.2	ns	
LVCMOS33	LVCMOS 3.3	0.2	0.2	0.2	ns	
LVCMOS25	LVCMOS 2.5	0.0	0.0	0.0	ns	
LVCMOS18	LVCMOS 1.8	0.1	0.1	0.1	ns	
LVCMOS15	LVCMOS 1.5	0.1	0.1	0.1	ns	
LVCMOS12	LVCMOS 1.2	0.1	0.1	0.1	ns	
PCI33	PCI	0.2	0.2	0.2	ns	
Output Adjusters	•					
LVDS25E	LVDS 2.5 Emulated	0.3	0.3	0.3	ns	
LVDS25	LVDS 2.5	0.3	0.3	0.3	ns	
BLVDS25	BLVDS 2.5	0.3	0.3	0.3	ns	
LVPECL33	LVPECL 3.3	0.1	0.1	0.1	ns	
HSTL18_I	HSTL_18 class I	0.1	0.1	0.1	ns	
HSTL18_II	HSTL_18 class II	0.1	0.1	0.1	ns	
HSTL18_III	HSTL_18 class III	0.2	0.2	0.2	ns	
HSTL18D_I	Differential HSTL 18 class I	0.1	0.1	0.1	ns	
HSTL18D_II	Differential HSTL 18 class II	-0.1	-0.1	-0.1	ns	
HSTL18D_III	Differential HSTL 18 class III	0.2	0.2	0.2	ns	

sysCLOCK PLL Timing

Parameter	Descriptions	Conditions	Min.	Тур.	Max.	Units
f _{IN}	Input Clock Frequency (CLKI, CLKFB)		25	—	375	MHz
f _{OUT}	Output Clock Frequency (CLKOP, CLKOS)		25	—	375	MHz
f _{OUT2}	K-Divider Output Frequency (CLKOK)		0.195	—	187.5	MHz
f _{VCO}	PLL VCO Frequency		375	—	750	MHz
f _{PFD}	Phase Detector Input Frequency		25	—	—	MHz
AC Characte	eristics					
t _{DT}	Output Clock Duty Cycle	Default duty cycle elected ³	45	50	55	%
t _{PH} ⁴	Output Phase Accuracy		_	—	0.05	UI
+ 1	Output Clock Pariod littar	f _{OUT} Š 100MHz	_	—	+/- 125	ps
OPJIT		f _{OUT} < 100MHz	—	—	0.02	UIPP
t _{SK}	Input Clock to Output Clock Skew	Divider ratio = integer	_	—	+/- 200	ps
t _W	Output Clock Pulse Width	At 90% or 10% ³	1	—	_	ns
t _{LOCK} ²	PLL Lock-in Time		—	—	150	us
t _{PA}	Programmable Delay Unit		100	250	400	ps
t _{IPJIT}	Input Clock Period Jitter		_	—	+/- 200	ps
t _{FBKDLY}	External Feedback Delay		—	—	10	ns
t _{HI}	Input Clock High Time	90% to 90%	0.5	—		ns
t _{LO}	Input Clock Low Time	10% to 10%	0.5	—	—	ns
t _{RST}	RST Pulse Width		10	_	_	ns

Over Recommended Operating Conditions

1. Jitter sample is taken over 10,000 samples of the primary PLL output with clean reference clock.

2. Output clock is valid after t_{LOCK} for PLL reset and dynamic delay adjustment.

3. Using LVDS output buffers.

4. As compared to CLKOP output.

Timing v.F0.11

LatticeXP "C" Sleep Mode Timing

Parameter	Descriptions	Min.	Тур.	Max.	Units	
t _{PWRDN}	SLEEPN Low to I/O Tristate	—	20	32	ns	
t _{PWRUP}		LFXP3	—	1.4	2.1	ms
		LFXP6	—	1.7	2.4	ms
	SLEEPN High to Power Up	LFXP10	—	1.1	1.8	ms
		LFXP15	—	1.4	2.1	ms
		LFXP20	—	1.7	2.4	ms
t _{WSLEEPN}	SLEEPN Pulse Width to Initiate Sleep Mode		400	-	—	ns
t _{WAWAKE}	SLEEPN Pulse Rejection		—	_	120	ns

