

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	-
Number of Logic Elements/Cells	3000
Total RAM Bits	55296
Number of I/O	100
Number of Gates	-
Voltage - Supply	1.71V ~ 3.465V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	144-LQFP
Supplier Device Package	144-TQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lfxp3c-3tn144i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Function	Туре	Signal Names	Description
Input	Data signal	A0, B0, C0, D0	Inputs to LUT4
Input	Data signal	A1, B1, C1, D1	Inputs to LUT4
Input	Multi-purpose	MO	Multipurpose Input
Input	Multi-purpose	M1	Multipurpose Input
Input	Control signal	CE	Clock Enable
Input	Control signal	LSR	Local Set/Reset
Input	Control signal	CLK	System Clock
Input	Inter-PFU signal	FCIN	Fast Carry In ¹
Output	Data signals	F0, F1	LUT4 output register bypass signals
Output	Data signals	Q0, Q1	Register Outputs
Output	Data signals	OFX0	Output of a LUT5 MUX
Output	Data signals	OFX1	Output of a LUT6, LUT7, LUT8 ² MUX depending on the slice
Output	Inter-PFU signal	FCO	For the right most PFU the fast carry chain output ¹

Table 2-1. Slice Signal Descriptions

1. See Figure 2-2 for connection details.

2. Requires two PFUs.

Modes of Operation

Each Slice is capable of four modes of operation: Logic, Ripple, RAM and ROM. The Slice in the PFF is capable of all modes except RAM. Table 2-2 lists the modes and the capability of the Slice blocks.

Table 2-2. Slice Modes

	Logic	Ripple	RAM	ROM
PFU Slice	LUT 4x2 or LUT 5x1	2-bit Arithmetic Unit	SP 16x2	ROM 16x1 x 2
PFF Slice	LUT 4x2 or LUT 5x1	2-bit Arithmetic Unit	N/A	ROM 16x1 x 2

Logic Mode: In this mode, the LUTs in each Slice are configured as 4-input combinatorial lookup tables. A LUT4 can have 16 possible input combinations. Any logic function with four inputs can be generated by programming this lookup table. Since there are two LUT4s per Slice, a LUT5 can be constructed within one Slice. Larger lookup tables such as LUT6, LUT7 and LUT8 can be constructed by concatenating other Slices.

Ripple Mode: Ripple mode allows the efficient implementation of small arithmetic functions. In ripple mode, the following functions can be implemented by each Slice:

- Addition 2-bit
- Subtraction 2-bit
- Add/Subtract 2-bit using dynamic control
- Up counter 2-bit
- Down counter 2-bit
- Ripple mode multiplier building block
- Comparator functions of A and B inputs
 - A greater-than-or-equal-to B
 - A not-equal-to B
 - A less-than-or-equal-to B

Two additional signals: Carry Generate and Carry Propagate are generated per Slice in this mode, allowing fast arithmetic functions to be constructed by concatenating Slices.

RAM Mode: In this mode, distributed RAM can be constructed using each LUT block as a 16x1-bit memory. Through the combination of LUTs and Slices, a variety of different memories can be constructed.

Lattice Semiconductor

The Lattice design tools support the creation of a variety of different size memories. Where appropriate, the software will construct these using distributed memory primitives that represent the capabilities of the PFU. Table 2-3 shows the number of Slices required to implement different distributed RAM primitives. Figure 2-4 shows the distributed memory primitive block diagrams. Dual port memories involve the pairing of two Slices, one Slice functions as the read-write port. The other companion Slice supports the read-only port. For more information on RAM mode in LatticeXP devices, please see details of additional technical documentation at the end of this data sheet.

Table 2-3. Number of Slices Required for Implementing Distributed RAM

	SPR16x2	DPR16x2		
Number of Slices	1	2		
Note: SPR = Single Port RAM, DPR = Dual Port RAM				

_				_	
	~ /		 	Duline	

ROM Mode: The ROM mode uses the same principal as the RAM modes, but without the Write port. Pre-loading is accomplished through the programming interface during configuration.

PFU Modes of Operation

Slices can be combined within a PFU to form larger functions. Table 2-4 tabulates these modes and documents the functionality possible at the PFU level.

Lattice Semiconductor

Figure 2-8. Per Quadrant Secondary Clock Selection

Figure 2-9. Slice Clock Selection

sysCLOCK Phase Locked Loops (PLLs)

The PLL clock input, from pin or routing, feeds into an input clock divider. There are three sources of feedback signals to the feedback divider: from CLKOP (PLL internal), from clock net (CLKOP or CLKOS) or from a user clock (PIN or logic). There is a PLL_LOCK signal to indicate that VCO has locked on to the input clock signal. Figure 2-10 shows the sysCLOCK PLL diagram.

The setup and hold times of the device can be improved by programming a delay in the feedback or input path of the PLL which will advance or delay the output clock with reference to the input clock. This delay can be either programmed during configuration or can be adjusted dynamically. In dynamic mode, the PLL may lose lock after adjustment and not relock until the t_{LOCK} parameter has been satisfied. Additionally, the phase and duty cycle block allows the user to adjust the phase and duty cycle of the CLKOS output.

The sysCLOCK PLLs provide the ability to synthesize clock frequencies. Each PLL has four dividers associated with it: input clock divider, feedback divider, post scalar divider and secondary clock divider. The input clock divider is used to divide the input clock signal, while the feedback divider is used to multiply the input clock signal. The post scalar divider allows the VCO to operate at higher frequencies than the clock output, thereby increasing the frequency range. The secondary divider is used to derive lower frequency outputs.

