

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

E·XFL

Product Status	Obsolete
Number of LABs/CLBs	
Number of Logic Elements/Cells	3000
Total RAM Bits	55296
Number of I/O	136
Number of Gates	
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	208-BFQFP
Supplier Device Package	208-PQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lfxp3e-3q208i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

LatticeXP Family Data Sheet Introduction

July 2007

Features

■ Non-volatile, Infinitely Reconfigurable

- Instant-on powers up in microseconds
- No external configuration memory
- Excellent design security, no bit stream to intercept
- Reconfigure SRAM based logic in milliseconds
- SRAM and non-volatile memory programmable through system configuration and JTAG ports
- Sleep Mode
 - Allows up to 1000x static current reduction
- TransFR[™] Reconfiguration (TFR)
 In-field logic update while system operates
- Extensive Density and Package Options
 - 3.1K to 19.7K LUT4s
 - 62 to 340 I/Os
 - Density migration supported

Embedded and Distributed Memory

- 54 Kbits to 396 Kbits sysMEM[™] Embedded Block RAM
- Up to 79 Kbits distributed RAM
- Flexible memory resources:
 - Distributed and block memory

■ Flexible I/O Buffer

• Programmable sysIO[™] buffer supports wide range of interfaces:

Data Sheet DS1001

- LVCMOS 3.3/2.5/1.8/1.5/1.2
- LVTTL
- SSTL 18 Class I
- SSTL 3/2 Class I, II
- HSTL15 Class I, III
- HSTL 18 Class I, II, III
- PCI
- LVDS, Bus-LVDS, LVPECL, RSDS
- Dedicated DDR Memory Support
 - Implements interface up to DDR333 (166MHz)

■ sysCLOCK[™] PLLs

- Up to 4 analog PLLs per device
- Clock multiply, divide and phase shifting
- System Level Support
 - IEEE Standard 1149.1 Boundary Scan, plus ispTRACY™ internal logic analyzer capability
 - Onboard oscillator for configuration
 - Devices operate with 3.3V, 2.5V, 1.8V or 1.2V power supply

Device	LFXP3	LFXP6	LFXP10	LFXP15	LFXP20
PFU/PFF Rows	16	24	32	40	44
PFU/PFF Columns	24	30	38	48	56
PFU/PFF (Total)	384	720	1216	1932	2464
LUTs (K)	3	6	10	15	20
Distributed RAM (KBits)	12	23	39	61	79
EBR SRAM (KBits)	54	72	216	324	396
EBR SRAM Blocks	6	8	24	36	44
V _{CC} Voltage	1.2/1.8/2.5/3.3V	1.2/1.8/2.5/3.3V	1.2/1.8/2.5/3.3V	1.2/1.8/2.5/3.3V	1.2/1.8/2.5/3.3V
PLLs	2	2	4	4	4
Max. I/O	136	188	244	300	340
Packages and I/O Combination	ons:				
100-pin TQFP (14 x 14 mm)	62				
144-pin TQFP (20 x 20 mm)	100	100			
208-pin PQFP (28 x 28 mm)	136	142			
256-ball fpBGA (17 x 17 mm)		188	188	188	188
388-ball fpBGA (23 x 23 mm)			244	268	268
484-ball fpBGA (23 x 23 mm)				300	340

Table 1-1. LatticeXP Family Selection Guide

© 2007 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Figure 2-1. LatticeXP Top Level Block Diagram

PFU and PFF Blocks

The core of the LatticeXP devices consists of PFU and PFF blocks. The PFUs can be programmed to perform Logic, Arithmetic, Distributed RAM and Distributed ROM functions. PFF blocks can be programmed to perform Logic, Arithmetic and ROM functions. Except where necessary, the remainder of the data sheet will use the term PFU to refer to both PFU and PFF blocks.

Each PFU block consists of four interconnected slices, numbered 0-3 as shown in Figure 2-2. All the interconnections to and from PFU blocks are from routing. There are 53 inputs and 25 outputs associated with each PFU block.

Figure 2-2. PFU Diagram

Lattice Semiconductor

in selected blocks the input to the DQS delay block. If one of the bypass options is not chosen, the signal first passes through an optional delay block. This delay, if selected, ensures no positive input-register hold-time requirement when using a global clock.

The input block allows two modes of operation. In the single data rate (SDR) the data is registered, by one of the registers in the single data rate sync register block, with the system clock. In the DDR Mode two registers are used to sample the data on the positive and negative edges of the DQS signal creating two data streams, D0 and D2. These two data streams are synchronized with the system clock before entering the core. Further discussion on this topic is in the DDR Memory section of this data sheet.

Figure 2-21 shows the input register waveforms for DDR operation and Figure 2-22 shows the design tool primitives. The SDR/SYNC registers have reset and clock enable available.

The signal DDRCLKPOL controls the polarity of the clock used in the synchronization registers. It ensures adequate timing when data is transferred from the DQS to the system clock domain. For further discussion of this topic, see the DDR memory section of this data sheet.

Figure 2-20. Input Register Diagram

Figure 2-26. DQS Local Bus

Figure 2-27. DLL Calibration Bus and DQS/DQS Transition Distribution

Typical I/O Behavior During Power-up

The internal power-on-reset (POR) signal is deactivated when V_{CC} and V_{CCAUX} have reached satisfactory levels. After the POR signal is deactivated, the FPGA core logic becomes active. It is the user's responsibility to ensure that all other V_{CCIO} banks are active with valid input logic levels to properly control the output logic states of all the I/O banks that are critical to the application. The default configuration of the I/O pins in a blank device is tri-state with a weak pull-up to VCCIO. The I/O pins will not take on the user configuration until VCC, VCCAUX and VCCIO have reached satisfactory levels at which time the I/Os will take on the user-configured settings.