LatticeXP sysCONFIG Port Timing Specifications

Over	Recommended	Operating	Conditions
••••		• por a mig	•••••••

Parameter	Description	Min.	Max.	Units
sysCONFIG By	te Data Flow	I	1	
t _{SUCBDI}	Byte D[0:7] Setup Time to CCLK	7	_	ns
t _{HCBDI}	Byte D[0:7] Hold Time to CCLK	3	—	ns
t _{CODO}	Clock to Dout in Flowthrough Mode	—	12	ns
t _{SUCS}	CS[0:1] Setup Time to CCLK	7	—	ns
t _{HCS}	CS[0:1] Hold Time to CCLK	2	—	ns
t _{SUWD}	Write Signal Setup Time to CCLK	7	—	ns
t _{HWD}	Write Signal Hold Time to CCLK	2	—	ns
t _{DCB}	CCLK to BUSY Delay Time	—	12	ns
t _{CORD}	Clock to Out for Read Data	_	12	ns
sysCONFIG By	te Slave Clocking	•		•
t _{BSCH}	Byte Slave Clock Minimum High Pulse	6	—	ns
t _{BSCL}	Byte Slave Clock Minimum Low Pulse	8	—	ns
t _{BSCYC}	Byte Slave Clock Cycle Time	15	—	ns
sysCONFIG Se	rial (Bit) Data Flow			
t _{SUSCDI}	DI (Data In) Setup Time to CCLK	7	—	ns
t _{HSCDI}	DI (Data In) Hold Time to CCLK	2	—	ns
t _{CODO}	Clock to Dout in Flowthrough Mode	_	12	ns
sysCONFIG Se	rial Slave Clocking			
t _{SSCH}	Serial Slave Clock Minimum High Pulse	6	—	ns
t _{SSCL}	Serial Slave Clock Minimum Low Pulse	6	—	ns
sysCONFIG PC	DR, Initialization and Wake Up			
t _{ICFG}	Minimum Vcc to INIT High	—	50	ms
t _{VMC}	Time from t _{ICFG} to Valid Master Clock	—	2	us
t _{PRGMRJ}	Program Pin Pulse Rejection	—	7	ns
t _{PRGM} ²	PROGRAMN Low Time to Start Configuration	25	—	ns
t _{DINIT}	INIT Low Time	—	1	ms
t _{DPPINIT}	Delay Time from PROGRAMN Low to INIT Low	—	37	ns
t _{DINITD}	Delay Time from PROGRAMN Low to DONE Low	_	37	ns
t _{IODISS}	User I/O Disable from PROGRAMN Low	_	25	ns
t _{IOENSS}	User I/O Enabled Time from CCLK Edge During Wake-up Sequence	—	25	ns
t _{MWC}	Additional Wake Master Clock Signals after Done Pin High	120	—	cycles
Configuration I	Master Clock (CCLK)			
Frequency ¹		Selected Value - 30%	Selected Value + 30%	MHz
Duty Cycle		40	60	%

1. See Table 2-10 for available CCLK frequencies.

2. The threshold level for PROGRAMN, as well as for CFG[1] and CFG[0], is determined by V_{CC} , such that the threshold = $V_{CC}/2$. Timing v.F0.11

Switching Test Conditions

Figure 3-13 shows the output test load that is used for AC testing. The specific values for resistance, capacitance, voltage, and other test conditions are shown in Figure 3-5.

Figure 3-13. Output Test Load, LVTTL and LVCMOS Standards

Table 3-5. Test Fixture Required Components, Non-Terminated Interfaces

Test Condition	R ₁	CL	Timing Ref.	VT
			LVCMOS 3.3 = 1.5V	—
	8	0pF	LVCMOS 2.5 = $V_{CCIO}/2$	—
LVTTL and other LVCMOS settings (L -> H, H -> L)			LVCMOS 1.8 = $V_{CCIO}/2$	—
			LVCMOS 1.5 = $V_{CCIO}/2$	—
			LVCMOS 1.2 = V _{CCIO} /2	—
LVCMOS 2.5 I/O (Z -> H)			V _{CCIO} /2	V _{OL}
LVCMOS 2.5 I/O (Z -> L)	188	0nE	V _{CCIO} /2	V _{OH}
LVCMOS 2.5 I/O (H -> Z)	100	орі	V _{OH} - 0.15	V _{OL}
LVCMOS 2.5 I/O (L -> Z)]		V _{OL} + 0.15	V _{OH}

Note: Output test conditions for all other interfaces are determined by the respective standards.

