

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

E·XE

Product Status	Obsolete
Number of LABs/CLBs	-
Number of Logic Elements/Cells	3000
Total RAM Bits	55296
Number of I/O	62
Number of Gates	-
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	100-LQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lfxp3e-4tn100i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Lattice Semiconductor

Figure 2-6. Secondary Clock Sources

Clock Routing

The clock routing structure in LatticeXP devices consists of four Primary Clock lines and a Secondary Clock network per quadrant. The primary clocks are generated from MUXs located in each quadrant. Figure 2-7 shows this clock routing. The four secondary clocks are generated from MUXs located in each quadrant as shown in Figure 2-8. Each slice derives its clock from the primary clock lines, secondary clock lines and routing as shown in Figure 2-9.

Figure 2-25. Tristate Register Block

*Latch is transparent when input is low.

Control Logic Block

The control logic block allows the selection and modification of control signals for use in the PIO block. A clock is selected from one of the clock signals provided from the general purpose routing and a DQS signal provided from the programmable DQS pin. The clock can optionally be inverted.

The clock enable and local reset signals are selected from the routing and optionally inverted. The global tristate signal is passed through this block.

DDR Memory Support

Implementing high performance DDR memory interfaces requires dedicated DDR register structures in the input (for read operations) and in the output (for write operations). As indicated in the PIO Logic section, the LatticeXP devices provide this capability. In addition to these registers, the LatticeXP devices contain two elements to simplify the design of input structures for read operations: the DQS delay block and polarity control logic.

DLL Calibrated DQS Delay Block

Source Synchronous interfaces generally require the input clock to be adjusted in order to correctly capture data at the input register. For most interfaces a PLL is used for this adjustment, however in DDR memories the clock (referred to as DQS) is not free running so this approach cannot be used. The DQS Delay block provides the required clock alignment for DDR memory interfaces.

The DQS signal (selected PIOs only) feeds from the PAD through a DQS delay element to a dedicated DQS routing resource. The DQS signal also feeds the polarity control logic which controls the polarity of the clock to the sync registers in the input register blocks. Figures 2-26 and 2-27 show how the polarity control logic are routed to the PIOs.

The temperature, voltage and process variations of the DQS delay block are compensated by a set of calibration (6-bit bus) signals from two DLLs on opposite sides of the device. Each DLL compensates DQS Delays in its half of the device as shown in Figure 2-27. The DLL loop is compensated for temperature, voltage and process variations by the system clock and feedback loop.

Supply Current (Standby)^{1, 2, 3, 4}

Symbol	Parameter	Device	Typ.⁵	Units
	Core Power Supply	LFXP3E	15	mA
		LFXP6E	20	mA
		LFXP10E	35	mA
		LFXP15E	45	mA
1		LFXP20E	55	mA
CC		LFXP3C	35	mA
		LFXP6C	40	mA
		LFXP10C	70	mA
		LFXP15C	80	mA
		LFXP20C	90	mA
I _{CCP}	PLL Power Supply (per PLL)	All	8	mA
		LFXP3E/C	22	mA
	Auxiliary Power Supply V _{CCAUX} = 3.3V	LFXP6E/C	22	mA
I _{CCAUX}		LFXP10E/C	30	mA
		LFXP15E/C	30	mA
		LFXP20E/C	30	mA
ICCIO	Bank Power Supply ⁶	All	2	mA
ICCJ	V _{CCJ} Power Supply	All	1	mA

Over Recommended Operating Conditions

1. For further information on supply current, please see details of additional technical documentation at the end of this data sheet.

2. Assumes all outputs are tristated, all inputs are configured as LVCMOS and held at the VCCIO or GND.

3. Frequency 0MHz.

4. User pattern: blank.

5. $T_A=25^{\circ}C$, power supplies at nominal voltage.

6. Per bank.

Programming and Erase Flash Supply Current^{1, 2, 3, 4, 5}

Symbol	Parameter	Device	Typ. ⁶	Units
	Core Power Supply	LFXP3E	30	mA
		LFXP6E	40	mA
		LFXP10E	50	mA
		LFXP15E	60	mA
1		LFXP20E	70	mA
CC		LFXP3C	50	mA
		LFXP6C	60	mA
		LFXP10C	90	mA
		LFXP15C	100	mA
		LFXP20C	110	mA
I _{CCAUX}	Auxiliary Power Supply V _{CCAUX} = 3.3V	LFXP3E/C	50	mA
		LFXP6E/C	60	mA
		LFXP10E/C	90	mA
		LFXP15E/C	110	mA
		LFXP20E/C	130	mA
ICCJ	V _{CCJ} Power Supply ⁷	All	2	mA

1. For further information on supply current, please see details of additional technical documentation at the end of this data sheet.