The V_{CC} and V_{CCAUX} supply the power to the FPGA core fabric, whereas the V_{CCIO} supplies power to the I/O buffers. In order to simplify system design while providing consistent and predictable I/O behavior, it is recommended that the I/O buffers be powered-up prior to the FPGA core fabric. V_{CCIO} supplies should be powered up before or together with the V_{CC} and V_{CCAUX} supplies.

Supported Standards

The LatticeXP sysIO buffer supports both single-ended and differential standards. Single-ended standards can be further subdivided into LVCMOS, LVTTL and other standards. The buffers support the LVTTL, LVCMOS 1.2, 1.5, 1.8, 2.5 and 3.3V standards. In the LVCMOS and LVTTL modes, the buffer has individually configurable options for drive strength, bus maintenance (weak pull-up, weak pull-down, or a bus-keeper latch) and open drain. Other single-ended standards supported include SSTL and HSTL. Differential standards supported include LVDS, BLVDS, LVPECL, differential SSTL and differential HSTL. Tables 2-7 and 2-8 show the I/O standards (together with their supply and reference voltages) supported by the LatticeXP devices. For further information on utilizing the sysIO buffer to support a variety of standards please see the details of additional technical documentation at the end of this data sheet.

Input Standard	V _{REF} (Nom.)	V _{CCIO} ¹ (Nom.)
Single Ended Interfaces		
LVTTL		—
LVCMOS33 ²		—
LVCMOS25 ²	_	—
LVCMOS18	_	1.8
LVCMOS15	—	1.5
LVCMOS12 ²	—	—
PCI	_	3.3
HSTL18 Class I, II	0.9	—
HSTL18 Class III	1.08	—
HSTL15 Class I	0.75	—
HSTL15 Class III	0.9	—
SSTL3 Class I, II	1.5	—
SSTL2 Class I, II	1.25	—
SSTL18 Class I	0.9	—
Differential Interfaces		
Differential SSTL18 Class I		—
Differential SSTL2 Class I, II		—
Differential SSTL3 Class I, II	—	—
Differential HSTL15 Class I, III		_
Differential HSTL18 Class I, II, III		_
LVDS, LVPECL	_	—
BLVDS		—

Table 2-7. Supported Input Standards

1. When not specified $V_{\mbox{CCIO}}$ can be set anywhere in the valid operating range.

2. JTAG inputs do not have a fixed threshold option and always follow $V_{\mbox{CCJ.}}$

Figure 2-29 provides a pictorial representation of the different programming ports and modes available in the LatticeXP devices.

On power-up, the FPGA SRAM is ready to be configured with the sysCONFIG port active. The IEEE 1149.1 serial mode can be activated any time after power-up by sending the appropriate command through the TAP port.

Leave Alone I/O

When using 1532 mode for non-volatile memory programming, users may specify I/Os as high, low, tristated or held at current value. This provides excellent flexibility for implementing systems where reprogramming occurs on-the-fly.

TransFR (Transparent Field Reconfiguration)

TransFR (TFR) is a unique Lattice technology that allows users to update their logic in the field without interrupting system operation using a single ispVM command. See Lattice technical note #TN1087, *Minimizing System Interruption During Configuration Using TransFR Technology*, for details.

Security

The LatticeXP devices contain security bits that, when set, prevent the readback of the SRAM configuration and non-volatile memory spaces. Once set, the only way to clear security bits is to erase the memory space.

For more information on device configuration, please see details of additional technical documentation at the end of this data sheet.

Figure 2-29. ispXP Block Diagram

Internal Logic Analyzer Capability (ispTRACY)

All LatticeXP devices support an internal logic analyzer diagnostic feature. The diagnostic features provide capabilities similar to an external logic analyzer, such as programmable event and trigger condition and deep trace memory. This feature is enabled by Lattice's ispTRACY. The ispTRACY utility is added into the user design at compile time.

For more information on ispTRACY, please see information regarding additional technical documentation at the end of this data sheet.

Oscillator

Every LatticeXP device has an internal CMOS oscillator which is used to derive a master serial clock for configuration. The oscillator and the master serial clock run continuously in the configuration mode. The default value of the

Initialization Supply Current^{1, 2, 3, 4, 5, 6}

Symbol	Parameter	Device	Typ. ⁷	Units
		LFXP3E	40	mA
		LFXP6E	50	mA
		LFXP10E	110	mA
		LFXP15E	140	mA
	Coro Powor Supply	LFXP20E	250	mA
CC	Core Fower Suppry	LFXP3C	60	mA
		LFXP6C	70	mA
		LFXP10C	150	mA
		LFXP15C	180	mA
		LFXP20C	290	mA
		LFXP3E/C	50	mA
		LFXP6E/C	60	mA
I _{CCAUX}	Auxiliary Power Supply	LFXP10E/C	90	mA
	CLAUX CICK	LFXP15 /C	110	mA
		LFXP20E/C	130	mA
ICCJ	V _{CCJ} Power Supply	All	2	mA

Over Recommended Operating Conditions

1. Until DONE signal is active.

2. For further information on supply current, please see details of additional technical documentation at the end of this data sheet.

3. Assumes all outputs are tristated, all inputs are configured as LVCMOS and held at the V_{CCIO} or GND.

4. Frequency 0MHz.

5. Typical user pattern.

6. Assume normal bypass capacitor/decoupling capacitor across the supply.

7. $T_A=25^{\circ}C$, power supplies at nominal voltage.

