

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	-
Number of Logic Elements/Cells	6000
Total RAM Bits	73728
Number of I/O	188
Number of Gates	-
Voltage - Supply	1.71V ~ 3.465V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	256-BGA
Supplier Device Package	256-FPBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lfxp6c-4f256c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Introduction

The LatticeXP family of FPGA devices combine logic gates, embedded memory and high performance I/Os in a single architecture that is both non-volatile and infinitely reconfigurable to support cost-effective system designs.

The re-programmable non-volatile technology used in the LatticeXP family is the next generation ispXP[™] technology. With this technology, expensive external configuration memories are not required and designs are secured from unauthorized read-back. In addition, instant-on capability allows for easy interfacing in many applications.

The ispLEVER[®] design tool from Lattice allows large complex designs to be efficiently implemented using the LatticeXP family of FPGA devices. Synthesis library support for LatticeXP is available for popular logic synthesis tools. The ispLEVER tool uses the synthesis tool output along with the constraints from its floor planning tools to place and route the design in the LatticeXP device. The ispLEVER tool extracts the timing from the routing and backannotates it into the design for timing verification.

Lattice provides many pre-designed IP (Intellectual Property) ispLeverCORE[™] modules for the LatticeXP family. By using these IPs as standardized blocks, designers are free to concentrate on the unique aspects of their design, increasing their productivity.

LatticeXP Family Data Sheet Architecture

July 2007

Data Sheet DS1001

Architecture Overview

The LatticeXP architecture contains an array of logic blocks surrounded by Programmable I/O Cells (PIC). Interspersed between the rows of logic blocks are rows of sysMEM Embedded Block RAM (EBR) as shown in Figure 2-1.

On the left and right sides of the PFU array, there are Non-volatile Memory Blocks. In configuration mode this nonvolatile memory is programmed via the IEEE 1149.1 TAP port or the sysCONFIG[™] peripheral port. On power up, the configuration data is transferred from the Non-volatile Memory Blocks to the configuration SRAM. With this technology, expensive external configuration memories are not required and designs are secured from unauthorized read-back. This transfer of data from non-volatile memory to configuration SRAM via wide busses happens in microseconds, providing an "instant-on" capability that allows easy interfacing in many applications.

There are two kinds of logic blocks, the Programmable Functional Unit (PFU) and Programmable Functional unit without RAM/ROM (PFF). The PFU contains the building blocks for logic, arithmetic, RAM, ROM and register functions. The PFF block contains building blocks for logic, arithmetic and ROM functions. Both PFU and PFF blocks are optimized for flexibility, allowing complex designs to be implemented quickly and efficiently. Logic Blocks are arranged in a two-dimensional array. Only one type of block is used per row. The PFU blocks are used on the outside rows. The rest of the core consists of rows of PFF blocks interspersed with rows of PFU blocks. For every three rows of PFF blocks there is a row of PFU blocks.

Each PIC block encompasses two PIOs (PIO pairs) with their respective sysIO interfaces. PIO pairs on the left and right edges of the device can be configured as LVDS transmit/receive pairs. sysMEM EBRs are large dedicated fast memory blocks. They can be configured as RAM or ROM.

The PFU, PFF, PIC and EBR Blocks are arranged in a two-dimensional grid with rows and columns as shown in Figure 2-1. The blocks are connected with many vertical and horizontal routing channel resources. The place and route software tool automatically allocates these routing resources.

At the end of the rows containing the sysMEM Blocks are the sysCLOCK Phase Locked Loop (PLL) Blocks. These PLLs have multiply, divide and phase shifting capability; they are used to manage the phase relationship of the clocks. The LatticeXP architecture provides up to four PLLs per device.

Every device in the family has a JTAG Port with internal Logic Analyzer (ispTRACY) capability. The sysCONFIG port which allows for serial or parallel device configuration. The LatticeXP devices are available for operation from 3.3V, 2.5V, 1.8V and 1.2V power supplies, providing easy integration into the overall system.

^{© 2007} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Figure 2-1. LatticeXP Top Level Block Diagram

PFU and PFF Blocks

The core of the LatticeXP devices consists of PFU and PFF blocks. The PFUs can be programmed to perform Logic, Arithmetic, Distributed RAM and Distributed ROM functions. PFF blocks can be programmed to perform Logic, Arithmetic and ROM functions. Except where necessary, the remainder of the data sheet will use the term PFU to refer to both PFU and PFF blocks.