PICs and DDR Data (DQ) Pins Associated with the DDR Strobe (DQS) Pin

PICs Associated with DQS Strobe	PIO within PIC	Polarity	DDR Strobe (DQS) and Data (DQ) Pins
P[Edge] [n_4]	A	True	DQ
	В	Complement	DQ
P[Edge] [p_3]	A	True	DQ
	В	Complement	DQ
P[Edge] [p_2]	A	True	DQ
	В	Complement	DQ
P[Edge] [p-1]	A	True	DQ
P[Edge] [n]			
	В	Complement	DQ
P[Edge] [n+1]	A	True	[Edge]DQSn
	В	Complement	DQ
P[Edge] [n 2]	A	True	DQ
	В	Complement	DQ
P[Edge] [n 3]	A	True	DQ
	В	Complement	DQ

Notes:

1. "n" is a row/column PIC number.

2. The DDR interface is designed for memories that support one DQS strobe per eight bits of data. In some packages, all the potential DDR data (DQ) pins may not be available.

3. The definition of the PIC numbering is provided in the Signal Names column of the Signal Descriptions table in this data sheet.

Power Supply and NC Connections

Signals	100 TQFP	144 TQFP	208 PQFP	256 fpBGA	388 fpBGA	484 fpBGA
V _{cc}	28, 77	14, 39, 73, 112	19, 35, 53, 80, 107, 151, 158, 182	D4, D13, E5, E12, M5, M12, N4, N13	H9, J8, J15, K8, K15, L8, L15, M8, M15, N8, N15, P8, P15, R9	F10, F13, G9, G10, G13, G14, H8, H15, J7, J16, K6, K7, K16, K17, N6, N7, N16, N17, P7, P16, R8, R15, T9, T10, T13, T14, U10, U13
V _{CCIO0}	94	133	189, 199	F7, F8	G8, G9, G10, G11, H8	F11, G11, H10, H11
V _{CCIO1}	82	119	167, 177	F9, F10	G12, G13, G14, G15, H15	F12, G12, H12, H13
V _{CCIO2}	65	98	140, 149	G11, H11	H16, J16, K16, L16	K15, L15, L16, L17
V _{CCIO3}	58	88	115, 125	J11, K11	M16, N16, P16, R16	M15, M16, M17, N15
V _{CCIO4}	47	61, 68	87, 97	L9, L10	R15, T12, T13, T14, T15	R12, R13, T12, U12
V _{CCIO5}	38	49	64, 74	L7, L8	R8, T8, T9, T10, T11	R10, R11, T11, U11
V _{CCIO6}	22	21	28, 41	J6, K6	M7, N7, P7, R7	M6, M7, M8, N8
V _{CCIO7}	7	8	13, 23	G6, H6	H7, J7, K7, L7	K8, L6, L7, L8
V _{CCJ}	73	108	154	D16	E20	E20
V _{CCP0}	17	19	25	H4	M2	L5
V _{CCP1}	60	91	128	J12	M21	L18
V _{CCAUX}	25, 71	36, 106	50, 152	E4, E13, M4, M13	G7, G16, T7, T16	G7, G8, G15, G16, H7, H16, R7, R16, T7, T8, T15, T16
GND ¹	10, 18, 21, 33, 43, 44, 52, 59, 68, 84, 90, 99	3, 11, 20, 28, 44, 54, 56, 64, 75, 85, 90, 101, 121, 127, 136	5, 7, 16, 26, 38, 47, 49, 59, 69, 79, 82, 92, 106, 109, 118, 121, 127, 130, 135, 143, 163, 172, 181, 184, 194, 207	A1, A16, F6, F11, G7, G8, G9, G10, H5, H7, H8, H9, H10, J7, J8, J9, J10, J13, K7, K8, K9, K10, L6, L11, T1, T16	A1, A22, H10, H11, H12, H13, H14, J9, J10, J11, J12, J13, J14, K9, K10, K11, K12, K13, K14, L9, L10, L11, L12, L13, L14, M9, M10, M11, M12, M13, M14, N1, N9, N10, N11, N12, N13, N14, N22, P9, P10, P11, P12, P13, P14, R10, R11, R12, R13, R14, AB1, AB22	A1, A2, A21, A22, B1, B22, H9, H14, J8, J9, J10, J11, J12, J13, J14, J15, K9, K10, K11, K12, K13, K14, L9, L10, L11, L12, L13, L14, M9, M10, M11, M12, M13, M14, M20, N2, N9, N10, N11, N12, N13, N14, P8, P9, P10, P11, P12, P13, P14, P15, R9, R14, AA1, AA22, AB1, AB2, AB21, AB22
NC ²			XP3: 27, 33, 34, 129, 133, 134		XP10: C2, C15, C16, C17, D4, D5, D6, D7, D16, D17, E4, E19, W3, W4, W7, W17, W18, W19, W20, Y3, Y15, Y16, AA1, AA2	XP15: B21, C4, C5, C6, C18, C19, C20, C21, D6, D18, E4, E6, E18, F6, L1, L19, L20, M1, M2, M19, M21, N1, N21, N22, P1, P2, U5, U6, U17, U18, V5, V6, V17, V18, W17, W18, W19, Y3, Y4, Y5