2. Assumes all outputs are tristated, all inputs are configured as LVCMOS and held at the $V_{\mbox{CCIO}}$ or GND.

3. Blank user pattern; typical Flash pattern.

4. Bypass or decoupling capacitor across the supply.

5. JTAG programming is at 1MHz.

6. $T_A=25^{\circ}C$, power supplies at nominal voltage.

7. When programming via JTAG.

Typical Building Block Function Performance¹

Pin-to-Pin Performance (LVCMOS25 12 mA Drive)

Function	-5 Timing	Units				
Basic Functions						
16-bit decoder	6.1	ns				
32-bit decoder	7.3	ns				
64-bit decoder	8.2	ns				
4:1 MUX	4.9	ns				
8:1 MUX	5.3	ns				
16:1 MUX	5.7	ns				
32:1 MUX	6.3	ns				

Register to Register Performance

Function	-5 Timing	Units				
Basic Functions						
16-bit decoder	351	MHz				
32-bit decoder	248	MHz				
64-bit decoder	237	MHz				
4:1 MUX	590	MHz				
8:1 MUX	523	MHz				
16:1 MUX	434	MHz				
32:1 MUX	355	MHz				
8-bit adder	343	MHz				
16-bit adder	292	MHz				
64-bit adder	130	MHz				
16-bit counter	388	MHz				
32-bit counter	295	MHz				
64-bit counter	200	MHz				
64-bit accumulator	164	MHz				
Embedded Memory Functions	· · · · ·					
Single Port RAM 256x36 bits	254	MHz				
True-Dual Port RAM 512x18 bits	254	MHz				
Distributed Memory Functions	· · · · ·					
16x2 SP RAM	434	MHz				
64x2 SP RAM	332	MHz				
128x4 SP RAM	235	MHz				
32x2 PDP RAM	322	MHz				
64x4 PDP RAM	291	MHz				

1. These timing numbers were generated using the ispLEVER design tool. Exact performance may vary with design and tool version. The tool uses internal parameters that have been characterized but are not tested on every device.

Timing v.F0.11

Flash Download Time

Symbol	Parameter		Min.	Тур.	Max.	Units
tREFRESH	PROGRAMN Low-to- High. Transition to Done High.	LFXP3	—	1.1	1.7	ms
		LFXP6	—	1.4	2.0	ms
		LFXP10	—	0.9	1.5	ms
		LFXP15	—	1.1	1.7	ms
		LFXP20	—	1.3	1.9	ms

JTAG Port Timing Specifications

Over Recommended Operating Conditions

Symbol	Parameter	Min.	Max.	Units
f _{MAX}		_	25	MHz
t _{BTCP}	TCK [BSCAN] clock pulse width	40	—	ns
t _{втсрн}	TCK [BSCAN] clock pulse width high	20	_	ns
t _{BTCPL}	TCK [BSCAN] clock pulse width low	20	_	ns
t _{BTS}	TCK [BSCAN] setup time	10	—	ns
t _{BTH}	TCK [BSCAN] hold time	8	—	ns
t _{BTRF}	TCK [BSCAN] rise/fall time	50	—	ns
t _{втсо}	TAP controller falling edge of clock to valid output		10	ns
t _{BTCODIS}	TAP controller falling edge of clock to valid disable		10	ns
t _{BTCOEN}	TAP controller falling edge of clock to valid enable		10	ns
t _{BTCRS}	BSCAN test capture register setup time	8		ns
t _{BTCRH}	BSCAN test capture register hold time	25	—	ns
t _{BUTCO}	BSCAN test update register, falling edge of clock to valid output	_	25	ns
t _{BTUODIS}	BSCAN test update register, falling edge of clock to valid disable	_	25	ns
t _{BTUPOEN}	BSCAN test update register, falling edge of clock to valid enable	—	25	ns
Timing v.F0.11	•	•	•	

Figure 3-12. JTAG Port Timing Waveforms

