

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

E·XFl

Product Status	Obsolete
Number of LABs/CLBs	-
Number of Logic Elements/Cells	3000
Total RAM Bits	55296
Number of I/O	136
Number of Gates	-
Voltage - Supply	1.71V ~ 3.465V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	208-BFQFP
Supplier Device Package	208-PQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lfxp3c-3qn208i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Slice

Each slice contains two LUT4 lookup tables feeding two registers (programmed to be in FF or Latch mode), and some associated logic that allows the LUTs to be combined to perform functions such as LUT5, LUT6, LUT7 and LUT8. There is control logic to perform set/reset functions (programmable as synchronous/asynchronous), clock select, chip-select and wider RAM/ROM functions. Figure 2-3 shows an overview of the internal logic of the slice. The registers in the slice can be configured for positive/negative and edge/level clocks.

There are 14 input signals: 13 signals from routing and one from the carry-chain (from adjacent slice or PFU). There are 7 outputs: 6 to routing and one to carry-chain (to adjacent PFU). Table 2-1 lists the signals associated with each slice.

Figure 2-3. Slice Diagram

Figure 2-15. Memory Core Reset

For further information on sysMEM EBR block, see the details of additional technical documentation at the end of this data sheet.

EBR Asynchronous Reset

EBR asynchronous reset or GSR (if used) can only be applied if all clock enables are low for a clock cycle before the reset is applied and released a clock cycle after the reset is released, as shown in Figure 2-16. The GSR input to the EBR is always asynchronous.

Figure 2-16. EBR Asynchronous Reset (Including GSR) Timing Diagram

Reset	
Clock	
Clock Enable	

If all clock enables remain enabled, the EBR asynchronous reset or GSR may only be applied and released after the EBR read and write clock inputs are in a steady state condition for a minimum of $1/f_{MAX}$ (EBR clock). The reset release must adhere to the EBR synchronous reset setup time before the next active read or write clock edge.

If an EBR is pre-loaded during configuration, the GSR input must be disabled or the release of the GSR during device Wake Up must occur before the release of the device I/Os becoming active.

These instructions apply to all EBR RAM and ROM implementations.

Note that there are no reset restrictions if the EBR synchronous reset is used and the EBR GSR input is disabled.

Programmable I/O Cells (PICs)

Each PIC contains two PIOs connected to their respective sysIO Buffers which are then connected to the PADs as shown in Figure 2-17. The PIO Block supplies the output data (DO) and the Tri-state control signal (TO) to sysIO buffer, and receives input from the buffer.

Figure 2-17. PIC Diagram

In the LatticeXP family, seven PIOs or four (3.5) PICs are grouped together to provide two LVDS differential pairs, one PIC pair and one single I/O, as shown in Figure 2-18.

Two adjacent PIOs can be joined to provide a differential I/O pair (labeled as "T" and "C"). The PAD Labels "T" and "C" distinguish the two PIOs. Only the PIO pairs on the left and right edges of the device can be configured as LVDS transmit/receive pairs.

One of every 14 PIOs (a group of 8 PICs) contains a delay element to facilitate the generation of DQS signals as shown in Figure 2-19. The DQS signal feeds the DQS bus which spans the set of 13 PIOs (8 PICs). The DQS signal from the bus is used to strobe the DDR data from the memory into input register blocks. This interface is designed for memories that support one DQS strobe per eight bits of data.

The exact DQS pins are shown in a dual function in the Logic Signal Connections table in this data sheet. Additional detail is provided in the Signal Descriptions table in this data sheet.

Lattice Semiconductor

in selected blocks the input to the DQS delay block. If one of the bypass options is not chosen, the signal first passes through an optional delay block. This delay, if selected, ensures no positive input-register hold-time requirement when using a global clock.

The input block allows two modes of operation. In the single data rate (SDR) the data is registered, by one of the registers in the single data rate sync register block, with the system clock. In the DDR Mode two registers are used to sample the data on the positive and negative edges of the DQS signal creating two data streams, D0 and D2. These two data streams are synchronized with the system clock before entering the core. Further discussion on this topic is in the DDR Memory section of this data sheet.

Figure 2-21 shows the input register waveforms for DDR operation and Figure 2-22 shows the design tool primitives. The SDR/SYNC registers have reset and clock enable available.

The signal DDRCLKPOL controls the polarity of the clock used in the synchronization registers. It ensures adequate timing when data is transferred from the DQS to the system clock domain. For further discussion of this topic, see the DDR memory section of this data sheet.

Figure 2-20. Input Register Diagram

Figure 2-28. LatticeXP Banks

Note: N and M are the maximum number of I/Os per bank.

LatticeXP devices contain two types of sysIO buffer pairs.

1. Top and Bottom sysIO Buffer Pair (Single-Ended Outputs Only)

The sysIO buffer pairs in the top and bottom banks of the device consist of two single-ended output drivers and two sets of single-ended input buffers (both ratioed and referenced). The referenced input buffer can also be configured as a differential input.

The two pads in the pair are described as "true" and "comp", where the true pad is associated with the positive side of the differential input buffer and the comp (complementary) pad is associated with the negative side of the differential input buffer.

Only the I/Os on the top and bottom banks have PCI clamps. Note that the PCI clamp is enabled after $V_{CC,}$ V_{CCAUX} and V_{CCIO} are at valid operating levels and the device has been configured.

2. Left and Right sysIO Buffer Pair (Differential and Single-Ended Outputs)

The sysIO buffer pairs in the left and right banks of the device consist of two single-ended output drivers, two sets of single-ended input buffers (both ratioed and referenced) and one differential output driver. The referenced input buffer can also be configured as a differential input. In these banks the two pads in the pair are described as "true" and "comp", where the true pad is associated with the positive side of the differential I/O, and the comp (complementary) pad is associated with the negative side of the differential I/O.

Select I/Os in the left and right banks have LVDS differential output drivers. Refer to the Logic Signal Connections tables for more information.

Figure 2-29 provides a pictorial representation of the different programming ports and modes available in the LatticeXP devices.

On power-up, the FPGA SRAM is ready to be configured with the sysCONFIG port active. The IEEE 1149.1 serial mode can be activated any time after power-up by sending the appropriate command through the TAP port.

Leave Alone I/O

When using 1532 mode for non-volatile memory programming, users may specify I/Os as high, low, tristated or held at current value. This provides excellent flexibility for implementing systems where reprogramming occurs on-the-fly.

TransFR (Transparent Field Reconfiguration)

TransFR (TFR) is a unique Lattice technology that allows users to update their logic in the field without interrupting system operation using a single ispVM command. See Lattice technical note #TN1087, *Minimizing System Interruption During Configuration Using TransFR Technology*, for details.