For more information on the PLL, please see details of additional technical documentation at the end of this data sheet.

Dynamic Clock Select (DCS)

The DCS is a global clock buffer with smart multiplexer functions. It takes two independent input clock sources and outputs a clock signal without any glitches or runt pulses. This is achieved irrespective of where the select signal is toggled. There are eight DCS blocks per device, located in pairs at the center of each side. Figure 2-12 illustrates the DCS Block Macro.

Figure 2-12. DCS Block Primitive

Figure 2-13 shows timing waveforms of the default DCS operating mode. The DCS block can be programmed to other modes. For more information on the DCS, please see details of additional technical documentation at the end of this data sheet.

Figure 2-13. DCS Waveforms

sysMEM Memory

The LatticeXP family of devices contain a number of sysMEM Embedded Block RAM (EBR). The EBR consists of a 9-Kbit RAM, with dedicated input and output registers.

sysMEM Memory Block

The sysMEM block can implement single port, dual port or pseudo dual port memories. Each block can be used in a variety of depths and widths as shown in Table 2-6.

Figure 2-23. Output Register Block

*Latch is transparent when input is low.

Figure 2-24. ODDRXB Primitive

Tristate Register Block

The tristate register block provides the ability to register tri-state control signals from the core of the device before they are passed to the sysIO buffers. The block contains a register for SDR operation and an additional latch for DDR operation. Figure 2-25 shows the diagram of the Tristate Register Block.

In SDR mode, ONEG1 feeds one of the flip-flops that then feeds the output. The flip-flop can be configured a Dtype or latch. In DDR mode, ONEG1 is fed into one register on the positive edge of the clock and OPOS1 is latched. A multiplexer running off the same clock selects the correct register for feeding to the output (D0).

Figure 2-25. Tristate Register Block

*Latch is transparent when input is low.

Control Logic Block

The control logic block allows the selection and modification of control signals for use in the PIO block. A clock is selected from one of the clock signals provided from the general purpose routing and a DQS signal provided from the programmable DQS pin. The clock can optionally be inverted.

The clock enable and local reset signals are selected from the routing and optionally inverted. The global tristate signal is passed through this block.

DDR Memory Support

Implementing high performance DDR memory interfaces requires dedicated DDR register structures in the input (for read operations) and in the output (for write operations). As indicated in the PIO Logic section, the LatticeXP devices provide this capability. In addition to these registers, the LatticeXP devices contain two elements to simplify the design of input structures for read operations: the DQS delay block and polarity control logic.

DLL Calibrated DQS Delay Block

Source Synchronous interfaces generally require the input clock to be adjusted in order to correctly capture data at the input register. For most interfaces a PLL is used for this adjustment, however in DDR memories the clock (referred to as DQS) is not free running so this approach cannot be used. The DQS Delay block provides the required clock alignment for DDR memory interfaces.

The DQS signal (selected PIOs only) feeds from the PAD through a DQS delay element to a dedicated DQS routing resource. The DQS signal also feeds the polarity control logic which controls the polarity of the clock to the sync registers in the input register blocks. Figures 2-26 and 2-27 show how the polarity control logic are routed to the PIOs.

The temperature, voltage and process variations of the DQS delay block are compensated by a set of calibration (6-bit bus) signals from two DLLs on opposite sides of the device. Each DLL compensates DQS Delays in its half of the device as shown in Figure 2-27. The DLL loop is compensated for temperature, voltage and process variations by the system clock and feedback loop.

Table 2-8. Supported	Output Standards
----------------------	-------------------------

Output Standard	Drive	V _{CCIO} (Nom.)		
Single-ended Interfaces				
LVTTL	4mA, 8mA, 12mA, 16mA, 20mA	3.3		
LVCMOS33	4mA, 8mA, 12mA 16mA, 20mA	3.3		
LVCMOS25	4mA, 8mA, 12mA 16mA, 20mA	2.5		
LVCMOS18	4mA, 8mA, 12mA 16mA	1.8		
LVCMOS15	4mA, 8mA	1.5		
LVCMOS12	2mA, 6mA	1.2		
LVCMOS33, Open Drain	4mA, 8mA, 12mA 16mA, 20mA	—		
LVCMOS25, Open Drain	4mA, 8mA, 12mA 16mA, 20mA	—		
LVCMOS18, Open Drain	4mA, 8mA, 12mA 16mA	—		
LVCMOS15, Open Drain	4mA, 8mA	—		
LVCMOS12, Open Drain	2mA. 6mA	—		
PCI33	N/A	3.3		
HSTL18 Class I, II, III	N/A	1.8		
HSTL15 Class I, III	N/A	1.5		
SSTL3 Class I, II	N/A	3.3		
SSTL2 Class I, II	N/A	2.5		
SSTL18 Class I	N/A	1.8		
Differential Interfaces	•			
Differential SSTL3, Class I, II	N/A	3.3		
Differential SSTL2, Class I, II	N/A	2.5		
Differential SSTL18, Class I	N/A	1.8		
Differential HSTL18, Class I, II, III	N/A	1.8		
Differential HSTL15, Class I, III	N/A	1.5		
LVDS	N/A	2.5		
BLVDS ¹	N/A	2.5		
LVPECL ¹	N/A	3.3		

1. Emulated with external resistors.

Hot Socketing

The LatticeXP devices have been carefully designed to ensure predictable behavior during power-up and powerdown. Power supplies can be sequenced in any order. During power up and power-down sequences, the I/Os remain in tristate until the power supply voltage is high enough to ensure reliable operation. In addition, leakage into I/O pins is controlled to within specified limits, which allows easy integration with the rest of the system. These capabilities make the LatticeXP ideal for many multiple power supply and hot-swap applications.