1. All grounds must be electrically connected at the board level. 2. NC pins should not be connected to any active signals, V_{CC} or GND.

LFXP3 Logic Signal Connections: 100 TQFP

Pin Number	Pin Function	Bank	Differential	Dual Function
1	CFG1	0	-	-
2	DONE	0	-	-
3	PROGRAMN	7	-	-
4	CCLK	7	-	-
5	PL3A	7	Т	LUM0_PLLT_FB_A
6	PL3B	7	С	LUM0_PLLC_FB_A
7	VCCIO7	7	-	-
8	PL5A	7	-	VREF1_7
9	PL6B	7	-	VREF2_7
10	GNDIO7	7	-	-
11	PL7A	7	T ³	DQS
12	PL7B	7	C ³	-
13	PL8A	7	Т	LUM0_PLLT_IN_A
14	PL8B	7	С	LUM0_PLLC_IN_A
15	PL9A	7	T ³	-
16	PL9B	7	C ³	-
17	VCCP0	-	-	-
18	GNDP0	-	-	-
19	PL12A	6	Т	PCLKT6_0
20	PL12B	6	С	PCLKC6_0
21	GNDIO6	6	-	-
22	VCCIO6	6	-	-
23	PL18A	6	T ³	-
24	PL18B	6	C ³	-
25	VCCAUX	-	-	-
26	SLEEPN ¹ /TOE ²	-	-	-
27	INITN	5	-	-
28	VCC	-	-	-
29	PB2B	5	-	VREF1_5
30	PB5B	5	-	VREF2_5
31	PB8A	5	Т	-
32	PB8B	5	С	-
33	GNDIO5	5	-	-
34	PB9A	5	-	-
35	PB10B	5	-	-
36	PB11A	5	Т	DQS
37	PB11B	5	С	-
38	VCCIO5	5	-	-
39	PB12A	5	Т	-
40	PB12B	5	С	-
41	PB13A	5	Т	-
42	PB13B	5	С	-
43	GND	-	-	-

LFXP3 Logic Signal Connections: 100 TQFP (Cont.)

Pin Number	Pin Function	Bank	Differential	Dual Function
44	GNDIO4	4	-	-
45	PB15A	4	Т	PCLKT4_0
46	PB15B	4	С	PCLKC4_0
47	VCCIO4	4	-	-
48	PB19A	4	Т	DQS
49	PB19B	4	С	VREF1_4
50	PB24A	4	-	VREF2_4
51	PR18B	3	C ³	-
52	GNDIO3	3	-	-
53	PR18A	3	T ³	-
54	PR15B	3	-	VREF1_3
55	PR14A	3	-	VREF2_3
56	PR13B	3	С	-
57	PR13A	3	Т	-
58	VCCIO3	3	-	-
59	GNDP1	-	-	-
60	VCCP1	-	-	-
61	PR9B	2	С	PCLKC2_0
62	PR9A	2	Т	PCLKT2_0
63	PR8B	2	С	RUM0_PLLC_IN_A
64	PR8A	2	Т	RUM0_PLLT_IN_A
65	VCCIO2	2	-	-
66	PR6B	2	-	VREF1_2
67	PR5A	2	-	VREF2_2
68	GNDIO2	2	-	-
69	PR3B	2	С	RUM0_PLLC_FB_A
70	PR3A	2	Т	RUM0_PLLT_FB_A
71	VCCAUX	-	-	-
72	TDO	-	-	-
73	VCCJ	-	-	-
74	TDI	-	-	-
75	TMS	-	-	-
76	TCK	-	-	-
77	VCC	-	-	-
78	PT24A	1	-	-
79	PT23A	1	-	D0
80	PT22B	1	-	D1
81	PT21A	1	-	D2
82	VCCIO1	1	-	-
83	PT20B	1	-	D3
84	GNDIO1	1	-	-
85	PT17A	1	-	D4
86	PT16A	1	-	D5
87	PT15B	1	-	D6

LFXP3 & LFXP6 Logic Signal Connections: 144 TQFP (Cont.)