Security

The LatticeXP devices contain security bits that, when set, prevent the readback of the SRAM configuration and non-volatile memory spaces. Once set, the only way to clear security bits is to erase the memory space.

For more information on device configuration, please see details of additional technical documentation at the end of this data sheet.

Figure 2-29. ispXP Block Diagram

Internal Logic Analyzer Capability (ispTRACY)

All LatticeXP devices support an internal logic analyzer diagnostic feature. The diagnostic features provide capabilities similar to an external logic analyzer, such as programmable event and trigger condition and deep trace memory. This feature is enabled by Lattice's ispTRACY. The ispTRACY utility is added into the user design at compile time.

For more information on ispTRACY, please see information regarding additional technical documentation at the end of this data sheet.

Oscillator

Every LatticeXP device has an internal CMOS oscillator which is used to derive a master serial clock for configuration. The oscillator and the master serial clock run continuously in the configuration mode. The default value of the

sysIO Single-Ended DC Electrical Characteristics

Input/Output		V _{IL}	V _{IH}		Vol Max.	Vou Min.	la	lou					
Standard	Min. (V)	Max. (V)	Min. (V)	Max. (V)	(V)	(V)	(mA)	(mA)					
LVCMOS 3.3	-0.3	0.8	2.0	3.6	0.4	V _{CCIO} - 0.4	20, 16, 12, 8, 4	-20, -16, -12, -8, -4					
					0.2	V _{CCIO} - 0.2	0.1	-0.1					
LVTTL	-0.3	0.8	2.0	3.6	0.4	V _{CCIO} - 0.4	20, 16, 12, 8, 4	-20, -16, -12, -8, -4					
					0.2	V _{CCIO} - 0.2	0.1	-0.1					
LVCMOS 2.5	-0.3	0.7	1.7	3.6	0.4	V _{CCIO} - 0.4	20, 16, 12, 8, 4	-20, -16, -12, -8, -4					
					0.2	V _{CCIO} - 0.2	0.1	-0.1					
	-0.3	0.35\/	0.65\/	3.6	0.4	V _{CCIO} - 0.4	16, 12, 8, 4	-16, -12, -8, -4					
	-0.5	0.33 v CCIO	0.03 V CCIO	5.0	0.2	V _{CCIO} - 0.2	0.1	-0.1					
	-0.3	0.35\/	0.65\/	3.6	0.4	V _{CCIO} - 0.4	8, 4	-8, -4					
	-0.5	0.33 v CCIO	0.0010	5.0	0.2	V _{CCIO} - 0.2	0.1	-0.1					
LVCMOS 1.2	-0.3	0.42	0.78	3.6	0.4	V _{CCIO} - 0.4	6, 2	-6, -2					
("C" Version)	-0.5	0.42	0.70	5.0	0.2	V _{CCIO} - 0.2	0.1	-0.1					
LVCMOS 1.2	-0.3	-0.3	-0.3	-0.3	-0.3	-0.3	0.351/	0.651/	3.6	0.4	V _{CCIO} - 0.4	6, 2	-6, -2
("E" Version)	-0.5	0.33 V CC	0.03 V CC	5.0	0.2	V _{CCIO} - 0.2	0.1	-0.1					
PCI	-0.3	0.3V _{CCIO}	0.5V _{CCIO}	3.6	0.1V _{CCIO}	0.9V _{CCIO}	1.5	-0.5					
SSTL3 class I	-0.3	V _{REF} - 0.2	V _{REF} + 0.2	3.6	0.7	V _{CCIO} - 1.1	8	-8					
SSTL3 class II	-0.3	V _{REF} - 0.2	V _{REF} + 0.2	3.6	0.5	V _{CCIO} - 0.9	16	-16					
SSTL2 class I	-0.3	V _{REF} - 0.18	V _{REF} + 0.18	3.6	0.54	V _{CCIO} - 0.62	7.6	-7.6					
SSTL2 class II	-0.3	V _{REF} - 0.18	V _{REF} + 0.18	3.6	0.35	V _{CCIO} - 0.43	15.2	-15.2					
SSTL18 class I	-0.3	V _{REF} - 0.125	V _{REF} + 0.125	3.6	0.4	V _{CCIO} - 0.4	6.7	-6.7					
HSTL15 class I	-0.3	V _{REF} - 0.1	V _{REF} + 0.1	3.6	0.4	V _{CCIO} - 0.4	8	-8					
HSTL15 class III	-0.3	V _{REF} - 0.1	V _{REF} + 0.1	3.6	0.4	V _{CCIO} - 0.4	24	-8					
HSTL18 class I	-0.3	V _{REF} - 0.1	V _{REF} + 0.1	3.6	0.4	V _{CCIO} - 0.4	9.6	-9.6					
HSTL18 class II	-0.3	V _{REF} - 0.1	V _{REF} + 0.1	3.6	0.4	V _{CCIO} - 0.4	16	-16					
HSTL18 class III	-0.3	V _{REF} - 0.1	V _{REF} + 0.1	3.6	0.4	V _{CCIO} - 0.4	24	-8					

1. The average DC current drawn by I/Os between GND connections, or between the last GND in an I/O bank and the end of an I/O bank, as shown in the logic signal connections table shall not exceed n * 8mA. Where n is the number of I/Os between bank GND connections or between the last GND in a bank and the end of a bank.