Figure 3-2. BLVDS Multi-point Output Example

Table 3-2. BLVDS DC Conditions¹

		Typical		
Symbol	Description	Zo = 45	Units	
Z _{OUT}	Output impedance	100	100	ohms
R _{TLEFT}	Left end termination	45	90	ohms
R _{TRIGHT}	Right end termination	45	90	ohms
V _{OH}	Output high voltage	1.375	1.48	V
V _{OL}	Output low voltage	1.125	1.02	V
V _{OD}	Output differential voltage	0.25	0.46	V
V _{CM}	Output common mode voltage	1.25	1.25	V
I _{DC}	DC output current	11.2	10.2	mA

Over Recommended Operating Conditions

1. For input buffer, see LVDS table.

LatticeXP Internal Timing Parameters¹

		-5		-4		-3		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
PFU/PFF Logic	Mode Timing							
t _{LUT4_PFU}	LUT4 Delay (A to D Inputs to F Output)	—	0.28		0.34		0.40	ns
t _{LUT6_PFU}	LUT6 Delay (A to D Inputs to OFX Output)		0.44		0.53		0.63	ns
t _{LSR_PFU}	Set/Reset to Output of PFU		0.90		1.08		1.29	ns
t _{SUM_PFU}	Clock to Mux (M0,M1) Input Setup Time	0.13		0.15		0.19	_	ns
t _{HM_PFU}	Clock to Mux (M0,M1) Input Hold Time	-0.04		-0.03	—	-0.03	_	ns
t _{SUD_PFU}	Clock to D Input Setup Time	0.13		0.16		0.19	_	ns
t _{HD_PFU}	Clock to D Input Hold Time	-0.03		-0.02	—	-0.02		ns
t _{CK2Q_PFU}	Clock to Q Delay, D-type Register Configuration		0.40		0.48		0.58	ns
t _{LE2Q_PFU}	Clock to Q Delay Latch Configuration		0.53		0.64		0.76	ns
t _{LD2Q_PFU}	D to Q Throughput Delay when Latch is Enabled	—	0.55	—	0.66		0.79	ns
PFU Dual Port M	Nemory Mode Timing							
t _{CORAM_PFU}	Clock to Output		0.40		0.48		0.58	ns
t _{SUDATA_PFU}	Data Setup Time	-0.18		-0.14	—	-0.11	_	ns
t _{HDATA_PFU}	Data Hold Time	0.28		0.34	—	0.40	_	ns
t _{SUADDR_PFU}	Address Setup Time	-0.46		-0.37	—	-0.30	_	ns
t _{HADDR_PFU}	Address Hold Time	0.71		0.85	—	1.02	_	ns
t _{SUWREN_PFU}	Write/Read Enable Setup Time	-0.22		-0.17	—	-0.14	_	ns
t _{HWREN_PFU}	Write/Read Enable Hold Time	0.33		0.40	—	0.48	_	ns
PIC Timing								
PIO Input/Outpu	It Buffer Timing							
t _{IN_PIO}	Input Buffer Delay		0.62		0.72		0.85	ns
t _{OUT_PIO}	Output Buffer Delay	—	2.12		2.54		3.05	ns
IOLOGIC Input/	Output Timing							
t _{SUI_PIO}	Input Register Setup Time (Data Before Clock)	1.35		1.83		2.37	_	ns
t _{HI_PIO}	Input Register Hold Time (Data After Clock)	0.05		0.05		0.05		ns
t _{COO_PIO}	Output Register Clock to Output Delay		0.36		0.44		0.52	ns
t _{SUCE_PIO}	Input Register Clock Enable Setup Time	-0.09	—	-0.07	—	-0.06	_	ns
t _{HCE_PIO}	Input Register Clock Enable Hold Time	0.13		0.16	—	0.19	_	ns
t _{SULSR_PIO}	Set/Reset Setup Time	0.19		0.23	—	0.28	_	ns
t _{HLSR_PIO}	Set/Reset Hold Time	-0.14	—	-0.11	—	-0.09	_	ns
EBR Timing								
t _{CO_EBR}	Clock to Output from Address or Data		4.01		4.81		5.78	ns
t _{COO_EBR}	Clock to Output from EBR Output Register		0.81		0.97		1.17	ns
t _{SUDATA_EBR}	Setup Data to EBR Memory	-0.26		-0.21	—	-0.17	_	ns
t _{HDATA_EBR}	Hold Data to EBR Memory	0.41		0.49	—	0.59	_	ns
t _{SUADDR_EBR}	Setup Address to EBR Memory			-0.21	—	-0.17	_	ns
t _{HADDR_EBR}	Hold Address to EBR Memory	0.41	—	0.49	—	0.59	—	ns
t _{SUWREN_EBR}	Setup Write/Read Enable to EBR Memory	-0.17	—	-0.13	—	-0.11	—	ns
t _{HWREN_EBR}	Hold Write/Read Enable to EBR Memory	0.26	—	0.31	—	0.37	—	ns
t _{SUCE_EBR}	Clock Enable Setup Time to EBR Output Register	0.19	—	0.23	—	0.28	—	ns
t _{HCE EBR}	Clock Enable Hold Time to EBR Output Register	-0.13	—	-0.10	—	-0.08	—	ns

Over Recommended Operating Conditions

EBR Memory Timing Diagrams

Figure 3-8. Read Mode (Normal)

Note: Input data and address are registered at the positive edge of the clock and output data appears after the positive of the clock.

Figure 3-9. Read Mode with Input and Output Registers

sysCLOCK PLL Timing

Parameter	Descriptions	Conditions	Min.	Тур.	Max.	Units
f _{IN}	Input Clock Frequency (CLKI, CLKFB)		25	—	375	MHz
f _{OUT}	Output Clock Frequency (CLKOP, CLKOS)		25	—	375	MHz
f _{OUT2}	K-Divider Output Frequency (CLKOK)		0.195	—	187.5	MHz
f _{VCO}	PLL VCO Frequency		375	—	750	MHz
f _{PFD}	Phase Detector Input Frequency		25	—	—	MHz
AC Characte	eristics					
t _{DT}	Output Clock Duty Cycle	Default duty cycle elected ³	45	50	55	%
t _{PH} ⁴	Output Phase Accuracy		_	—	0.05	UI
. 1	Output Clock Pariod littar	f _{OUT} Š 100MHz	_	—	+/- 125	ps
OPJIT		f _{OUT} < 100MHz	—	—	0.02	UIPP
t _{SK}	Input Clock to Output Clock Skew	Divider ratio = integer	_	—	+/- 200	ps
t _W	Output Clock Pulse Width	At 90% or 10% ³	1	—	_	ns
t _{LOCK} ²	PLL Lock-in Time		—	—	150	us
t _{PA}	Programmable Delay Unit		100	250	400	ps
t _{IPJIT}	Input Clock Period Jitter		_	—	+/- 200	ps
t _{FBKDLY}	External Feedback Delay		—	—	10	ns
t _{HI}	Input Clock High Time	90% to 90%	0.5	—		ns
t _{LO}	Input Clock Low Time	10% to 10%	0.5	—	—	ns
t _{RST}	RST Pulse Width		10	_	_	ns