Sleep Mode

The LatticeXP "C" devices ($V_{CC} = 1.8/2.5/3.3V$) have a sleep mode that allows standby current to be reduced by up to three orders of magnitude during periods of system inactivity. Entry and exit to Sleep Mode is controlled by the SLEEPN pin.

During Sleep Mode, the FPGA logic is non-operational, registers and EBR contents are not maintained and I/Os are tri-stated. Do not enter Sleep Mode during device programming or configuration operation. In Sleep Mode, power supplies can be maintained in their normal operating range, eliminating the need for external switching of power supplies. Table 2-9 compares the characteristics of Normal, Off and Sleep Modes.

master serial clock is 2.5MHz. Table 2-10 lists all the available Master Serial Clock frequencies. When a different Master Serial Clock is selected during the design process, the following sequence takes place:

- 1. User selects a different Master Serial Clock frequency for configuration.
- 2. During configuration the device starts with the default (2.5MHz) Master Serial Clock frequency.
- 3. The clock configuration settings are contained in the early configuration bit stream.
- 4. The Master Serial Clock frequency changes to the selected frequency once the clock configuration bits are received.

For further information on the use of this oscillator for configuration, please see details of additional technical documentation at the end of this data sheet.

Table 2-10. Selectable Master Serial Clock (CCLK) Frequencies During Configuration

CCLK (MHz)	CCLK (MHz)	CCLK (MHz)
2.5 ¹	13	45
4.3	15	51
5.4	20	55
6.9	26	60
8.1	30	130
9.2	34	—
10.0	41	—
1. Default	•	•

Density Shifting

The LatticeXP family has been designed to ensure that different density devices in the same package have the same pin-out. Furthermore, the architecture ensures a high success rate when performing design migration from lower density parts to higher density parts. In many cases, it is also possible to shift a lower utilization design targeted for a high-density device to a lower density device. However, the exact details of the final resource utilization will impact the likely success in each case.

Supply Current (Standby)^{1, 2, 3, 4}

Symbol	Parameter	Device	Typ.⁵	Units
		LFXP3E	15	mA
		LFXP6E	20	mA
		LFXP10E	35	mA
		LFXP15E	45	mA
1	Core Power Supply	LFXP20E	55	mA
ICC		LFXP3C	35	mA
		LFXP6C	40	mA
		LFXP10C	70	mA
		LFXP15C	80	mA
		LFXP20C	90	mA
I _{CCP}	PLL Power Supply (per PLL)	All	8	mA
		LFXP3E/C	22	mA
		LFXP6E/C	22	mA
I _{CCAUX}	Auxiliary Power Supply	LFXP10E/C	30	mA
	CCAUX CICC	LFXP15E/C	30	mA
		LFXP20E/C	30	mA
ICCIO	Bank Power Supply ⁶	All	2	mA
ICCJ	V _{CCJ} Power Supply	All	1	mA

Over Recommended Operating Conditions

1. For further information on supply current, please see details of additional technical documentation at the end of this data sheet.

2. Assumes all outputs are tristated, all inputs are configured as LVCMOS and held at the VCCIO or GND.

3. Frequency 0MHz.

4. User pattern: blank.

5. $T_A=25^{\circ}C$, power supplies at nominal voltage.

6. Per bank.

Initialization Supply Current^{1, 2, 3, 4, 5, 6}

Symbol	Parameter	Device	Typ. ⁷	Units
I _{CC}		LFXP3E	40	mA
		LFXP6E	50	mA
		LFXP10E	110	mA
		LFXP15E	140	mA
	Coro Powor Supply	LFXP20E	250	mA
		LFXP3C	60	mA
		LFXP6C	70	mA
		LFXP10C	150	mA
		LFXP15C	180	mA
		LFXP20C	290	mA
		LFXP3E/C	50	mA
		LFXP6E/C	60	mA
I _{CCAUX}	Auxiliary Power Supply	LFXP10E/C	90	mA
	CLAUX CICK	LFXP15 /C	110	mA
		LFXP20E/C	130	mA
ICCJ	V _{CCJ} Power Supply	All	2	mA

Over Recommended Operating Conditions

1. Until DONE signal is active.

2. For further information on supply current, please see details of additional technical documentation at the end of this data sheet.

3. Assumes all outputs are tristated, all inputs are configured as LVCMOS and held at the V_{CCIO} or GND.

4. Frequency 0MHz.

5. Typical user pattern.

6. Assume normal bypass capacitor/decoupling capacitor across the supply.

7. $T_A=25^{\circ}C$, power supplies at nominal voltage.