LatticeXP Internal Timing Parameters¹

		-5		-4		-3		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
PFU/PFF Logic	Mode Timing							
t _{LUT4_PFU}	LUT4 Delay (A to D Inputs to F Output)	—	0.28		0.34		0.40	ns
t _{LUT6_PFU}	LUT6 Delay (A to D Inputs to OFX Output)		0.44		0.53		0.63	ns
t _{LSR_PFU}	Set/Reset to Output of PFU		0.90		1.08		1.29	ns
t _{SUM_PFU}	Clock to Mux (M0,M1) Input Setup Time	0.13		0.15		0.19	_	ns
t _{HM_PFU}	Clock to Mux (M0,M1) Input Hold Time	-0.04		-0.03	—	-0.03	_	ns
t _{SUD_PFU}	Clock to D Input Setup Time	0.13		0.16		0.19	_	ns
t _{HD_PFU}	Clock to D Input Hold Time	-0.03		-0.02	—	-0.02		ns
t _{CK2Q_PFU}	Clock to Q Delay, D-type Register Configuration		0.40		0.48		0.58	ns
t _{LE2Q_PFU}	Clock to Q Delay Latch Configuration		0.53		0.64		0.76	ns
t _{LD2Q_PFU}	D to Q Throughput Delay when Latch is Enabled	—	0.55	—	0.66		0.79	ns
PFU Dual Port M	Nemory Mode Timing							
t _{CORAM_PFU}	Clock to Output		0.40		0.48		0.58	ns
t _{SUDATA_PFU}	Data Setup Time	-0.18		-0.14	—	-0.11	_	ns
t _{HDATA_PFU}	Data Hold Time	0.28		0.34	—	0.40	_	ns
t _{SUADDR_PFU}	Address Setup Time	-0.46		-0.37	—	-0.30	_	ns
t _{HADDR_PFU}	Address Hold Time	0.71		0.85	—	1.02	_	ns
t _{SUWREN_PFU}	Write/Read Enable Setup Time	-0.22		-0.17	—	-0.14	_	ns
t _{HWREN_PFU}	Write/Read Enable Hold Time	0.33		0.40	—	0.48	_	ns
PIC Timing								
PIO Input/Outpu	It Buffer Timing							
t _{IN_PIO}	Input Buffer Delay		0.62		0.72		0.85	ns
t _{OUT_PIO}	Output Buffer Delay	—	2.12		2.54		3.05	ns
IOLOGIC Input/	Output Timing							
t _{SUI_PIO}	Input Register Setup Time (Data Before Clock)	1.35		1.83		2.37	_	ns
t _{HI_PIO}	Input Register Hold Time (Data After Clock)	0.05		0.05		0.05		ns
t _{COO_PIO}	Output Register Clock to Output Delay		0.36		0.44		0.52	ns
t _{SUCE_PIO}	Input Register Clock Enable Setup Time	-0.09	—	-0.07	—	-0.06	_	ns
t _{HCE_PIO}	Input Register Clock Enable Hold Time	0.13		0.16	—	0.19	_	ns
t _{SULSR_PIO}	Set/Reset Setup Time	0.19		0.23	—	0.28	_	ns
t _{HLSR_PIO}	Set/Reset Hold Time	-0.14	—	-0.11	—	-0.09	_	ns
EBR Timing								
t _{CO_EBR}	Clock to Output from Address or Data		4.01		4.81		5.78	ns
t _{COO_EBR}	Clock to Output from EBR Output Register		0.81		0.97		1.17	ns
t _{SUDATA_EBR}	Setup Data to EBR Memory	-0.26		-0.21	—	-0.17	_	ns
t _{HDATA_EBR}	Hold Data to EBR Memory	0.41		0.49	—	0.59	_	ns
t _{SUADDR_EBR}	Setup Address to EBR Memory			-0.21	—	-0.17	_	ns
t _{HADDR_EBR}	Hold Address to EBR Memory	0.41	—	0.49	—	0.59	—	ns
t _{SUWREN_EBR}	Setup Write/Read Enable to EBR Memory	-0.17	—	-0.13	—	-0.11	—	ns
t _{HWREN_EBR}	Hold Write/Read Enable to EBR Memory	0.26	—	0.31	—	0.37	—	ns
t _{SUCE_EBR}	Clock Enable Setup Time to EBR Output Register	0.19	—	0.23	—	0.28	—	ns
t _{HCE EBR}	Clock Enable Hold Time to EBR Output Register	-0.13	—	-0.10	—	-0.08	—	ns

Over Recommended Operating Conditions

LatticeXP Internal Timing Parameters¹ (Continued)

Over Recommended Operating Conditions

		-	5	-	4	-		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{RSTO_EBR}	Reset To Output Delay Time from EBR Output Register	_	1.61	_	1.94	_	2.32	ns
PLL Parameters								
t _{RSTREC}	Reset Recovery to Rising Clock	1.00	_	1.00	-	1.00	—	ns
t _{RSTSU}	Reset Signal Setup Time	1.00	-	1.00	_	1.00	—	ns

1. Internal parameters are characterized but not tested on every device. Timing v.F0.11

LatticeXP sysCONFIG Port Timing Specifications

Over	Recommended	Operating	Conditions
••••		• por a mig	•••••••

Parameter	Description	Min.	Max.	Units
sysCONFIG By	te Data Flow	I	1	
t _{SUCBDI}	Byte D[0:7] Setup Time to CCLK	7	_	ns
t _{HCBDI}	Byte D[0:7] Hold Time to CCLK	3	—	ns
t _{CODO}	Clock to Dout in Flowthrough Mode	—	12	ns
t _{SUCS}	CS[0:1] Setup Time to CCLK	7	—	ns
t _{HCS}	CS[0:1] Hold Time to CCLK	2	—	ns
t _{SUWD}	Write Signal Setup Time to CCLK	7	—	ns
t _{HWD}	Write Signal Hold Time to CCLK	2	—	ns
t _{DCB}	CCLK to BUSY Delay Time	—	12	ns
t _{CORD}	Clock to Out for Read Data	_	12	ns
sysCONFIG By	te Slave Clocking	•		•
t _{BSCH}	Byte Slave Clock Minimum High Pulse	6	—	ns
t _{BSCL}	Byte Slave Clock Minimum Low Pulse	8	—	ns
t _{BSCYC}	Byte Slave Clock Cycle Time	15	—	ns
sysCONFIG Se	rial (Bit) Data Flow			
t _{SUSCDI}	DI (Data In) Setup Time to CCLK	7	—	ns
t _{HSCDI}	DI (Data In) Hold Time to CCLK	2	—	ns
t _{CODO}	Clock to Dout in Flowthrough Mode	_	12	ns
sysCONFIG Se	rial Slave Clocking			
t _{SSCH}	Serial Slave Clock Minimum High Pulse	6	—	ns
t _{SSCL}	Serial Slave Clock Minimum Low Pulse	6	—	ns
sysCONFIG PC	DR, Initialization and Wake Up			
t _{ICFG}	Minimum Vcc to INIT High	—	50	ms
t _{VMC}	Time from t _{ICFG} to Valid Master Clock	—	2	us
t _{PRGMRJ}	Program Pin Pulse Rejection	—	7	ns
t _{PRGM} ²	PROGRAMN Low Time to Start Configuration	25	—	ns
t _{DINIT}	INIT Low Time	—	1	ms
t _{DPPINIT}	Delay Time from PROGRAMN Low to INIT Low	—	37	ns
t _{DINITD}	Delay Time from PROGRAMN Low to DONE Low	_	37	ns
t _{IODISS}	User I/O Disable from PROGRAMN Low	_	25	ns
t _{IOENSS}	User I/O Enabled Time from CCLK Edge During Wake-up Sequence	—	25	ns
t _{MWC}	Additional Wake Master Clock Signals after Done Pin High	120	—	cycles
Configuration I	Master Clock (CCLK)			
Frequency ¹		Selected Value - 30%	Selected Value + 30%	MHz
Duty Cycle		40	60	%