Over Recommended Operating Conditions

1. Jitter sample is taken over 10,000 samples of the primary PLL output with clean reference clock.

2. Output clock is valid after t_{LOCK} for PLL reset and dynamic delay adjustment.

3. Using LVDS output buffers.

4. As compared to CLKOP output.

Timing v.F0.11

LatticeXP "C" Sleep Mode Timing

Parameter	Descriptions	Min.	Тур.	Max.	Units	
t _{PWRDN}	SLEEPN Low to I/O Tristate		—	20	32	ns
t _{PWRUP}		LFXP3	—	1.4	2.1	ms
	SLEEPN High to Power Up	LFXP6	—	1.7	2.4	ms
		LFXP10	—	1.1	1.8	ms
		LFXP15	—	1.4	2.1	ms
		LFXP20	—	1.7	2.4	ms
t _{WSLEEPN}	SLEEPN Pulse Width to Initiate Sleep Mode		400	-	—	ns
t _{WAWAKE}	SLEEPN Pulse Rejection	—	_	120	ns	

LatticeXP sysCONFIG Port Timing Specifications

Parameter	Description	Min.	Max.	Units
sysCONFIG By	te Data Flow	I	1	
t _{SUCBDI}	Byte D[0:7] Setup Time to CCLK	7	_	ns
t _{HCBDI}	Byte D[0:7] Hold Time to CCLK	3	—	ns
t _{CODO}	Clock to Dout in Flowthrough Mode	—	12	ns
t _{SUCS}	CS[0:1] Setup Time to CCLK	7	—	ns
t _{HCS}	CS[0:1] Hold Time to CCLK	2	—	ns
t _{SUWD}	Write Signal Setup Time to CCLK	7	—	ns
t _{HWD}	Write Signal Hold Time to CCLK	2	—	ns
t _{DCB}	CCLK to BUSY Delay Time	—	12	ns
t _{CORD}	Clock to Out for Read Data	_	12	ns
sysCONFIG By	te Slave Clocking	•		•
t _{BSCH}	Byte Slave Clock Minimum High Pulse	6	—	ns
t _{BSCL}	Byte Slave Clock Minimum Low Pulse	8	—	ns
t _{BSCYC}	Byte Slave Clock Cycle Time	15	—	ns
sysCONFIG Se	rial (Bit) Data Flow			
t _{SUSCDI}	DI (Data In) Setup Time to CCLK	7	—	ns
t _{HSCDI}	DI (Data In) Hold Time to CCLK	2	—	ns
t _{CODO}	Clock to Dout in Flowthrough Mode	_	12	ns
sysCONFIG Se	rial Slave Clocking			
t _{SSCH}	Serial Slave Clock Minimum High Pulse	6	—	ns
t _{SSCL}	Serial Slave Clock Minimum Low Pulse	6	—	ns
sysCONFIG PC	DR, Initialization and Wake Up			
t _{ICFG}	Minimum Vcc to INIT High	—	50	ms
t _{VMC}	Time from t _{ICFG} to Valid Master Clock	—	2	us
t _{PRGMRJ}	Program Pin Pulse Rejection	—	7	ns
t _{PRGM} ²	PROGRAMN Low Time to Start Configuration	25	—	ns
t _{DINIT}	INIT Low Time	—	1	ms
t _{DPPINIT}	Delay Time from PROGRAMN Low to INIT Low	—	37	ns
t _{DINITD}	Delay Time from PROGRAMN Low to DONE Low	_	37	ns
t _{IODISS}	User I/O Disable from PROGRAMN Low	_	25	ns
t _{IOENSS}	User I/O Enabled Time from CCLK Edge During Wake-up Sequence	—	25	ns
t _{MWC}	Additional Wake Master Clock Signals after Done Pin High	120	—	cycles
Configuration I	Master Clock (CCLK)			
Frequency ¹		Selected Value - 30%	Selected Value + 30%	MHz
Duty Cycle		40	60	%

1. See Table 2-10 for available CCLK frequencies.

2. The threshold level for PROGRAMN, as well as for CFG[1] and CFG[0], is determined by V_{CC} , such that the threshold = $V_{CC}/2$. Timing v.F0.11

LFXP3 Logic Signal Connections: 100 TQFP (Cont.)

Pin Number	Pin Function	Bank	Differential	Dual Function
44	GNDIO4	4	-	-
45	PB15A	4	Т	PCLKT4_0
46	PB15B	4	С	PCLKC4_0
47	VCCIO4	4	-	-
48	PB19A	4	Т	DQS
49	PB19B	4	С	VREF1_4
50	PB24A	4	-	VREF2_4
51	PR18B	3	C ³	-
52	GNDIO3	3	-	-
53	PR18A	3	T ³	-
54	PR15B	3	-	VREF1_3
55	PR14A	3	-	VREF2_3
56	PR13B	3	С	-
57	PR13A	3	Т	-
58	VCCIO3	3	-	-
59	GNDP1	-	-	-
60	VCCP1	-	-	-
61	PR9B	2	С	PCLKC2_0
62	PR9A	2	Т	PCLKT2_0
63	PR8B	2	С	RUM0_PLLC_IN_A
64	PR8A	2	Т	RUM0_PLLT_IN_A
65	VCCIO2	2	-	-
66	PR6B	2	-	VREF1_2
67	PR5A	2	-	VREF2_2
68	GNDIO2	2	-	-
69	PR3B	2	С	RUM0_PLLC_FB_A
70	PR3A	2	Т	RUM0_PLLT_FB_A
71	VCCAUX	-	-	-
72	TDO	-	-	-
73	VCCJ	-	-	-
74	TDI	-	-	-
75	TMS	-	-	-
76	TCK	-	-	-
77	VCC	-	-	-
78	PT24A	1	-	-
79	PT23A	1	-	D0
80	PT22B	1	-	D1
81	PT21A	1	-	D2
82	VCCIO1	1	-	-
83	PT20B	1	-	D3
84	GNDIO1	1	-	-
85	PT17A	1	-	D4
86	PT16A	1	-	D5
87	PT15B	1	-	D6