Each PFU block consists of four interconnected slices, numbered 0-3 as shown in Figure 2-2. All the interconnections to and from PFU blocks are from routing. There are 53 inputs and 25 outputs associated with each PFU block.

Figure 2-2. PFU Diagram

Slice

Each slice contains two LUT4 lookup tables feeding two registers (programmed to be in FF or Latch mode), and some associated logic that allows the LUTs to be combined to perform functions such as LUT5, LUT6, LUT7 and LUT8. There is control logic to perform set/reset functions (programmable as synchronous/asynchronous), clock select, chip-select and wider RAM/ROM functions. Figure 2-3 shows an overview of the internal logic of the slice. The registers in the slice can be configured for positive/negative and edge/level clocks.

There are 14 input signals: 13 signals from routing and one from the carry-chain (from adjacent slice or PFU). There are 7 outputs: 6 to routing and one to carry-chain (to adjacent PFU). Table 2-1 lists the signals associated with each slice.

Figure 2-3. Slice Diagram

Figure 2-10. PLL Diagram

Figure 2-11 shows the available macros for the PLL. Table 2-11 provides signal description of the PLL Block.

Figure 2-11. PLL Primitive

Table 2-5.	PLL	Signal	Descri	ptions
------------	-----	--------	--------	--------

Signal	I/O	Description
CLKI	I	Clock input from external pin or routing
CLKFB	I	PLL feedback input from CLKOP (PLL internal), from clock net (CLKOP) or from a user clock (PIN or logic)
RST	I	"1" to reset input clock divider
CLKOS	0	PLL output clock to clock tree (phase shifted/duty cycle changed)
CLKOP	0	PLL output clock to clock tree (No phase shift)
CLKOK	0	PLL output to clock tree through secondary clock divider
LOCK	0	"1" indicates PLL LOCK to CLKI
DDAMODE	I	Dynamic Delay Enable. "1" Pin control (dynamic), "0": Fuse Control (static)
DDAIZR	I	Dynamic Delay Zero. "1": delay = 0, "0": delay = on
DDAILAG	I	Dynamic Delay Lag/Lead. "1": Lag, "0": Lead
DDAIDEL[2:0]	I	Dynamic Delay Input
DDAOZR	0	Dynamic Delay Zero Output
DDAOLAG	0	Dynamic Delay Lag/Lead Output
DDAODEL[2:0]	0	Dynamic Delay Output

Figure 2-25. Tristate Register Block

*Latch is transparent when input is low.

Control Logic Block

The control logic block allows the selection and modification of control signals for use in the PIO block. A clock is selected from one of the clock signals provided from the general purpose routing and a DQS signal provided from the programmable DQS pin. The clock can optionally be inverted.

The clock enable and local reset signals are selected from the routing and optionally inverted. The global tristate signal is passed through this block.

DDR Memory Support

Implementing high performance DDR memory interfaces requires dedicated DDR register structures in the input (for read operations) and in the output (for write operations). As indicated in the PIO Logic section, the LatticeXP devices provide this capability. In addition to these registers, the LatticeXP devices contain two elements to simplify the design of input structures for read operations: the DQS delay block and polarity control logic.

DLL Calibrated DQS Delay Block

Source Synchronous interfaces generally require the input clock to be adjusted in order to correctly capture data at the input register. For most interfaces a PLL is used for this adjustment, however in DDR memories the clock (referred to as DQS) is not free running so this approach cannot be used. The DQS Delay block provides the required clock alignment for DDR memory interfaces.

The DQS signal (selected PIOs only) feeds from the PAD through a DQS delay element to a dedicated DQS routing resource. The DQS signal also feeds the polarity control logic which controls the polarity of the clock to the sync registers in the input register blocks. Figures 2-26 and 2-27 show how the polarity control logic are routed to the PIOs.

The temperature, voltage and process variations of the DQS delay block are compensated by a set of calibration (6-bit bus) signals from two DLLs on opposite sides of the device. Each DLL compensates DQS Delays in its half of the device as shown in Figure 2-27. The DLL loop is compensated for temperature, voltage and process variations by the system clock and feedback loop.