1. See Table 2-10 for available CCLK frequencies.

2. The threshold level for PROGRAMN, as well as for CFG[1] and CFG[0], is determined by V_{CC} , such that the threshold = $V_{CC}/2$. Timing v.F0.11

PICs and DDR Data (DQ) Pins Associated with the DDR Strobe (DQS) Pin

PICs Associated with DQS Strobe	PIO within PIC	Polarity	DDR Strobe (DQS) and Data (DQ) Pins	
P[Edge] [n_4]	A	True	DQ	
	В	Complement	DQ	
P[Edge] [p_3]	A	True	DQ	
	В	Complement	DQ	
P[Edge] [p_2]	A	True	DQ	
	В	Complement	DQ	
P[Edge] [p-1]	A	True	DQ	
P[Edge] [n]				
	В	Complement	DQ	
P[Edge] [n+1]	A	True	[Edge]DQSn	
	В	Complement	DQ	
P[Edge] [n 2]	A	True	DQ	
	В	Complement	DQ	
P[Edge] [n 3]	A	True	DQ	
	В	Complement	DQ	

Notes:

1. "n" is a row/column PIC number.

2. The DDR interface is designed for memories that support one DQS strobe per eight bits of data. In some packages, all the potential DDR data (DQ) pins may not be available.

3. The definition of the PIC numbering is provided in the Signal Names column of the Signal Descriptions table in this data sheet.

LFXP3 & LFXP6 Logic Signal Connections: 144 TQFP

Pin			LFXP3		LFXP6			
Number	Pin Function	Bank	Differential	Dual Function	Pin Function	Bank	Differential	Dual Function
1	PROGRAMN	7	-	-	PROGRAMN	7	-	-
2	CCLK	7	-	-	CCLK	7	-	-
3	GND	-	-	-	GND	-	-	-
4	PL2A	7	T ³	-	PL2A	7	T ³	-
5	PL2B	7	C ³	-	PL2B	7	C ³	-
6	PL3A	7	Т	LUM0_PLLT_FB_A	PL3A	7	Т	LUM0_PLLT_FB_A
7	PL3B	7	С	LUM0_PLLC_FB_A	PL3B	7	C	LUM0_PLLC_FB_A
8	VCCI07	7	-	-	VCCIO7	7	-	-
9	PL5A	7	-	VREF1_7	PL5A	7	-	VREF1_7
10	PL6B	7	-	VREF2_7	PL6B	7	-	VREF2_7
11	GNDIO7	7	-	-	GNDIO7	7	-	-
12	PL7A	7	T ³	DQS	PL7A	7	T ³	DQS
13	PL7B	7	C ³	-	PL7B	7	C ³	-
14	VCC	-	-	-	VCC	-	-	-
15	PL8A	7	Т	LUM0_PLLT_IN_A	PL8A	7	Т	LUM0_PLLT_IN_A
16	PL8B	7	С	LUM0_PLLC_IN_A	PL8B	7	C	LUM0_PLLC_IN_A
17	PL9A	7	T ³	-	PL9A	7	T ³	-
18	PL9B	7	C ³	-	PL9B	7	C ³	-
19	VCCP0	-	-	-	VCCP0	-	-	-
20	GNDP0	-	-	-	GNDP0	-	-	-
21	VCCIO6	6	-	-	VCCIO6	6	-	-
22	PL11A	6	T ³	-	PL16A	6	T ³	-
23	PL11B	6	C ³	-	PL16B	6	C ³	-
24	PL12A	6	Т	PCLKT6_0	PL17A	6	Т	PCLKT6_0
25	PL12B	6	C	PCLKC6_0	PL17B	6	C	PCLKC6_0
26	PL13A	6	T ³	-	PL18A	6	T ³	-
27	PL13B	6	C ³	-	PL18B	6	C ³	-
28	GNDIO6	6	-	-	GNDIO6	6	-	-
29	PL14A	6	-	VREF1_6	PL22A	6	-	VREF1_6
30	PL15B	6	-	VREF2_6	PL23B	6	-	VREF2_6
31	PL16A	6	T°	DQS	PL24A	6	T°	DQS
32	PL16B	6	C³	-	PL24B	6	C³	-
33	PL17A	6	-	-	PL25A	6	-	-
34	PL18A	6	T ³	-	PL26A	6	T ³	-
35	PL18B	6	C ³	-	PL26B	6	C ³	-
36	VCCAUX	-	-	-	VCCAUX	-	-	-
37	SLEEPN ¹ /TOE ²	-	-	-	SLEEPN ¹ /TOE ²	-	-	-
38	INITN	5	-	-	INITN	5	-	-
39	VCC	-	-	-	VCC	-	-	-
40	PB2B	5	-	VREF1_5	PB5B	5	-	VREF1_5
41	PB5B	5	-	VREF2_5	PB8B	5	-	VREF2_5
42	PB7A	5	Т	-	PB10A	5	Т	-
43	PB7B	5	C	-	PB10B	5	C	-
44	GNDIO5	5	-	-	GNDIO5	5	-	-
45	PB9A	5	-	-	PB12A	5	-	-
46	PB10B	5	-	-	PB13B	5	-	-

LFXP3 & LFXP6 Logic Signal Connections: 208 PQFP (Cont.)

Din			LFXP3		LFXP6				
Number	Pin Function	Bank	Differential	Dual Function	Pin Function	Bank	Differential	Dual Function	
185	PT13A	0	Т	CS1N	PT16A	0	Т	CS1N	
186	PT12B	0	С	PCLKC0_0	PT15B	0	С	PCLKC0_0	
187	PT12A	0	Т	PCLKT0_0	PT15A	0	Т	PCLKT0_0	
188	PT11B	0	С	-	PT14B	0	С	-	
189	VCCIO0	0	-	-	VCCIO0	0	-	-	
190	PT11A	0	Т	DQS	PT14A	0	Т	DQS	
191	PT10B	0	-	-	PT13B	0	-	-	
192	PT9A	0	-	DOUT	PT12A	0	-	DOUT	
193	PT8B	0	С	-	PT11B	0	С	-	
194	GNDIO0	0	-	-	GNDIO0	0	-	-	
195	PT8A	0	Т	WRITEN	PT11A	0	Т	WRITEN	
196	PT7B	0	С	-	PT10B	0	С	-	
197	PT7A	0	Т	VREF1_0	PT10A	0	Т	VREF1_0	
198	PT6B	0	С	-	PT9B	0	С	-	
199	VCCIO0	0	-	-	VCCIO0	0	-	-	
200	PT6A	0	Т	DI	PT9A	0	Т	DI	
201	PT5B	0	С	-	PT8B	0	С	-	
202	PT5A	0	Т	CSN	PT8A	0	Т	CSN	
203	PT4B	0	С	-	PT7B	0	С	-	
204	PT4A	0	Т	-	PT7A	0	Т	-	
205	PT3B	0	-	VREF2_0	PT6B	0	-	VREF2_0	
206	PT2B	0	-	-	PT5B	0	-	-	
207	GND	-	-	-	GND	-	-	-	
208	CFG0	0	-	-	CFG0	0	-	-	

Applies to LFXP "C" only.
Applies to LFXP "E" only.