LFXP3 & LFXP6 Logic Signal Connections: 208 PQFP (Cont.)

Din			LFXP3		LFXP6			
Number	Pin Function	Bank	Differential	Dual Function	Pin Function	Bank	Differential	Dual Function
47	GNDIO6	6	-	-	GNDIO6	6	-	-
48	PL18B	6	C ³	-	PL26B	6	C ³	-
49	GND	-	-	-	GND	-	-	-
50	VCCAUX	-	-	-	VCCAUX	-	-	-
51	SLEEPN ¹ /TOE ²	-	-	-	SLEEPN ¹ /TOE ²	-	-	-
52	INITN	5	-	-	INITN	5	-	-
53	VCC	-	-	-	VCC	-	-	-
54	PB2B	5	-	VREF1_5	PB5B	5	-	VREF1_5
55	PB3A	5	Т	-	PB6A	5	Т	DQS
56	PB3B	5	С	-	PB6B	5	С	-
57	PB4A	5	Т	-	PB7A	5	Т	-
58	PB4B	5	С	-	PB7B	5	С	-
59	GNDIO5	5	-	-	GNDIO5	5	-	-
60	PB5A	5	Т	-	PB8A	5	Т	-
61	PB5B	5	С	VREF2_5	PB8B	5	C	VREF2_5
62	PB6A	5	Т	-	PB9A	5	Т	-
63	PB6B	5	С	-	PB9B	5	C	-
64	VCCIO5	5	-	-	VCCIO5	5	-	-
65	PB7A	5	Т	-	PB10A	5	Т	-
66	PB7B	5	С	-	PB10B	5	C	-
67	PB8A	5	Т	-	PB11A	5	Т	-
68	PB8B	5	С	-	PB11B	5	C	-
69	GNDIO5	5	-	-	GNDIO5	5	-	-
70	PB9A	5	-	-	PB12A	5	-	-
71	PB10B	5	-	-	PB13B	5	-	-
72	PB11A	5	Т	DQS	PB14A	5	Т	DQS
73	PB11B	5	С	-	PB14B	5	С	-
74	VCCIO5	5	-	-	VCCIO5	5	-	-
75	PB12A	5	T	-	PB15A	5	T	-
76	PB12B	5	C	-	PB15B	5	C	-
77	PB13A	5	T	-	PB16A	5	T	-
78	PB13B	5	С	-	PB16B	5	С	-
79	GND	-	-	-	GND	-	-	-
80	VCC	-	-	-	VCC	-	-	-
81	PB14A	4	I	-	PB17A	4		-
82	GNDIO4	4	-	-	GNDIO4	4	-	-
83	PB14B	4	C T	-	PB17B	4	C	-
84	PB15A	4		PCLK14_0	PB18A	4	1	PCLK14_0
85	PB15B	4	C T	PCLKC4_0	PB18B	4	C	PCLKC4_0
86	PB16A	4	Т	-	PB19A	4	Т	-
87		4	-	-		4	-	-
88	PB16B	4	C	-	PB19B	4	C	-
89	PB17A	4	-	-	PB20A	4	-	-
90	PB18B	4	-	-	PB21B	4	-	-
91	PB19A	4	Г	DQS	PB22A	4	ſ	DQS
92	GNDIO4	4	-	-	GNDIO4	4	-	-