Figure 2-26. DQS Local Bus

Figure 2-27. DLL Calibration Bus and DQS/DQS Transition Distribution

Figure 2-28. LatticeXP Banks

Note: N and M are the maximum number of I/Os per bank.

LatticeXP devices contain two types of sysIO buffer pairs.

1. Top and Bottom sysIO Buffer Pair (Single-Ended Outputs Only)

The sysIO buffer pairs in the top and bottom banks of the device consist of two single-ended output drivers and two sets of single-ended input buffers (both ratioed and referenced). The referenced input buffer can also be configured as a differential input.

The two pads in the pair are described as "true" and "comp", where the true pad is associated with the positive side of the differential input buffer and the comp (complementary) pad is associated with the negative side of the differential input buffer.

Only the I/Os on the top and bottom banks have PCI clamps. Note that the PCI clamp is enabled after $V_{CC,}$ V_{CCAUX} and V_{CCIO} are at valid operating levels and the device has been configured.

2. Left and Right sysIO Buffer Pair (Differential and Single-Ended Outputs)

The sysIO buffer pairs in the left and right banks of the device consist of two single-ended output drivers, two sets of single-ended input buffers (both ratioed and referenced) and one differential output driver. The referenced input buffer can also be configured as a differential input. In these banks the two pads in the pair are described as "true" and "comp", where the true pad is associated with the positive side of the differential I/O, and the comp (complementary) pad is associated with the negative side of the differential I/O.

Select I/Os in the left and right banks have LVDS differential output drivers. Refer to the Logic Signal Connections tables for more information.

Table 2-8. Supported	Output Standards
----------------------	-------------------------

Output Standard	Drive	V _{CCIO} (Nom.)		
Single-ended Interfaces	•			
LVTTL	4mA, 8mA, 12mA, 16mA, 20mA	3.3		
LVCMOS33	4mA, 8mA, 12mA 16mA, 20mA	3.3		
LVCMOS25	4mA, 8mA, 12mA 16mA, 20mA	2.5		
LVCMOS18	4mA, 8mA, 12mA 16mA	1.8		
LVCMOS15	4mA, 8mA	1.5		
LVCMOS12	2mA, 6mA	1.2		
LVCMOS33, Open Drain	4mA, 8mA, 12mA 16mA, 20mA	—		
LVCMOS25, Open Drain	4mA, 8mA, 12mA 16mA, 20mA	—		
LVCMOS18, Open Drain	4mA, 8mA, 12mA 16mA	—		
LVCMOS15, Open Drain	4mA, 8mA	—		
LVCMOS12, Open Drain	2mA. 6mA	—		
PCI33	N/A	3.3		
HSTL18 Class I, II, III	N/A	1.8		
HSTL15 Class I, III	N/A	1.5		
SSTL3 Class I, II	N/A	3.3		
SSTL2 Class I, II	N/A	2.5		
SSTL18 Class I	N/A	1.8		
Differential Interfaces	•			
Differential SSTL3, Class I, II	N/A	3.3		
Differential SSTL2, Class I, II	N/A	2.5		
Differential SSTL18, Class I	N/A	1.8		
Differential HSTL18, Class I, II, III	N/A	1.8		
Differential HSTL15, Class I, III	N/A	1.5		
LVDS	N/A	2.5		
BLVDS ¹	N/A	2.5		
LVPECL ¹	N/A	3.3		

1. Emulated with external resistors.

Hot Socketing

The LatticeXP devices have been carefully designed to ensure predictable behavior during power-up and powerdown. Power supplies can be sequenced in any order. During power up and power-down sequences, the I/Os remain in tristate until the power supply voltage is high enough to ensure reliable operation. In addition, leakage into I/O pins is controlled to within specified limits, which allows easy integration with the rest of the system. These capabilities make the LatticeXP ideal for many multiple power supply and hot-swap applications.

Sleep Mode

The LatticeXP "C" devices ($V_{CC} = 1.8/2.5/3.3V$) have a sleep mode that allows standby current to be reduced by up to three orders of magnitude during periods of system inactivity. Entry and exit to Sleep Mode is controlled by the SLEEPN pin.