sysIO Differential Electrical Characteristics LVDS

Parameter Symbol	Parameter Description	Test Conditions	Min.	Тур.	Max.	Units
V _{INP,} V _{INM}	Input Voltage		0	_	2.4	V
V _{THD}	Differential Input Threshold		+/-100	_	—	mV
		$100mV \le V_{THD}$	V _{THD} /2	1.2	1.8	V
V _{CM}	Input Common Mode Voltage	$200mV \le V_{THD}$	V _{THD} /2	1.2	1.9	V
		$350mV \le V_{THD}$	V _{THD} /2	1.2	2.0	V
I _{IN}	Input current	Power on or power off	—	_	+/-10	μA
V _{OH}	Output high voltage for V_{OP} or V_{OM}	R _T = 100 ohms	—	1.38	1.60	V
V _{OL}	Output low voltage for V_{OP} or V_{OM}	R _T = 100 ohms	0.9V	1.03	—	V
V _{OD}	Output voltage differential	$(V_{OP} - V_{OM}), R_T = 100 \text{ ohms}$	250	350	450	mV
ΔV _{OD}	Change in V _{OD} between high and low		—	_	50	mV
V _{OS}	Output voltage offset	$(V_{OP} - V_{OM})/2, R_T = 100 \text{ ohms}$	1.125	1.25	1.375	V
ΔV_{OS}	Change in V _{OS} between H and L		—	_	50	mV
I _{OSD}	Output short circuit current	V _{OD} = 0V Driver outputs shorted	—	—	6	mA

Over Recommended Operating Conditions

Figure 3-5. DDR Timings

PICs and DDR Data (DQ) Pins Associated with the DDR Strobe (DQS) Pin

PICs Associated with DQS Strobe	PIO within PIC	Polarity	DDR Strobe (DQS) and Data (DQ) Pins
P[Edge] [n_4]	A	True	DQ
	В	Polarity True Complement	DQ
P[Edge] [p_3]	A	True	DQ
	В	Complement	DQ
P[Edge] [p_2]	A	True	DQ
	В	Complement	DQ
P[Edge] [p-1]	A	True	DQ
P[Edge] [n]			
	В	Complement	DQ
P[Edge] [n+1]	A	True	[Edge]DQSn
	В	Complement	DQ
P[Edge] [n 2]	A	True	DQ
	В	Complement	DQ
P[Edge] [n 3]	A	True	DQ
	В	Complement	DQ

Notes:

1. "n" is a row/column PIC number.

2. The DDR interface is designed for memories that support one DQS strobe per eight bits of data. In some packages, all the potential DDR data (DQ) pins may not be available.

3. The definition of the PIC numbering is provided in the Signal Names column of the Signal Descriptions table in this data sheet.

LFXP3 & LFXP6 Logic Signal Connections: 144 TQFP (Cont.)

Dia			LFXP3				LFXP6	
Number	Pin Function	Bank	Differential	Dual Function	Pin Function	Bank	Differential	Dual Function
47	PB11A	5	Т	DQS	PB14A	5	Т	DQS
48	PB11B	5	С	-	PB14B	5	С	-
49	VCCIO5	5	-	-	VCCIO5	5	-	-
50	PB12A	5	Т	-	PB15A	5	Т	-
51	PB12B	5	С	-	PB15B	5	С	-
52	PB13A	5	Т	-	PB16A	5	Т	-
53	PB13B	5	С	-	PB16B	5	С	-
54	GND	-	-	-	GND	-	-	-
55	PB14A	4	Т	-	PB17A	4	Т	-
56	GNDIO4	4	-	-	GNDIO4	4	-	-
57	PB14B	4	С	-	PB17B	4	С	-
58	PB15A	4	Т	PCLKT4_0	PB18A	4	Т	PCLKT4_0
59	PB15B	4	С	PCLKC4_0	PB18B	4	С	PCLKC4_0
60	PB16A	4	Т	-	PB19A	4	Т	-
61	VCCIO4	4	-	-	VCCIO4	4	-	-
62	PB16B	4	С	-	PB19B	4	С	-
63	PB19A	4	Т	DQS	PB22A	4	Т	DQS
64	GNDIO4	4	-	-	GNDIO4	4	-	-
65	PB19B	4	С	VREF1_4	PB22B	4	С	VREF1_4
66	PB20A	4	Т	-	PB23A	4	Т	-
67	PB20B	4	С	-	PB23B	4	С	-
68	VCCIO4	4	-	-	VCCIO4	4	-	-
69	PB22A	4	-	-	PB25A	4	-	-
70	PB24A	4	Т	VREF2_4	PB27A	4	Т	VREF2_4
71	PB24B	4	C	-	PB27B	4	С	-
72	PB25A	4	-	-	PB28A	4	-	-
73	VCC	-	-	-	VCC	-	-	-
74	PR18B	3	C ³	-	PR26B	3	C ³	-
75	GNDIO3	3	-	-	GNDIO3	3	-	-
76	PR18A	3	T ³	-	PR26A	3	T ³	-
77	PR17B	3	C	-	PR25B	3	С	-
78	PR17A	3	T	-	PR25A	3	T	-
79	PR16B	3	C ³	-	PR24B	3	C ³	-
80	PR16A	3	T٩	DQS	PR24A	3	T ³	DQS
81	PR15B	3	-	VREF1_3	PR23B	3	-	VREF1_3
82	PR14A	3	-	VREF2_3	PR22A	3	-	VREF2_3
83	PR13B	3	C T	-	PR21B	3	C ³	-
84	PR13A	3	l	-	PR21A	3	13	-
85	GND	-	-	-	GND	-	-	-
86	PR12A	3	-	-	PR20A	3	-	-
87	PR11B	3	C	-	PR19B	3	C³	-
88	VCCIO3	3	-	-	VCCIO3	3	-	-
89	PR11A	3	Т	-	PR19A	3	T ³	-
90	GNDP1	-	-	-	GNDP1	-	-	-
91	VCCP1	-	-	-	VCCP1	-	-	-
92	PR9B	2	С	PCLKC2_0	PR12B	2	С	PCLKC2_0

LFXP3 & LFXP6 Logic Signal Connections: 208 PQFP (Cont.)