LFXP15 & LFXP20 Logic Signal Connections: 256 fpBGA

		LFXP15				LFXP20				
Ball Number	Ball Function	Bank	Differential	Dual Function	Ball Function	Bank	Differential	Dual Function		
C2	PROGRAMN	7	-	-	PROGRAMN	7	-	-		
C1	CCLK	7	-	-	CCLK	7	-	-		
-	GNDIO7	7	-	-	GNDIO7	7	-	-		
-	GNDIO7	7	-	-	GNDIO7	7	-	-		
D2	PL7A	7	Т	LUM0_PLLT_FB_A	PL7A	7	Т	LUM0_PLLT_FB_A		
D3	PL7B	7	С	LUM0_PLLC_FB_A	PL7B	7	С	LUM0_PLLC_FB_A		
D1	PL9A	7	-	-	PL9A	7	-	-		
E2	PL10B	7	-	VREF1_7	PL10B	7	-	VREF1_7		
E1	PL11A	7	T ³	DQS	PL11A	7	T ³	DQS		
F1	PL11B	7	C ³	-	PL11B	7	C ³	-		
-	GNDIO7	7	-	-	GNDIO7	7	-	-		
E3	PL12A	7	Т	-	PL12A	7	Т	-		
F4	PL12B	7	С	-	PL12B	7	С	-		
F3	PL13A	7	T ³	-	PL13A	7	T ³	-		
F2	PL13B	7	C ³	-	PL13B	7	C ³	-		
G1	PL15B	7	-	-	PL15B	7	-	-		
-	GNDIO7	7	-	-	GNDIO7	7	-	-		
G3	PL16A	7	Т	LUM0_PLLT_IN_A	PL16A	7	Т	LUM0_PLLT_IN_A		
G2	PL16B	7	С	LUM0_PLLC_IN_A	PL16B	7	С	LUM0_PLLC_IN_A		
H1	PL17A	7	Т³	-	PL17A	7	T ³	-		
H2	PL17B	7	C ³	-	PL17B	7	C ³	-		
G4	PL18A	7	-	VREF2_7	PL18A	7	-	VREF2_7		
G5	PL19B	7	-	-	PL19B	7	-	-		
J1	PL20A	7	Т³	DQS	PL20A	7	T ³	DQS		
-	GNDIO7	7	-	-	GNDIO7	7	-	-		
J2	PL20B	7	C ³	-	PL20B	7	C ³	-		
H3	PL22A	7	T³	-	PL22A	7	T ³	-		
J3	PL22B	7	C ³	-	PL22B	7	C ³	-		
H4	VCCP0	-	-	-	VCCP0	-	-	-		
H5	GNDP0	-	-	-	GNDP0	-	-	-		
K1	PL24A	6	Т	PCLKT6_0	PL28A	6	Т	PCLKT6_0		
-	GNDIO6	6	-	-	GNDIO6	6	-	-		
K2	PL24B	6	С	PCLKC6_0	PL28B	6	С	PCLKC6_0		
J4	PL26A	6	-	-	PL30A	6	-	-		
J5	PL27B	6	-	VREF1_6	PL31B	6	-	VREF1_6		
L1	PL28A	6	T ³	DQS	PL32A	6	T ³	DQS		
L2	PL28B	6	C ³	-	PL32B	6	C ³	-		
-	GNDIO6	6	-	-	GNDIO6	6	-	-		
M1	PL29A	6	Т	LLM0_PLLT_IN_A	PL33A	6	Т	LLM0_PLLT_IN_A		
M2	PL29B	6	С	LLM0_PLLC_IN_A	PL33B	6	С	LLM0_PLLC_IN_A		
K3	PL30A	6	T ³	-	PL34A	6	T ³	-		
L3	PL30B	6	C ³	-	PL34B	6	C ³	-		

LFXP10, LFXP15 & LFXP20 Logic Signal Connections: 388 fpBGA (Cont.)

		L	LFXP10)	LFXP15					LFXP20		
Ball Number	Ball Function	Bank	Diff.	Dual Function	Ball Function	Bank	Diff.	Dual Function	Ball Function	Bank	Diff.	Dual Function
A7	PT13A	0	Т	DI	PT18A	0	Т	DI	PT22A	0	Т	DI
B7	PT12B	0	С	-	PT17B	0	С	-	PT21B	0	С	-
C6	PT12A	0	Т	CSN	PT17A	0	Т	CSN	PT21A	0	Т	CSN
C10	PT11B	0	С	-	PT16B	0	С	-	PT20B	0	С	-
C9	PT11A	0	Т	-	PT16A	0	Т	-	PT20A	0	Т	-
A6	PT10B	0	С	VREF2_0	PT15B	0	С	VREF2_0	PT19B	0	С	VREF2_0
B6	PT10A	0	Т	DQS	PT15A	0	Т	DQS	PT19A	0	Т	DQS
A5	PT9B	0	-	-	PT14B	0	-	-	PT18B	0	-	-
B5	PT8A	0	-	-	PT13A	0	-	-	PT17A	0	-	-
-	GNDIO0	0	-	-	GNDIO0	0	-	-	GNDIO0	0	-	-
C5	PT7B	0	С	-	PT12B	0	С	-	PT16B	0	С	-
A4	PT7A	0	Т	-	PT12A	0	Т	-	PT16A	0	Т	-
D9	PT6B	0	С	-	PT11B	0	С	-	PT15B	0	С	-
D8	PT6A	0	Т	-	PT11A	0	Т	-	PT15A	0	Т	-
B4	PT5B	0	С	-	PT10B	0	С	-	PT14B	0	С	-
A2	PT5A	0	Т	-	PT10A	0	Т	-	PT14A	0	Т	-
A3	PT4B	0	С	-	PT9B	0	С	-	PT13B	0	С	-
B3	PT4A	0	Т	-	PT9A	0	Т	-	PT13A	0	Т	-
C4	PT3B	0	С	-	PT8B	0	С	-	PT12B	0	С	-
C3	PT3A	0	Т	-	PT8A	0	Т	-	PT12A	0	Т	-
-	GNDIO0	0	-	-	GNDIO0	0	-	-	GNDIO0	0	-	-
C2	-	-	-	-	PT7B	0	С	-	PT11B	0	С	-
D3	PT2A	0	-	-	PT7A	0	Т	DQS	PT11A	0	Т	DQS
D7	-	-	-	-	PT6B	0	-	-	PT10B	0	-	-
D6	-	-	-	-	PT5A	0	-	-	PT9A	0	-	-
E4	-	-	-	-	PT4B	0	С	-	PT8B	0	С	-
D4	-	-	-	-	PT4A	0	Т	-	PT8A	0	Т	-
D5	-	-	-	-	PT3B	0	-	-	PT7B	0	-	-
-	GNDIO0	0	-	-	GNDIO0	0	-	-	GNDIO0	0	-	-
-	GNDIO0	0	-	-	GNDIO0	0	-	-	GNDIO0	0	-	-
C1	CFG0	0	-	-	CFG0	0	-	-	CFG0	0	-	-
B2	CFG1	0	-	-	CFG1	0	-	-	CFG1	0	-	-
B1	DONE	0	-	-	DONE	0	-	-	DONE	0	-	-
A1	GND	-	-	-	GND	-	-	-	GND	-	-	-
A22	GND	-	-	-	GND	-	-	-	GND	-	-	-
AB1	GND	-	-	-	GND	-	-	-	GND	-	-	-
AB22	GND	-	-	-	GND	-	-	-	GND	-	-	-
H10	GND	-	-	-	GND	-	-	-	GND	-	-	-
H11	GND	-	-	-	GND	-	-	-	GND	-	-	-
H12	GND	-	-	-	GND	-	-	-	GND	-	-	-
H13	GND	-	-	-	GND	-	-	-	GND	-	-	-
H14	GND	-	-	-	GND	-	-	-	GND	-	-	-
J10	GND	-	-	-	GND	-	-	-	GND	-	-	-
J11	GND	- 1	-	-	GND	-	-	-	GND	-	-	-
J12	GND	-	-	-	GND	-	-	-	GND	-	-	-
J13	GND	-	-	-	GND	-	-	-	GND	-	-	-
J14	GND	-	-	-	GND	-	-	-	GND	-	-	-
J9	GND	-	-	-	GND	-	-	-	GND	-	-	-
K10	GND	-	-	-	GND	-	-	-	GND	-	-	-
L		1	I	1			L			1	L	1