3. Supports dedicated LVDS outputs.

LFXP15 & LFXP20 Logic Signal Connections: 256 fpBGA

			LFXP15		LFXP20			
Ball Number	Ball Function	Bank	Differential	Dual Function	Ball Function	Bank	Differential	Dual Function
C2	PROGRAMN	7	-	-	PROGRAMN	7	-	-
C1	CCLK	7	-	-	CCLK	7	-	-
-	GNDIO7	7	-	-	GNDIO7	7	-	-
-	GNDIO7	7	-	-	GNDIO7	7	-	-
D2	PL7A	7	Т	LUM0_PLLT_FB_A	PL7A	7	Т	LUM0_PLLT_FB_A
D3	PL7B	7	С	LUM0_PLLC_FB_A	PL7B	7	С	LUM0_PLLC_FB_A
D1	PL9A	7	-	-	PL9A	7	-	-
E2	PL10B	7	-	VREF1_7	PL10B	7	-	VREF1_7
E1	PL11A	7	T ³	DQS	PL11A	7	T ³	DQS
F1	PL11B	7	C ³	-	PL11B	7	C ³	-
-	GNDIO7	7	-	-	GNDIO7	7	-	-
E3	PL12A	7	Т	-	PL12A	7	Т	-
F4	PL12B	7	С	-	PL12B	7	С	-
F3	PL13A	7	T ³	-	PL13A	7	T ³	-
F2	PL13B	7	C ³	-	PL13B	7	C ³	-
G1	PL15B	7	-	-	PL15B	7	-	-
-	GNDIO7	7	-	-	GNDIO7	7	-	-
G3	PL16A	7	Т	LUM0_PLLT_IN_A	PL16A	7	Т	LUM0_PLLT_IN_A
G2	PL16B	7	С	LUM0_PLLC_IN_A	PL16B	7	С	LUM0_PLLC_IN_A
H1	PL17A	7	Т³	-	PL17A	7	T ³	-
H2	PL17B	7	C ³	-	PL17B	7	C ³	-
G4	PL18A	7	-	VREF2_7	PL18A	7	-	VREF2_7
G5	PL19B	7	-	-	PL19B	7	-	-
J1	PL20A	7	Т³	DQS	PL20A	7	T ³	DQS
-	GNDIO7	7	-	-	GNDIO7	7	-	-
J2	PL20B	7	C ³	-	PL20B	7	C ³	-
H3	PL22A	7	T³	-	PL22A	7	T ³	-
J3	PL22B	7	C ³	-	PL22B	7	C ³	-
H4	VCCP0	-	-	-	VCCP0	-	-	-
H5	GNDP0	-	-	-	GNDP0	-	-	-
K1	PL24A	6	Т	PCLKT6_0	PL28A	6	Т	PCLKT6_0
-	GNDIO6	6	-	-	GNDIO6	6	-	-
K2	PL24B	6	С	PCLKC6_0	PL28B	6	С	PCLKC6_0
J4	PL26A	6	-	-	PL30A	6	-	-
J5	PL27B	6	-	VREF1_6	PL31B	6	-	VREF1_6
L1	PL28A	6	T ³	DQS	PL32A	6	T ³	DQS
L2	PL28B	6	C ³	-	PL32B	6	C ³	-
-	GNDIO6	6	-	-	GNDIO6	6	-	-
M1	PL29A	6	Т	LLM0_PLLT_IN_A	PL33A	6	Т	LLM0_PLLT_IN_A
M2	PL29B	6	С	LLM0_PLLC_IN_A	PL33B	6	С	LLM0_PLLC_IN_A
K3	PL30A	6	T ³	-	PL34A	6	T ³	-
L3	PL30B	6	C ³	-	PL34B	6	C ³	-

LFXP15 & LFXP20 Logic Signal Connections: 256 fpBGA (Cont.)

			LFXP15		LFXP20			
Ball Number	Ball Function	Bank	Differential	Dual Function	Ball Function	Bank	Differential	Dual Function
A9	PT27A	1	Т	-	PT31A	1	Т	-
C9	PT26B	1	С	D7	PT30B	1	С	D7
C8	PT26A	1	Т	-	PT30A	1	Т	-
E9	PT25B	0	С	BUSY	PT29B	0	С	BUSY
-	GNDIO0	0	-	-	GNDIO0	0	-	-
B8	PT25A	0	Т	CS1N	PT29A	0	Т	CS1N
A8	PT24B	0	С	PCLKC0_0	PT28B	0	С	PCLKC0_0
A7	PT24A	0	Т	PCLKT0_0	PT28A	0	Т	PCLKT0_0
B7	PT23B	0	С	-	PT27B	0	С	-
C7	PT23A	0	Т	DQS	PT27A	0	Т	DQS
E8	PT22B	0	-	-	PT26B	0	-	-
D8	PT21A	0	-	DOUT	PT25A	0	-	DOUT
A6	PT20B	0	С	-	PT24B	0	С	-
-	GNDIO0	0	-	-	GNDIO0	0	-	-
C6	PT20A	0	Т	WRITEN	PT24A	0	Т	WRITEN
E7	PT19B	0	С	-	PT23B	0	С	-
D7	PT19A	0	Т	VREF1_0	PT23A	0	Т	VREF1_0
A5	PT18B	0	С	-	PT22B	0	С	-
B5	PT18A	0	Т	DI	PT22A	0	Т	DI
A4	PT17B	0	С	-	PT21B	0	С	-
B6	PT17A	0	Т	CSN	PT21A	0	Т	CSN
E6	PT16B	0	С	-	PT20B	0	С	-
D6	PT16A	0	Т	-	PT20A	0	Т	-
D5	PT15B	0	С	VREF2_0	PT19B	0	С	VREF2_0
A3	PT15A	0	Т	DQS	PT19A	0	Т	DQS
B3	PT14B	0	-	-	PT18B	0	-	-
B2	PT13A	0	-	-	PT17A	0	-	-
-	GNDIO0	0	-	-	GNDIO0	0	-	-
A2	PT12B	0	С	-	PT16B	0	С	-
B1	PT12A	0	Т	-	PT16A	0	Т	-
F5	PT11B	0	С	-	PT15B	0	С	-
C5	PT11A	0	Т	-	PT15A	0	Т	-
-	GNDIO0	0	-	-	GNDIO0	0	-	-
-	GNDIO0	0	-	-	GNDIO0	0	-	-
-	GNDIO0	0	-	-	GNDIO0	0	-	-
C4	CFG0	0	-	-	CFG0	0	-	-
B4	CFG1	0	-	-	CFG1	0	-	-
C3	DONE	0	-	-	DONE	0	-	-
A1	GND	-	-	-	GND	-	-	-
A16	GND	-	-	-	GND	-	-	-
F11	GND	-	-	-	GND	-	-	-
F6	GND	-	-	-	GND	-	-	-