Din			LFXP3		LFXP6					
Number	Pin Function	Bank	Differential	Dual Function	Pin Function	Bank	Differential	Dual Function		
93	PB19B	4	С	VREF1_4	PB22B	4	С	VREF1_4		
94	PB20A	4	Т	-	PB23A	4	Т	-		
95	PB20B	4	С	-	PB23B	4	С	-		
96	PB21A	4	Т	-	PB24A	4	Т	-		
97	VCCIO4	4	-	-	VCCIO4	4	-	-		
98	PB21B	4	С	-	PB24B	4	С	-		
99	PB22A	4	Т	-	PB25A	4	Т	-		
100	PB22B	4	С	-	PB25B	4	С	-		
101	PB23A	4	Т	-	PB26A	4	Т	-		
102	PB23B	4	С	-	PB26B	4	С	-		
103	PB24A	4	Т	VREF2_4	PB27A	4	-	VREF2_4		
104	PB24B	4	С	-	PB30A	4	Т	DQS		
105	PB25A	4	-	-	PB30B	4	С	-		
106	GND	-	-	-	GND	-	-	-		
107	VCC	-	-	-	VCC	-	-	-		
108	PR18B	3	C ³	-	PR26B	3	C ³	-		
109	GNDIO3	3	-	-	GNDIO3	3	-	-		
110	PR18A	3	T³	-	PR26A	3	T ³	-		
111	PR17B	3	С	-	PR25B	3	С	-		
112	PR17A	3	Т	-	PR25A	3	Т	-		
113	PR16B	3	C ³	-	PR24B	3	C ³	-		
114	PR16A	3	T³	DQS	PR24A	3	T ³	DQS		
115	VCCIO3	3	-	-	VCCIO3	3	-	-		
116	PR15B	3	-	VREF1_3	PR23B	3	-	VREF1_3		
117	PR14A	3	-	VREF2_3	PR22A	3	-	VREF2_3		
118	GNDIO3	3	-	-	GNDIO3	3	-	-		
119	PR13B	3	С	-	PR21B	3	C ³	-		
120	PR13A	3	Т	-	PR21A	3	T ³	-		
121	GND	-	-	-	GND	-	-	-		
122	PR12B	3	С	-	PR20B	3	С	-		
123	PR12A	3	Т	-	PR20A	3	Т	-		
124	PR11B	3	С	-	PR19B	3	C ³	-		
125	VCCIO3	3	-	-	VCCIO3	3	-	-		
126	PR11A	3	Т	-	PR19A	3	T ³	-		
127	GNDP1	-	-	-	GNDP1	-	-	-		
128	VCCP1	-	-	-	VCCP1	-	-	-		
129	NC	-	-	-	PR13A	2	-	-		
130	GND	-	-	-	GND	-	-	-		
131	PR9B	2	С	PCLKC2_0	PR12B	2	C	PCLKC2_0		
132	PR9A	2	Т	PCLKT2_0	PR12A	2	Т	PCLKT2_0		
133	NC	-	-	-	PR11B	2	C ³	-		
134	NC	-	-	-	PR11A	2	T ³	-		
135	GNDIO2	2	-	-	GNDIO2	2	-	-		
136	PR8B	2	С	RUM0_PLLC_IN_A	PR8B	2	C	RUM0_PLLC_IN_A		
137	PR8A	2	Т	RUM0_PLLT_IN_A	PR8A	2	Т	RUM0_PLLT_IN_A		
138	PR7B	2	C ³	-	PR7B	2	C ³	-		

LFXP10, LFXP15 & LFXP20 Logic Signal Connections: 388 fpBGA (Cont.)