LFXP15 & LFXP20 Logic Signal Connections: 484 fpBGA

		LFXP15		LFXP20				
Ball	Ball			Dual	Ball			Dual
Number	Function	Bank	Differential	Function	Function	Bank	Differential	Function
F5	PROGRAMN	7	-	-	PROGRAMN	7	-	-
E3	CCLK	7	-	-	CCLK	7	-	-
C1	PL2B	7	-	-	PL2B	7	-	-
-	GNDIO7	7	-	-	GNDIO7	7	-	-
G5	PL3A	7	T³	-	PL3A	7	T ³	-
G6	PL3B	7	C ³	-	PL3B	7	C ³	-
F4	PL4A	7	Т	-	PL4A	7	Т	-
F3	PL4B	7	С	-	PL4B	7	С	-
G4	PL5A	7	T ³	-	PL5A	7	T ³	-
G3	PL5B	7	C ³	-	PL5B	7	C ³	-
D1	PL6A	7	T ³	-	PL6A	7	T ³	-
D2	PL6B	7	C ³	-	PL6B	7	C ³	-
-	GNDIO7	7	-	-	GNDIO7	7	-	-
E1	PL7A	7	Т	LUM0_PLLT_FB_A	PL7A	7	Т	LUM0_PLLT_FB_A
E2	PL7B	7	С	LUM0_PLLC_FB_A	PL7B	7	С	LUM0_PLLC_FB_A
H5	PL8A	7	T ³	-	PL8A	7	T ³	-
H6	PL8B	7	C ³	-	PL8B	7	C ³	-
H4	PL9A	7	-	-	PL9A	7	-	-
H3	PL10B	7	-	VREF1_7	PL10B	7	-	VREF1_7
F1	PL11A	7	T ³	DQS	PL11A	7	T ³	DQS
F2	PL11B	7	C ³	-	PL11B	7	C ³	-
-	GNDIO7	7	-	-	GNDIO7	7	-	-
J5	PL12A	7	Т	-	PL12A	7	Т	-
J6	PL12B	7	С	-	PL12B	7	С	-
G1	PL13A	7	T ³	-	PL13A	7	T ³	-
G2	PL13B	7	C ³	-	PL13B	7	C ³	-
J4	PL15A	7	T ³	-	PL15A	7	T ³	-
J3	PL15B	7	C ³	-	PL15B	7	C ³	-
-	GNDIO7	7	-	-	GNDIO7	7	-	-
H1	PL16A	7	Т	LUMO PLLT IN A	PL16A	7	Т	LUMO PLLT IN A
H2	PL16B	7	С	LUMO PLLC IN A	PL16B	7	С	LUMO PLLC IN A
	PL17A	7	T ³	-	PL17A	7	T ³	•
J2	PL17B	7	C ³	-	PL17B	7	C ³	-
K3	PL18A	7	-	VREF2_7	PL18A	7	-	VREF2_7
K2	PL19B	7	-	-	PL19B	7	-	-
K4	PL20A	7	T ³	DOS	PI 20A	7	T ³	DOS
-	GNDIO7	7	-		GNDIO7	7	-	
K5	PI 20B	7	C ³	-	PI 20B	7	C ³	
K1	PI 21A	7	т	-	PI 21A	7	т	-
12	PI 21R	7	, C		PI 21R	7	C.	_
	PI 224	7	т ³		PI 224	7	т ³	
12		7		-		7		-
LO	FL22D	1	0	-	FL22D	1	0	-

LFXP15 & LFXP20 Logic Signal Connections: 484 fpBGA (Cont.)