LFXP10, LFXP15 & LFXP20 Logic Signal Connections: 388 fpBGA (Cont.)

		L	FXP10)		I	FXP15	5	LFXP20)
Ball Number	Ball Function	Bank	Diff.	Dual Function	Ball Function	Bank	Diff.	Dual Function	Ball Function	Bank	Diff.	Dual Function
Y10	PB11B	5	С	-	PB16B	5	С	-	PB20B	5	С	-
AA7	PB12A	5	Т	-	PB17A	5	Т	-	PB21A	5	Т	-
AB7	PB12B	5	С	VREF2_5	PB17B	5	С	VREF2_5	PB21B	5	С	VREF2_5
Y7	PB13A	5	Т	-	PB18A	5	Т	-	PB22A	5	Т	-
-	GNDIO5	5	-	-	GNDIO5	5	-	-	GNDIO5	5	-	-
AA8	PB13B	5	С	-	PB18B	5	С	-	PB22B	5	С	-
AB8	PB14A	5	Т	-	PB19A	5	Т	-	PB23A	5	Т	-
Y8	PB14B	5	С	-	PB19B	5	С	-	PB23B	5	С	-
AB9	PB15A	5	Т	-	PB20A	5	Т	-	PB24A	5	Т	-
AA9	PB15B	5	С	-	PB20B	5	С	-	PB24B	5	С	-
W10	PB16A	5	-	-	PB21A	5	-	-	PB25A	5	-	-
W11	PB17B	5	-	-	PB22B	5	-	-	PB26B	5	-	-
AB10	PB18A	5	Т	DQS	PB23A	5	Т	DQS	PB27A	5	Т	DQS
AA10	PB18B	5	С	-	PB23B	5	С	-	PB27B	5	С	-
-	GNDIO5	5	-	-	GNDIO5	5	-	-	GNDIO5	5	-	-
AA11	PB19A	5	Т	-	PB24A	5	Т	-	PB28A	5	Т	-
AB11	PB19B	5	С	-	PB24B	5	С	-	PB28B	5	С	-
Y11	PB20A	5	Т	-	PB25A	5	Т	-	PB29A	5	Т	-
Y12	PB20B	5	С	-	PB25B	5	С	-	PB29B	5	С	-
AB12	PB21A	4	Т	-	PB26A	4	Т	-	PB30A	4	Т	-
AA12	PB21B	4	С	-	PB26B	4	С	-	PB30B	4	С	-
AB13	PB22A	4	Т	PCLKT4_0	PB27A	4	Т	PCLKT4_0	PB31A	4	Т	PCLKT4_0
AA13	PB22B	4	С	PCLKC4_0	PB27B	4	С	PCLKC4_0	PB31B	4	С	PCLKC4_0
-	GNDIO4	4	-	-	GNDIO4	4	-	-	GNDIO4	4	-	-
AA14	PB23A	4	Т	-	PB28A	4	Т	-	PB32A	4	Т	-
AB14	PB23B	4	С	-	PB28B	4	С	-	PB32B	4	С	-
W12	PB24A	4	-	-	PB29A	4	-	-	PB33A	4	-	-
W13	PB25B	4	-	-	PB30B	4	-	-	PB34B	4	-	-
AA15	PB26A	4	Т	DQS	PB31A	4	Т	DQS	PB35A	4	Т	DQS
AB15	PB26B	4	С	VREF1_4	PB31B	4	С	VREF1_4	PB35B	4	С	VREF1_4
AA16	PB27A	4	Т	-	PB32A	4	Т	-	PB36A	4	Т	-
AB16	PB27B	4	С	-	PB32B	4	С	-	PB36B	4	С	-
Y17	PB28A	4	Т	-	PB33A	4	Т	-	PB37A	4	Т	-
-	GNDIO4	4	-	-	GNDIO4	4	-	-	GNDIO4	4	-	-
AA17	PB28B	4	С	-	PB33B	4	С	-	PB37B	4	С	-
Y13	PB29A	4	Т	-	PB34A	4	Т	-	PB38A	4	Т	-
Y14	PB29B	4	С	-	PB34B	4	С	-	PB38B	4	С	-
AB17	PB30A	4	т	-	PB35A	4	Т	-	PB39A	4	Т	-
Y18	PB30B	4	С	-	PB35B	4	С	-	PB39B	4	С	-
AA18	PB31A	4	Т	VREF2 4	PB36A	4	Т	VREF2 4	PB40A	4	Т	VREF2 4
AB18	PB31B	4	С	-	PB36B	4	С	-	PB40B	4	С	-
Y19	PB32A	4	-	-	PB37A	4	-	-	PB41A	4	-	-
AB19	PB33B	4	-	-	PB38B	4	-	-	PB42B	4	-	-
-	GNDIO4	4	-	-	GNDIO4	4	-	-	GNDIO4	4	-	-
AA19	PB34A	4	т	DQS	PB39A	4	т	DQS	PB43A	4	т	DQS
Y20	PB34B	4	C .	-	PB39B	4	C	-	PB43B	4	C.	-
W14	PR354	4	т	_	PR404	4	т	-	PR444	4	т	-
W15	PR35R	4	Ċ	_	PR40R	4	, C	-	PR44R	4	Ċ	-
4R20	PB36A	4	т	_	PB/14	7	т		PB/54	1	т	
ADZU	F D30A	4	1	-	F 041A	4	1	-	F 040A	4		-

LFXP10, LFXP15 & LFXP20 Logic Signal Connections: 388 fpBGA (Cont.)