	LFXP10					LFXP15				LFXP20			
Ball Number	Ball Function	Bank	Diff.	Dual Function	Ball Function	Bank	Diff.	Dual Function	Ball Function	Bank	Diff.	Dual Function	
U1	PL25A	6	Т	LLM0_PLLT_IN_A	PL29A	6	Т	LLM0_PLLT_IN_A	PL33A	6	Т	LLM0_PLLT_IN_A	
T2	PL25B	6	С	LLM0_PLLC_IN_A	PL29B	6	С	LLM0_PLLC_IN_A	PL33B	6	С	LLM0_PLLC_IN_A	
V1	PL26A	6	T ³	-	PL30A	6	T ³	-	PL34A	6	T ³	-	
U2	PL26B	6	C ³	-	PL30B	6	C ³	-	PL34B	6	C ³	-	
W1	PL28A	6	T ³	-	PL32A	6	T ³	-	PL36A	6	T ³	-	
V2	PL28B	6	C ³	-	PL32B	6	C ³	-	PL36B	6	C ³	-	
-	GNDIO6	6	-	-	GNDIO6	-	-	-	GNDIO6	6	-	-	
P3	PL29A	6	Т	-	PL33A	6	Т	-	PL37A	6	Т	-	
P4	PL29B	6	С	-	PL33B	6	С	-	PL37B	6	С	-	
Y1	PL30A	6	T ³	-	PL34A	6	T ³	-	PL38A	6	T ³	-	
W2	PL30B	6	C ³	-	PL34B	6	C ³	-	PL38B	6	C ³	-	
R3	PL31A	6	-	VREF2_6	PL35A	6	-	VREF2_6	PL39A	6	-	VREF2_6	
R4	PL32B	6	-	-	PL36B	6	-	-	PL40B	6	-	-	
Т3	PL33A	6	T ³	DQS	PL37A	6	T ³	DQS	PL41A	6	T ³	DQS	
T4	PL33B	6	C ³	-	PL37B	6	C ³	-	PL41B	6	C ³	-	
-	GNDIO6	6	-	-	GNDIO6	6	-	-	GNDIO6	6	-	-	
V4	PL34A	6	т	LLM0 PLLT FB A	PL38A	6	Т	LLM0 PLLT FB A	PL42A	6	т	LLM0 PLLT FB A	
V3	PL34B	6	С	LLM0 PLLC FB A	PL38B	6	С	LLM0 PLLC FB A	PL42B	6	С	LLM0 PLLC FB A	
U4	PL35A	6	T ³	-	PL39A	6	T ³	-	PL43A	6	T ³	-	
U3	PL35B	6	C ³	-	PL39B	6	C ³	-	PL43B	6	C ³	-	
-	GNDIO6	6	-	-	GNDIO6	6	-	-	GNDIO6	6	-	-	
	SI FEPN ¹ /				SI FEPN ¹ /				SLEEPN ¹ /				
W5	TOE	-	-	-	TOE	-	-	-	TOE	-	-	-	
Y2	INITN	5	-	-	INITN	5	-	-	INITN	5	-	-	
-	GNDIO5	5	-	-	GNDIO5	5	-	-	GNDIO5	5	-	-	
-	GNDIO5	5	-	-	GNDIO5	5	-	-	GNDIO5	5	-	-	
Y3	-	-	-	-	PB3B	5	-	-	PB7B	5	-	-	
W3	-	-	-	-	PB4A	5	Т	-	PB8A	5	Т	-	
W4	-	-	-	-	PB4B	5	С	-	PB8B	5	С	-	
AA2	-	-	-	-	PB5A	5	-	-	PB9A	5	-	-	
AA1	-	-	-	-	PB6B	5	-	-	PB10B	5	-	-	
W6	PB2A	5	-	-	PB7A	5	Т	DQS	PB11A	5	Т	DQS	
W7	-	-	-	-	PB7B	5	С	-	PB11B	5	С	-	
Y4	PB3A	5	Т	-	PB8A	5	Т	-	PB12A	5	Т	-	
-	GNDIO5	5	-	-	GNDIO5	5	-	-	GNDIO5	5	-	-	
Y5	PB3B	5	С	-	PB8B	5	С	-	PB12B	5	С	-	
AB2	PB4A	5	Т	-	PB9A	5	Т	-	PB13A	5	Т	-	
AA3	PB4B	5	С	-	PB9B	5	С	-	PB13B	5	С	-	
AB3	PB5A	5	Т	-	PB10A	5	Т	-	PB14A	5	Т	-	
AA4	PB5B	5	С	-	PB10B	5	С	-	PB14B	5	С	-	
W8	PB6A	5	т	-	PB11A	5	т	-	PB15A	5	Т	-	
W9	PB6B	5	С	-	PB11B	5	С	-	PB15B	5	С	-	
AB4	PB7A	5	т	VREF1 5	PB12A	5	т	VREF1 5	PB16A	5	т	VREF1 5	
-	GNDIO5	5	-	-	GNDIO5	5	-	-	GNDIO5	5	-	-	
AA5	PB7B	5	С	-	PB12B	5	С	-	PB16B	5	С	-	
AB5	PB8A	5	-	_	PB13A	5	-	-	PB17A	5	-	-	
Ye	PROR	5	-	_	PB14R	5	-	-	PB18B	5	-	-	
ΔΔ6	PB104	5	т	DOS	PB154	5	т	DOS	PB104	5	т	DOS	
ARE	PRIOR	5	Ċ		PR15R	5	Ċ		PRIOR	5			
VO		5	T	-	PD10D	5	т	-	PB304	5	т	-	
19	PDIIA	5		-	PDI6A	э	I	-	PD2UA	э		-	

LFXP10, LFXP15 & LFXP20 Logic Signal Connections: 388 fpBGA (Cont.)