Din			LFXP3		LFXP6			
Number	Pin Function	Bank	Differential	Dual Function	Pin Function	Bank	Differential	Dual Function
93	PR9A	2	Т	PCLKT2_0	PR12A	2	Т	PCLKT2_0
94	PR8B	2	С	RUM0_PLLC_IN_A	PR8B	2	С	RUM0_PLLC_IN_A
95	PR8A	2	Т	RUM0_PLLT_IN_A	PR8A	2	Т	RUM0_PLLT_IN_A
96	PR7B	2	C ³	-	PR7B	2	C ³	-
97	PR7A	2	T ³	DQS	PR7A	2	T ³	DQS
98	VCCIO2	2	-	-	VCCIO2	2	-	-
99	PR6B	2	-	VREF1_2	PR6B	2	-	VREF1_2
100	PR5A	2	-	VREF2_2	PR5A	2	-	VREF2_2
101	GNDIO2	2	-	-	GNDIO2	2	-	-
102	PR3B	2	С	RUM0_PLLC_FB_A	PR3B	2	С	RUM0_PLLC_FB_A
103	PR3A	2	Т	RUM0_PLLT_FB_A	PR3A	2	Т	RUM0_PLLT_FB_A
104	PR2B	2	C ³	-	PR2B	2	C ³	-
105	PR2A	2	T ³	-	PR2A	2	T ³	-
106	VCCAUX	-	-	-	VCCAUX	-	-	-
107	TDO	-	-	-	TDO	-	-	-
108	VCCJ	-	-	-	VCCJ	-	-	-
109	TDI	-	-	-	TDI	-	-	-
110	TMS	-	-	-	TMS	-	-	-
111	ТСК	-	-	-	TCK	-	-	-
112	VCC	-	-	-	VCC	-	-	-
113	PT25A	1	-	VREF1_1	PT28A	1	-	VREF1_1
114	PT24A	1	-	-	PT27A	1	-	-
115	PT23A	1	-	D0	PT26A	1	-	D0
116	PT22B	1	С	D1	PT25B	1	С	D1
117	PT22A	1	Т	VREF2_1	PT25A	1	Т	VREF2_1
118	PT21A	1	-	D2	PT24A	1	-	D2
119	VCCIO1	1	-	-	VCCI01	1	-	-
120	PT20B	1	-	D3	PT23B	1	-	D3
121	GNDIO1	1	-	-	GNDIO1	1	-	-
122	PT17A	1	-	D4	PT20A	1	-	D4
123	PT16A	1	-	D5	PT19A	1	-	D5
124	PT15B	1	С	D6	PT18B	1	С	D6
125	PT15A	1	Т	-	PT18A	1	Т	-
126	PT14B	1	-	D7	PT17B	1	-	D7
127	GND	-	-	-	GND	-	-	-
128	PT13B	0	С	BUSY	PT16B	0	С	BUSY
129	PT13A	0	Т	CS1N	PT16A	0	Т	CS1N
130	PT12B	0	С	PCLKC0_0	PT15B	0	С	PCLKC0_0
131	PT12A	0	Т	PCLKT0_0	PT15A	0	Т	PCLKT0_0
132	PT11B	0	С	-	PT14B	0	С	-
133	VCCIO0	0	-	-	VCCIO0	0	-	-
134	PT11A	0	Т	DQS	PT14A	0	Т	DQS
135	PT9A	0	-	DOUT	PT12A	0	-	DOUT
136	GNDIO0	0	-	-	GNDIO0	0	-	-
137	PT8A	0	-	WRITEN	PT11A	0	-	WRITEN
138	PT7A	0	-	VREF1_0	PT10A	0	-	VREF1_0

LFXP6 & LFXP10 Logic Signal Connections: 256 fpBGA (Cont.)