		L	FXP10)		I	FXP15	5	LFXP20			0
Ball Number	Ball Function	Bank	Diff.	Dual Function	Ball Function	Bank	Diff.	Dual Function	Ball Function	Bank	Diff.	Dual Function
K11	GND	-	-	-	GND	-	-	-	GND	-	-	-
K12	GND	-	-	-	GND	-	-	-	GND	-	-	-
K13	GND	-	-	-	GND	-	-	-	GND	-	-	-
K14	GND	-	-	-	GND	-	-	-	GND	-	-	-
K9	GND	-	-	-	GND	-	-	-	GND	-	-	-
L10	GND	-	-	-	GND	-	-	-	GND	-	-	-
L11	GND	-	-	-	GND	-	-	-	GND	-	-	-
L12	GND	-	-	-	GND	-	-	-	GND	-	-	-
L13	GND	-	-	-	GND	-	-	-	GND	-	-	-
L14	GND	-	-	-	GND	-	-	-	GND	-	-	-
L9	GND	-	-	-	GND	-	-	-	GND	-	-	-
M10	GND	-	-	-	GND	-	-	-	GND	-	-	-
M11	GND	-	-	-	GND	-	-	-	GND	-	-	-
M12	GND	-	-	-	GND	-	-	-	GND	-	-	-
M13	GND	-	-	-	GND	-	-	-	GND	-	-	-
M14	GND	-	-	-	GND	-	-	-	GND	-	-	-
M9	GND	-	-	-	GND	-	-	-	GND	-	-	-
N10	GND	-	-	-	GND	-	-	-	GND	-	-	-
N11	GND	-	-	-	GND	-	-	-	GND	-	-	-
N12	GND	-	-	-	GND	-	-	-	GND	-	-	-
N13	GND	-	-	-	GND	-	-	-	GND	-	-	-
N14	GND	-	-	-	GND	-	-	-	GND	-	-	-
N9	GND	-	-	-	GND	-	-	-	GND	-	-	-
P10	GND	-	-	-	GND	-	-	-	GND	-	-	-
P11	GND	-	-	-	GND	-	-	-	GND	-	-	-
P12	GND	-	-	-	GND	-	-	-	GND	-	-	-
P13	GND	-	-	-	GND	-	-	-	GND	-	-	-
P14	GND	-	-	-	GND	-	-	-	GND	-	-	-
P9	GND	-	-	-	GND	-	-	-	GND	-	-	-
R10	GND	-	-	-	GND	-	-	-	GND	-	-	-
R11	GND	-	-	-	GND	-	-	-	GND	-	-	-
R12	GND	-	-	-	GND	-	-	-	GND	-	-	-
R13	GND	-	-	-	GND	-	-	-	GND	-	-	-
R14	GND	-	-	-	GND	-	-	-	GND	-	-	-
H9	VCC	-	-	-	VCC	-	-	-	VCC	-	-	-
J15	VCC	-	-	-	VCC	-	-	-	VCC	-	-	-
J8	VCC	-	-	-	VCC	-	-	-	VCC	-	-	-
K15	VCC	-	-	-	VCC	-	-	-	VCC	-	-	-
K8	VCC	-	-	-	VCC	-	-	-	VCC	-	-	-
L15	VCC	-	-	-	VCC	-	-	-	VCC	-	-	-
L8	VCC	-	-	-	VCC	-	-	-	VCC	-	-	-
M15	VCC	-	-	-	VCC	-	-	-	VCC	-	-	-
M8	VCC	-	-	-	VCC	-	-	-	VCC	-	-	-
N15	VCC	-	-	-	VCC	-	-	-	VCC	-	-	-
N8	VCC	-	-	-	VCC	-	-	-	VCC	-	-	-
P15	VCC	-	-	-	VCC	-	-	-	VCC	-	-	-
P8	VCC	-	-	-	VCC	-	-	-	VCC	-	-	-
R9	VCC	-	-	-	VCC	† -	-	-	VCC	-	-	-
G16	VCCAUX	-	-	-	VCCAUX	-	-	-	VCCAUX	-	-	-
L		۱		1		t						

LFXP15 & LFXP20 Logic Signal Connections: 484 fpBGA (Cont.)

			LFXP15				LFXP20	
Ball Number	Ball Function	Bank	Differential	Dual Function	Ball Function	Bank	Differential	Dual Function
T6	PL41A	6	Т	-	PL45A	6	Т	-
T5	PL41B	6	С	-	PL45B	6	С	-
-	GNDIO6	6	-	-	GNDIO6	6	-	-
U3	PL42A	6	T ³	-	PL46A	6	T ³	-
U4	PL42B	6	C ³	-	PL46B	6	C ³	-
V4	PL43A	6	-	-	PL47A	6	-	-
W4	SLEEPN ¹ / TOE ²	-	-	-	SLEEPN ¹ / TOE ²	-	-	-
W5	INITN	5	-	-	INITN	5	-	-
Y3	-	-	-	-	PB3B	5	-	-
-	GNDIO5	5	-	-	GNDIO5	5	-	-
U5	-	-	-	-	PB4A	5	Т	-
V5	-	-	-	-	PB4B	5	С	-
Y4	-	-	-	-	PB5A	5	Т	-
Y5	-	-	-	-	PB5B	5	С	-
V6	-	-	-	-	PB6A	5	Т	-
-	GNDIO5	5	-	-	GNDIO5	5	-	-
U6	-	-	-	-	PB6B	5	C	-
W6	PB3A	5	Т	-	PB7A	5	Т	-
Y6	PB3B	5	С	-	PB7B	5	С	-
AA2	PB4A	5	Т	-	PB8A	5	Т	-
AA3	PB4B	5	С	-	PB8B	5	С	-
V7	PB5A	5	-	-	PB9A	5	-	-
U7	PB6B	5	-	-	PB10B	5	-	-
Y7	PB7A	5	Т	DQS	PB11A	5	Т	DQS
W7	PB7B	5	С	-	PB11B	5	С	-
AA4	PB8A	5	Т	-	PB12A	5	Т	-
-	GNDIO5	5	-	-	GNDIO5	5	-	-
AA5	PB8B	5	С	-	PB12B	5	С	-
AB3	PB9A	5	Т	-	PB13A	5	Т	-
AB4	PB9B	5	С	-	PB13B	5	С	-
AA6	PB10A	5	Т	-	PB14A	5	Т	-
AA7	PB10B	5	С	-	PB14B	5	С	-
U8	PB11A	5	Т	-	PB15A	5	Т	-
V8	PB11B	5	С	-	PB15B	5	С	-
Y8	PB12A	5	Т	VREF1_5	PB16A	5	Т	VREF1_5
-	GNDIO5	5	-	-	GNDIO5	5	-	-
W8	PB12B	5	С	-	PB16B	5	С	-
V9	PB13A	5	-	-	PB17A	5	-	-
U9	PB14B	5	-	-	PB18B	5	-	-
Y9	PB15A	5	Т	DQS	PB19A	5	Т	DQS
W9	PB15B	5	С	-	PB19B	5	С	-

LFXP15 & LFXP20 Logic Signal Connections: 484 fpBGA (Cont.)