		L	FXP1	0		5	LFXP20					
Ball Number	Ball Function	Bank	Diff.	Dual Function	Ball Function	Bank	Diff.	Dual Function	Ball Function	Bank	Diff.	Dual Function
M21	VCCP1	-	-	-	VCCP1	-	-	-	VCCP1	-	-	-
-	GNDIO2	2	-	-	GNDIO2	2	-	-	GNDIO2	2	-	-
M22	PR18B	2	C ³	-	PR22B	2	C ³	-	PR22B	2	C ³	-
L22	PR18A	2	T ³	-	PR22A	2	T ³	-	PR22A	2	T ³	-
K22	PR17B	2	С	PCLKC2_0	PR21B	2	С	PCLKC2_0	PR21B	2	С	PCLKC2_0
K21	PR17A	2	Т	PCLKT2_0	PR21A	2	Т	PCLKT2_0	PR21A	2	Т	PCLKT2_0
L19	PR16B	2	C ³	-	PR20B	2	C ³	-	PR20B	2	C ³	-
K20	PR16A	2	T ³	DQS	PR20A	2	T ³	DQS	PR20A	2	T ³	DQS
L20	PR15B	2	-	-	PR19B	2	-	-	PR19B	2	-	-
L21	PR14A	2	-	VREF1_2	PR18A	2	-	VREF1_2	PR18A	2	-	VREF1_2
-	GNDIO2	2	-	-	GNDIO2	2	-	-	GNDIO2	2	-	-
J22	PR13B	2	C ³	-	PR17B	2	C ³	-	PR17B	2	C ³	-
J21	PR13A	2	T ³	-	PR17A	2	T ³	-	PR17A	2	T ³	-
H22	PR12B	2	С	RUM0_PLLC_IN_A	PR16B	2	С	RUM0_PLLC_IN_A	PR16B	2	С	RUM0_PLLC_IN_A
H21	PR12A	2	Т	RUM0_PLLT_IN_A	PR16A	2	Т	RUM0_PLLT_IN_A	PR16A	2	Т	RUM0_PLLT_IN_A
K19	PR11B	2	C ³	-	PR15B	2	C ³	-	PR15B	2	C ³	-
J19	PR11A	2	T ³	-	PR15A	2	T ³	-	PR15A	2	T ³	-
-	GNDIO2	2	-	-	GNDIO2	2	-	-	GNDIO2	2	-	-
J20	PR9B	2	C ³	-	PR13B	2	C ³	-	PR13B	2	C ³	-
H20	PR9A	2	T ³	-	PR13A	2	T ³	-	PR13A	2	T ³	-
H19	PR8B	2	С	-	PR12B	2	С	-	PR12B	2	С	-
G19	PR8A	2	Т	-	PR12A	2	т	-	PR12A	2	Т	-
G22	PR7B	2	C ³	-	PR11B	2	C ³	-	PR11B	2	C ³	-
G21	PR7A	2	T ³	DQS	PR11A	2	T ³	DQS	PR11A	2	T ³	DQS
-	GNDIO2	2	-		GNDIO2	2	-		GNDIO2	2	-	
F20	PR6B	2	-	-	PR10B	2	-	-	PR10B	2	-	-
G20	PR5A	2	-	VREF2 2	PR9A	2	-	VREF2 2	PR9A	2	-	VREF2_2
F22	PB4B	2	C3	-	PB8B	2	C3	-	PB8B	2	C ³	-
F21	PR4A	2	- T ³	-	PB8A	2	- T ³	-	PR8A	2	- T ³	-
F22	PB3B	2	C	BUMO PLIC FB A	PB7B	2	C.	BUMO PLIC FB A	PB7B	2	C.	BUMO PLIC FB A
E22	PR3A	2	т	BUMO PLIT FR A	PR7A	2	т	BUMO PLIT FR A	PR7A	2	т	BUMO PLIT FB A
D22	PR2B	2	C ³	-	PB6B	2	C ³	-	PR6B	2	С ³	-
D21	PR2A	2	т ³	_	PR6A	2	т ³	_	PR6A	2	т ³	_
-	GNDIO2	2		-	GNDIO2	2			GNDIO2	2		-
F19		-	-	-		-	-	-		-	-	-
F20	VCCI	-		_	VCCI	-	_	-	VCCI	-		-
D20		-		_		-	_	-		-		-
D20	TMS	-		_	TMS	-			TMS	-		-
D19	TOK	_	_	_	TOK	-	_	_	TOK			_
DIO		1	_	_		1	_	_		1		_
- E10	GINDIOT		-	-		1	-	-	DTEOA	1	-	-
E19	-	-	-	-		1	-	-	PT52A	1	-	-
D17	-	-	-	-	P147D	1	U T	-	PISID	1	с т	-
010	-	-	-	-		1	1	DQS			1	500
015	-	-	-	-	P146B	1	-	-	P150B		-	-
015	-	-	-	-	P145A	1	-	-	P149A		-	-
017	-	-	-	-	PI44B	1	С -	-	P148B		С -	-
C18	P139A	1	-	-	PI44A	1	ſ	-	P148A	1	1	-
C19	PT38B	1	С	-	PT43B	1	С	-	PT47B	1	С	-
-	GNDIO1	1	-	-	GNDIO1	1	-	-	GNDIO1	1	-	-

LFXP15 & LFXP20 Logic Signal Connections: 484 fpBGA (Cont.)