			LFXP6				LFXP10	
Ball Number	Ball Function	Bank	Differential	Dual Function	Ball Function	Bank	Differential	Dual Function
E8	PT13B	0	-	-	PT17B	0	-	-
D8	PT12A	0	-	DOUT	PT16A	0	-	DOUT
A6	PT11B	0	С	-	PT15B	0	С	-
-	GNDIO0	0	-	-	GNDIO0	0	-	-
C6	PT11A	0	Т	WRITEN	PT15A	0	Т	WRITEN
E7	PT10B	0	С	-	PT14B	0	С	-
D7	PT10A	0	Т	VREF1_0	PT14A	0	Т	VREF1_0
A5	PT9B	0	С	-	PT13B	0	С	-
B5	PT9A	0	Т	DI	PT13A	0	Т	DI
A4	PT8B	0	С	-	PT12B	0	С	-
B6	PT8A	0	Т	CSN	PT12A	0	Т	CSN
E6	PT7B	0	С	-	PT11B	0	С	-
-	GNDIO0	0	-	-	GNDIO0	0	-	-
D6	PT7A	0	Т	-	PT11A	0	Т	-
D5	PT6B	0	С	VREF2_0	PT10B	0	С	VREF2_0
A3	PT6A	0	Т	DQS	PT10A	0	Т	DQS
B3	PT5B	0	-	-	PT9B	0	-	-
B2	PT4A	0	-	-	PT8A	0	-	-
A2	PT3B	0	С	-	PT7B	0	С	-
B1	PT3A	0	Т	-	PT7A	0	Т	-
F5	PT2B	0	С	-	PT6B	0	С	-
-	GNDIO0	0	-	-	GNDIO0	0	-	-
C5	PT2A	0	Т	-	PT6A	0	Т	-
C4	CFG0	0	-	-	CFG0	0	-	-
B4	CFG1	0	-	-	CFG1	0	-	-
C3	DONE	0	-	-	DONE	0	-	-
A1	GND	-	-	-	GND	-	-	-
A16	GND	-	-	-	GND	-	-	-
F11	GND	-	-	-	GND	-	-	-
F6	GND	-	-	-	GND	-	-	-
G10	GND	-	-	-	GND	-	-	-
G7	GND	-	-	-	GND	-	-	-
G8	GND	-	-	-	GND	-	-	-
G9	GND	-	-	-	GND	-	-	-
H10	GND	-	-	-	GND	-	-	-
H7	GND	-	-	-	GND	-	-	-
H8	GND	-	-	-	GND	-	-	-
H9	GND	-	-	-	GND	-	-	-
J10	GND	-	-	-	GND	-	-	-
J7	GND	-	-	-	GND	-	-	-
J8	GND	-	-	-	GND	-	-	-
J9	GND	-	-	-	GND	-	-	-

LFXP15 & LFXP20 Logic Signal Connections: 256 fpBGA (Cont.)

			LFXP15		LFXP20			
Ball Number	Ball Function	Bank	Differential	Dual Function	Ball Function	Bank	Differential	Dual Function
-	GNDIO2	2	-	-	GNDIO2	2	-	-
F15	PR10B	2	-	-	PR10B	2	-	-
E15	PR9A	2	-	VREF2_2	PR9A	2	-	VREF2_2
F14	PR8B	2	C ³	-	PR8B	2	C ³	-
E14	PR8A	2	T ³	-	PR8A	2	T ³	-
D15	PR7B	2	С	RUM0_PLLC_FB_A	PR7B	2	С	RUM0_PLLC_FB_A
C15	PR7A	2	Т	RUM0_PLLT_FB_A	PR7A	2	Т	RUM0_PLLT_FB_A
-	GNDIO2	2	-	-	GNDIO2	2	-	-
E16	TDO	-	-	-	TDO	-	-	-
D16	VCCJ	-	-	-	VCCJ	-	-	-
D14	TDI	-	-	-	TDI	-	-	-
C14	TMS	-	-	-	TMS	-	-	-
B14	ТСК	-	-	-	ТСК	-	-	-
-	GNDIO1	1	-	-	GNDIO1	1	-	-
-	GNDIO1	1	-	-	GNDIO1	1	-	-
-	GNDIO1	1	-	-	GNDIO1	1	-	-
A15	PT40B	1	С	-	PT44B	1	С	-
B15	PT40A	1	Т	-	PT44A	1	Т	-
D12	PT39B	1	С	VREF1_1	PT43B	1	С	VREF1_1
-	GNDIO1	1	-	-	GNDIO1	1	-	-
C11	PT39A	1	Т	DQS	PT43A	1	Т	DQS
A14	PT38B	1	-	-	PT42B	1	-	-
B13	PT37A	1	-	-	PT41A	1	-	-
F12	PT36B	1	С	-	PT40B	1	С	-
E11	PT36A	1	Т	-	PT40A	1	Т	-
A13	PT35B	1	С	-	PT39B	1	С	-
C13	PT35A	1	Т	D0	PT39A	1	Т	D0
C10	PT34B	1	С	D1	PT38B	1	С	D1
E10	PT34A	1	Т	VREF2_1	PT38A	1	Т	VREF2_1
A12	PT33B	1	С	-	PT37B	1	С	-
B12	PT33A	1	Т	D2	PT37A	1	Т	D2
-	GNDIO1	1	-	-	GNDIO1	1	-	-
C12	PT32B	1	С	D3	PT36B	1	С	D3
A11	PT32A	1	Т	-	PT36A	1	Т	-
B11	PT31B	1	С	-	PT35B	1	С	-
D11	PT31A	1	Т	DQS	PT35A	1	Т	DQS
B9	PT30B	1	-	-	PT34B	1	-	-
D9	PT29A	1	-	D4	PT33A	1	-	D4
A10	PT28B	1	С	-	PT32B	1	С	-
B10	PT28A	1	Т	D5	PT32A	1	Т	D5
-	GNDIO1	1	-	-	GNDIO1	1	-	-
D10	PT27B	1	С	D6	PT31B	1	С	D6