			LFXP15		LFXP20			
Ball Number	Ball Function	Bank	Differential	Dual Function	Ball Function	Bank	Differential	Dual Function
A14	PT30B	1	-	-	PT34B	1	-	-
B14	PT29A	1	-	D4	PT33A	1	-	D4
C12	PT28B	1	С	-	PT32B	1	С	-
B12	PT28A	1	Т	D5	PT32A	1	Т	D5
-	GNDIO1	1	-	-	GNDIO1	1	-	-
D12	PT27B	1	С	D6	PT31B	1	С	D6
E12	PT27A	1	Т	-	PT31A	1	Т	-
A13	PT26B	1	С	D7	PT30B	1	С	D7
A12	PT26A	1	Т	-	PT30A	1	Т	-
A11	PT25B	0	С	BUSY	PT29B	0	С	BUSY
-	GNDIO0	0	-	-	GNDIO0	0	-	-
A10	PT25A	0	Т	CS1N	PT29A	0	Т	CS1N
D11	PT24B	0	С	PCLKC0_0	PT28B	0	С	PCLKC0_0
E11	PT24A	0	Т	PCLKT0_0	PT28A	0	Т	PCLKT0_0
B11	PT23B	0	С	-	PT27B	0	С	-
C11	PT23A	0	Т	DQS	PT27A	0	Т	DQS
B9	PT22B	0	-	-	PT26B	0	-	-
A9	PT21A	0	-	DOUT	PT25A	0	-	DOUT
B8	PT20B	0	С	-	PT24B	0	С	-
-	GNDIO0	0	-	-	GNDIO0	0	-	-
A8	PT20A	0	Т	WRITEN	PT24A	0	Т	WRITEN
E10	PT19B	0	С	-	PT23B	0	С	-
D10	PT19A	0	Т	VREF1_0	PT23A	0	Т	VREF1_0
C10	PT18B	0	С	-	PT22B	0	С	-
B10	PT18A	0	Т	DI	PT22A	0	Т	DI
B7	PT17B	0	С	-	PT21B	0	С	-
A7	PT17A	0	Т	CSN	PT21A	0	Т	CSN
C9	PT16B	0	С	-	PT20B	0	С	-
D9	PT16A	0	Т	-	PT20A	0	Т	-
B6	PT15B	0	С	VREF2_0	PT19B	0	С	VREF2_0
A6	PT15A	0	Т	DQS	PT19A	0	Т	DQS
F9	PT14B	0	-	-	PT18B	0	-	-
E9	PT13A	0	-	-	PT17A	0	-	-
-	GNDIO0	0	-	-	GNDIO0	0	-	-
B5	PT12B	0	С	-	PT16B	0	С	-
A5	PT12A	0	Т	-	PT16A	0	Т	-
C8	PT11B	0	С	-	PT15B	0	С	-
D8	PT11A	0	Т	-	PT15A	0	Т	-
B4	PT10B	0	С	-	PT14B	0	С	-
A4	PT10A	0	Т	-	PT14A	0	Т	-
F8	PT9B	0	С	-	PT13B	0	С	-
E8	PT9A	0	Т	-	PT13A	0	Т	-

Thermal Management

Thermal management is recommended as part of any sound FPGA design methodology. To assess the thermal characteristics of a system, Lattice specifies a maximum allowable junction temperature in all device data sheets. Designers must complete a thermal analysis of their specific design to ensure that the device and package do not exceed the junction temperature limits. Refer to the Thermal Management document to find the device/package specific thermal values.

For Further Information

For further information regarding Thermal Management, refer to the following located on the Lattice website at <u>www.latticesemi.com</u>.

- Thermal Management document
- Technical Note TN1052 Power Estimation and Management for LatticeECP/EC and LatticeXP Devices
- Power Calculator tool included with Lattice's ispLEVER design tool, or as a standalone download from
 <u>www.latticesemi.com/software</u>

Commercial (Cont.)												
Part Number	l/Os	Voltage	Grade	Package	Pins	Temp.	LUTs					
LFXP15E-3FN484C	300	1.2V	-3	fpBGA	484	COM	15.5K					
LFXP15E-4FN484C	300	1.2V	-4	fpBGA	484	COM	15.5K					
LFXP15E-5FN484C	300	1.2V	-5	fpBGA	484	COM	15.5K					
LFXP15E-3FN388C	268	1.2V	-3	fpBGA	388	COM	15.5K					
LFXP15E-4FN388C	268	1.2V	-4	fpBGA	388	COM	15.5K					
LFXP15E-5FN388C	268	1.2V	-5	fpBGA	388	COM	15.5K					
LFXP15E-3FN256C	188	1.2V	-3	fpBGA	256	COM	15.5K					
LFXP15E-4FN256C	188	1.2V	-4	fpBGA	256	COM	15.5K					
LFXP15E-5FN256C	188	1.2V	-5	fpBGA	256	COM	15.5K					

Part Number	l/Os	Voltage	Grade	Package	Pins	Temp.	LUTs
LFXP20E-3FN484C	340	1.2V	-3	fpBGA	484	COM	19.7K
LFXP20E-4FN484C	340	1.2V	-4	fpBGA	484	COM	19.7K
LFXP20E-5FN484C	340	1.2V	-5	fpBGA	484	COM	19.7K
LFXP20E-3FN388C	268	1.2V	-3	fpBGA	388	COM	19.7K
LFXP20E-4FN388C	268	1.2V	-4	fpBGA	388	COM	19.7K
LFXP20E-5FN388C	268	1.2V	-5	fpBGA	388	COM	19.7K
LFXP20E-3FN256C	188	1.2V	-3	fpBGA	256	COM	19.7K
LFXP20E-4FN256C	188	1.2V	-4	fpBGA	256	COM	19.7K
LFXP20E-5FN256C	188	1.2V	-5	fpBGA	256	COM	19.7K

Industrial

Part Number	l/Os	Voltage	Grade	Package	Pins	Temp.	LUTs
LFXP3C-3QN208I	136	1.8/2.5/3.3V	-3	PQFP	208	IND	3.1K
LFXP3C-4QN208I	136	1.8/2.5/3.3V	-4	PQFP	208	IND	3.1K
LFXP3C-3TN144I	100	1.8/2.5/3.3V	-3	TQFP	144	IND	3.1K
LFXP3C-4TN144I	100	1.8/2.5/3.3V	-4	TQFP	144	IND	3.1K
LFXP3C-3TN100I	62	1.8/2.5/3.3V	-3	TQFP	100	IND	3.1K
LFXP3C-4TN100I	62	1.8/2.5/3.3V	-4	TQFP	100	IND	3.1K

Part Number	I/Os	Voltage	Grade	Package	Pins	Temp.	LUTs
LFXP6C-3FN256I	188	1.8/2.5/3.3V	-3	fpBGA	256	IND	5.8K
LFXP6C-4FN256I	188	1.8/2.5/3.3V	-4	fpBGA	256	IND	5.8K
LFXP6C-3QN208I	142	1.8/2.5/3.3V	-3	PQFP	208	IND	5.8K
LFXP6C-4QN208I	142	1.8/2.5/3.3V	-4	PQFP	208	IND	5.8K
LFXP6C-3TN144I	100	1.8/2.5/3.3V	-3	TQFP	144	IND	5.8K
LFXP6C-4TN144I	100	1.8/2.5/3.3V	-4	TQFP	144	IND	5.8K