			LFXP15		LFXP20				
Ball Number	Ball Function	Bank	Differential	Dual Function	Ball Function	Bank	Differential	Dual Function	
T6	PL41A	6	Т	-	PL45A	6	Т	-	
T5	PL41B	6	С	-	PL45B	6	С	-	
-	GNDIO6	6	-	-	GNDIO6	6	-	-	
U3	PL42A	6	T ³	-	PL46A	6	T ³	-	
U4	PL42B	6	C ³	-	PL46B	6	C ³	-	
V4	PL43A	6	-	-	PL47A	6	-	-	
W4	SLEEPN ¹ / TOE ²	-	-	-	SLEEPN ¹ / TOE ²	-	-	-	
W5	INITN	5	-	-	INITN	5	-	-	
Y3	-	-	-	-	PB3B	5	-	-	
-	GNDIO5	5	-	-	GNDIO5	5	-	-	
U5	-	-	-	-	PB4A	5	Т	-	
V5	-	-	-	-	PB4B	5	С	-	
Y4	-	-	-	-	PB5A	5	Т	-	
Y5	-	-	-	-	PB5B	5	С	-	
V6	-	-	-	-	PB6A	5	Т	-	
-	GNDIO5	5	-	-	GNDIO5	5	-	-	
U6	-	-	-	-	PB6B	5	C	-	
W6	PB3A	5	Т	-	PB7A	5	Т	-	
Y6	PB3B	5	С	-	PB7B	5	С	-	
AA2	PB4A	5	Т	-	PB8A	5	Т	-	
AA3	PB4B	5	С	-	PB8B	5	С	-	
V7	PB5A	5	-	-	PB9A	5	-	-	
U7	PB6B	5	-	-	PB10B	5	-	-	
Y7	PB7A	5	Т	DQS	PB11A	5	Т	DQS	
W7	PB7B	5	С	-	PB11B	5	С	-	
AA4	PB8A	5	Т	-	PB12A	5	Т	-	
-	GNDIO5	5	-	-	GNDIO5	5	-	-	
AA5	PB8B	5	С	-	PB12B	5	С	-	
AB3	PB9A	5	Т	-	PB13A	5	Т	-	
AB4	PB9B	5	С	-	PB13B	5	С	-	
AA6	PB10A	5	Т	-	PB14A	5	Т	-	
AA7	PB10B	5	С	-	PB14B	5	С	-	
U8	PB11A	5	Т	-	PB15A	5	Т	-	
V8	PB11B	5	С	-	PB15B	5	С	-	
Y8	PB12A	5	Т	VREF1_5	PB16A	5	Т	VREF1_5	
-	GNDIO5	5	-	-	GNDIO5	5	-	-	
W8	PB12B	5	С	-	PB16B	5	С	-	
V9	PB13A	5	-	-	PB17A	5	-	-	
U9	PB14B	5	-	-	PB18B	5	-	-	
Y9	PB15A	5	Т	DQS	PB19A	5	Т	DQS	
W9	PB15B	5	С	-	PB19B	5	С	-	

LFXP15 & LFXP20 Logic Signal Connections: 484 fpBGA (Cont.)

			LFXP15		LFXP20				
Ball Number	Ball Function	Bank	Differential	Dual Function	Ball Function	Bank	Differential	Dual Function	
D18	-	-	-	-	PT55B	1	С	-	
E18	-	-	-	-	PT55A	1	Т	-	
C19	-	-	-	-	PT54B	1	C	-	
C18	-	-	-	-	PT54A	1	Т	-	
C21	-	-	-	-	PT53B	1	C	-	
-	GNDIO1	1	-	-	GNDIO1	1	-	-	
B21	-	-	-	-	PT53A	1	Т	-	
E17	PT48B	1	С	-	PT52B	1	C	-	
E16	PT48A	1	Т	-	PT52A	1	Т	-	
C17	PT47B	1	С	-	PT51B	1	C	-	
D17	PT47A	1	Т	DQS	PT51A	1	Т	DQS	
F17	PT46B	1	-	-	PT50B	1	-	-	
F16	PT45A	1	-	-	PT49A	1	-	-	
C16	PT44B	1	С	-	PT48B	1	C	-	
D16	PT44A	1	Т	-	PT48A	1	Т	-	
A20	PT43B	1	С	-	PT47B	1	C	-	
-	GNDIO1	1	-	-	GNDIO1	1	-	-	
B20	PT43A	1	Т	-	PT47A	1	Т	-	
A19	PT42B	1	С	-	PT46B	1	C	-	
B19	PT42A	1	Т	-	PT46A	1	Т	-	
C15	PT41B	1	С	-	PT45B	1	C	-	
D15	PT41A	1	Т	-	PT45A	1	Т	-	
A18	PT40B	1	С	-	PT44B	1	C	-	
B18	PT40A	1	Т	-	PT44A	1	Т	-	
F15	PT39B	1	С	VREF1_1	PT43B	1	C	VREF1_1	
-	GNDIO1	1	-	-	GNDIO1	1	-	-	
E15	PT39A	1	Т	DQS	PT43A	1	Т	DQS	
A17	PT38B	1	-	-	PT42B	1	-	-	
B17	PT37A	1	-	-	PT41A	1	-	-	
E14	PT36B	1	С	-	PT40B	1	C	-	
F14	PT36A	1	Т	-	PT40A	1	Т	-	
D14	PT35B	1	С	-	PT39B	1	C	-	
C14	PT35A	1	Т	D0	PT39A	1	Т	D0	
A16	PT34B	1	С	D1	PT38B	1	C	D1	
B16	PT34A	1	Т	VREF2_1	PT38A	1	Т	VREF2_1	
A15	PT33B	1	С	-	PT37B	1	C	-	
B15	PT33A	1	Т	D2	PT37A	1	Т	D2	
-	GNDIO1	1	-	-	GNDIO1	1	-	-	
E13	PT32B	1	С	D3	PT36B	1	C	D3	
D13	PT32A	1	Т	-	PT36A	1	Т	-	
C13	PT31B	1	С	-	PT35B	1	C	-	
B13	PT31A	1	Т	DQS	PT35A	1	Т	DQS	

LatticeXP Family Data Sheet Ordering Information

December 2005

Data Sheet DS1001

Part Number Description

Ordering Information (Contact Factory for Specific Device Availability)

Note:pLatticeXP devices are dual marked. For example, the commercial speed grade LFXP10E-4F256C is also marked with industrial grade -3I (LFXP10E-3F256I). The commercial grade is one speed grade faster than the associated dual mark industrial grade. The slowest commercial speed grade does not have industrial markings. The markings appear as follows:

Lattice
LFXP10E- 4F256C-3I
Datecode

^{© 2005} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.