			LFXP15		LFXP20				
Ball Number	Ball Function	Bank	Differential	Dual Function	Ball Function	Bank	Differential	Dual Function	
G9	VCC	-	-	-	VCC	-	-	-	
H15	VCC	-	-	-	VCC	-	-	-	
H8	VCC	-	-	-	VCC	-	-	-	
J16	VCC	-	-	-	VCC	-	-	-	
J7	VCC	-	-	-	VCC	-	-	-	
K16	VCC	-	-	-	VCC	-	-	-	
K17	VCC	-	-	-	VCC	-	-	-	
K6	VCC	-	-	-	VCC	-	-	-	
K7	VCC	-	-	-	VCC	-	-	-	
N16	VCC	-	-	-	VCC	-	-	-	
N17	VCC	-	-	-	VCC	-	-	-	
N6	VCC	-	-	-	VCC	-	-	-	
N7	VCC	-	-	-	VCC	-	-	-	
P16	VCC	-	-	-	VCC	-	-	-	
P7	VCC	-	-	-	VCC	-	-	-	
R15	VCC	-	-	-	VCC	-	-	-	
R8	VCC	-	-	-	VCC	-	-	-	
T10	VCC	-	-	-	VCC	-	-	-	
T13	VCC	-	-	-	VCC	-	-	-	
T14	VCC	-	-	-	VCC	-	-	-	
Т9	VCC	-	-	-	VCC	-	-	-	
U10	VCC	-	-	-	VCC	-	-	-	
U13	VCC	-	-	-	VCC	-	-	-	
G15	VCCAUX	-	-	-	VCCAUX	-	-	-	
G16	VCCAUX	-	-	-	VCCAUX	-	-	-	
G7	VCCAUX	-	-	-	VCCAUX	-	-	-	
G8	VCCAUX	-	-	-	VCCAUX	-	-	-	
H16	VCCAUX	-	-	-	VCCAUX	-	-	-	
H7	VCCAUX	-	-	-	VCCAUX	-	-	-	
R16	VCCAUX	-	-	-	VCCAUX	-	-	-	
R7	VCCAUX	-	-	-	VCCAUX	-	-	-	
T15	VCCAUX	-	-	-	VCCAUX	-	-	-	
T16	VCCAUX	-	-	-	VCCAUX	-	-	-	
T7	VCCAUX	-	-	-	VCCAUX	-	-	-	
T8	VCCAUX	-	-	-	VCCAUX	-	-	-	
F11	VCCIO0	0	-	-	VCCIO0	0	-	-	
G11	VCCIO0	0	-	-	VCCIO0	0	-	-	
H10	VCCIO0	0	-	-	VCCIO0	0	-	-	
H11	VCCIO0	0	-	-	VCCIO0	0	-	-	
F12	VCCIO1	1	-	-	VCCIO1	1	-	-	
G12	VCCIO1	1	-	-	VCCIO1	1	-	-	
H12	VCCIO1	1	-	-	VCCIO1	1	-	-	

			-	-			
Part Number	I/Os	Voltage	Grade	Package	Pins	Temp.	LUTs
LFXP20E-3F484C	340	1.2V	-3	fpBGA	484	COM	19.7K
LFXP20E-4F484C	340	1.2V	-4	fpBGA	484	COM	19.7K
LFXP20E-5F484C	340	1.2V	-5	fpBGA	484	COM	19.7K
LFXP20E-3F388C	268	1.2V	-3	fpBGA	388	COM	19.7K
LFXP20E-4F388C	268	1.2V	-4	fpBGA	388	COM	19.7K
LFXP20E-5F388C	268	1.2V	-5	fpBGA	388	COM	19.7K
LFXP20E-3F256C	188	1.2V	-3	fpBGA	256	COM	19.7K
LFXP20E-4F256C	188	1.2V	-4	fpBGA	256	COM	19.7K
LFXP20E-5F256C	188	1.2V	-5	fpBGA	256	COM	19.7K

Commercial (Cont.)

Industrial

Part Number	l/Os	Voltage	Grade	Package	Pins	Temp.	LUTs
LFXP3C-3Q208I	136	1.8/2.5/3.3V	-3	PQFP	208	IND	3.1K
LFXP3C-4Q208I	136	1.8/2.5/3.3V	-4	PQFP	208	IND	3.1K
LFXP3C-3T144I	100	1.8/2.5/3.3V	-3	TQFP	144	IND	3.1K
LFXP3C-4T144I	100	1.8/2.5/3.3V	-4	TQFP	144	IND	3.1K
LFXP3C-3T100I	62	1.8/2.5/3.3V	-3	TQFP	100	IND	3.1K
LFXP3C-4T100I	62	1.8/2.5/3.3V	-4	TQFP	100	IND	3.1K

Part Number	l/Os	Voltage	Grade	Package	Pins	Temp.	LUTs
LFXP6C-3F256I	188	1.8/2.5/3.3V	-3	fpBGA	256	IND	5.8K
LFXP6C-4F256I	188	1.8/2.5/3.3V	-4	fpBGA	256	IND	5.8K
LFXP6C-3Q208I	142	1.8/2.5/3.3V	-3	PQFP	208	IND	5.8K
LFXP6C-4Q208I	142	1.8/2.5/3.3V	-4	PQFP	208	IND	5.8K
LFXP6C-3T144I	100	1.8/2.5/3.3V	-3	TQFP	144	IND	5.8K
LFXP6C-4T144I	100	1.8/2.5/3.3V	-4	TQFP	144	IND	5.8K

Part Number	l/Os	Voltage	Grade	Package	Pins	Temp.	LUTs
LFXP10C-3F388I	244	1.8/2.5/3.3V	-3	fpBGA	388	IND	9.7K
LFXP10C-4F388I	244	1.8/2.5/3.3V	-4	fpBGA	388	IND	9.7K
LFXP10C-3F256I	188	1.8/2.5/3.3V	-3	fpBGA	256	IND	9.7K
LFXP10C-4F256I	188	1.8/2.5/3.3V	-4	fpBGA	256	IND	9.7K