Conventional Packaging

Commercial										
Part Number	l/Os	Voltage	Grade	Package	Pins	Temp.	LUTs			
LFXP3C-3Q208C	136	1.8/2.5/3.3V	-3	PQFP	208	COM	3.1K			
LFXP3C-4Q208C	136	1.8/2.5/3.3V	-4	PQFP	208	COM	3.1K			
LFXP3C-5Q208C	136	1.8/2.5/3.3V	-5	PQFP	208	COM	3.1K			
LFXP3C-3T144C	100	1.8/2.5/3.3V	-3	TQFP	144	COM	3.1K			
LFXP3C-4T144C	100	1.8/2.5/3.3V	-4	TQFP	144	COM	3.1K			
LFXP3C-5T144C	100	1.8/2.5/3.3V	-5	TQFP	144	COM	3.1K			
LFXP3C-3T100C	62	1.8/2.5/3.3V	-3	TQFP	100	COM	3.1K			
LFXP3C-4T100C	62	1.8/2.5/3.3V	-4	TQFP	100	COM	3.1K			
LFXP3C-5T100C	62	1.8/2.5/3.3V	-5	TQFP	100	COM	3.1K			

Part Number	I/Os	Voltage	Grade	Package	Pins	Temp.	LUTs
LFXP6C-3F256C	188	1.8/2.5/3.3V	-3	fpBGA	256	COM	5.8K
LFXP6C-4F256C	188	1.8/2.5/3.3V	-4	fpBGA	256	COM	5.8K
LFXP6C-5F256C	188	1.8/2.5/3.3V	-5	fpBGA	256	COM	5.8K
LFXP6C-3Q208C	142	1.8/2.5/3.3V	-3	PQFP	208	COM	5.8K
LFXP6C-4Q208C	142	1.8/2.5/3.3V	-4	PQFP	208	COM	5.8K
LFXP6C-5Q208C	142	1.8/2.5/3.3V	-5	PQFP	208	COM	5.8K
LFXP6C-3T144C	100	1.8/2.5/3.3V	-3	TQFP	144	COM	5.8K
LFXP6C-4T144C	100	1.8/2.5/3.3V	-4	TQFP	144	COM	5.8K
LFXP6C-5T144C	100	1.8/2.5/3.3V	-5	TQFP	144	COM	5.8K

Part Number	I/Os	Voltage	Grade	Package	Pins	Temp.	LUTs
LFXP10C-3F388C	244	1.8/2.5/3.3V	-3	fpBGA	388	COM	9.7K
LFXP10C-4F388C	244	1.8/2.5/3.3V	-4	fpBGA	388	COM	9.7K
LFXP10C-5F388C	244	1.8/2.5/3.3V	-5	fpBGA	388	COM	9.7K
LFXP10C-3F256C	188	1.8/2.5/3.3V	-3	fpBGA	256	COM	9.7K
LFXP10C-4F256C	188	1.8/2.5/3.3V	-4	fpBGA	256	COM	9.7K
LFXP10C-5F256C	188	1.8/2.5/3.3V	-5	fpBGA	256	COM	9.7K