During Sleep Mode, the FPGA logic is non-operational, registers and EBR contents are not maintained and I/Os are tri-stated. Do not enter Sleep Mode during device programming or configuration operation. In Sleep Mode, power supplies can be maintained in their normal operating range, eliminating the need for external switching of power supplies. Table 2-9 compares the characteristics of Normal, Off and Sleep Modes.

Hot Socketing Specifications^{1, 2, 3, 4, 5, 6}

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units	
I _{DK}	Input or I/O Leakage Current	$0 \le V_{IN} \le V_{IH}$ (MAX.)	-		+/-1000	μΑ	

1. Insensitive to sequence of V_{CC} , V_{CCAUX} and V_{CCIO} . However, assumes monotonic rise/fall rates for V_{CC} , V_{CCAUX} and V_{CCIO} . 2. $0 \le V_{CC} \le V_{CC}$ (MAX) or $0 \le V_{CCAUX} \le V_{CCAUX}$ (MAX). 3. $0 \le V_{CCIO} \le V_{CCIO}$ (MAX) for top and bottom I/O banks. 4. $0.2 \le V_{CCIO} \le V_{CCIO}$ (MAX) for left and right I/O banks. 5. I_{DK} is additive to I_{PU} , I_{PW} or I_{BH} . 6. LVCMOS and LVTTL only.

Figure 3-2. BLVDS Multi-point Output Example

Table 3-2. BLVDS DC Conditions¹

		Тур		
Symbol	Description	Zo = 45	Zo = 90	Units
Z _{OUT}	Output impedance	100	100	ohms
R _{TLEFT}	Left end termination	45	90	ohms
R _{TRIGHT}	Right end termination	45	90	ohms
V _{OH}	Output high voltage	1.375	1.48	V
V _{OL}	Output low voltage	1.125	1.02	V
V _{OD}	Output differential voltage	0.25	0.46	V
V _{CM}	Output common mode voltage	1.25	1.25	V
I _{DC}	DC output current	11.2	10.2	mA

Over Recommended Operating Conditions

1. For input buffer, see LVDS table.

Figure 3-5. DDR Timings

LatticeXP Family Data Sheet Pinout Information

November 2007

Data Sheet DS1001

Signal Descriptions

Signal Name	I/O	Descriptions				
General Purpose						
		[Edge] indicates the edge of the device on which the pad is located. Valid edge designations are L (Left), B (Bottom), R (Right), T (Top).				
		[Row/Column Number] indicates the PFU row or the column of the device on which the PIC exists. When Edge is T (Top) or (Bottom), only need to specify Row Number. When Edge is L (Left) or R (Right), only need to specify Column Number.				
P[Edge] [Row/Column Number*]_[A/B]	I/O	[A/B] indicates the PIO within the PIC to which the pad is connected.				
		Some of these user programmable pins are shared with special function pins. These pin when not used as special purpose pins can be programmed as I/ Os for user logic.				
		During configuration, the user-programmable I/Os are tri-stated with an inter- nal pull-up resistor enabled. If any pin is not used (or not bonded to a pack- age pin), it is also tri-stated with an internal pull-up resistor enabled after configuration.				
GSRN	I	Global RESET signal. (Active low). Any I/O pin can be configured to be GSRN.				
NC	_	No connect.				
GND		GND - Ground. Dedicated Pins.				
V _{CC}		VCC - The power supply pins for core logic. Dedicated Pins.				
V _{CCAUX}	_	V _{CCAUX} - The Auxiliary power supply pin. It powers all the differential and referenced input buffers. Dedicated Pins.				
V _{CCP0}	_	Voltage supply pins for ULM0PLL (and LLM1PLL ¹).				
V _{CCP1}		Voltage supply pins for URM0PLL (and LRM1PLL ¹).				
GNDP0	—	Ground pins for ULM0PLL (and LLM1PLL ¹).				
GNDP1	—	Ground pins for URM0PLL (and LRM1PLL ¹).				
V _{CCIOx}		V _{CCIO} - The power supply pins for I/O bank x. Dedicated Pins.				
V _{REF1(x)} , V _{REF2(x)}	_	Reference supply pins for I/O bank x. Pre-determined pins in each bank are assigned as V_{REF} inputs. When not used, they may be used as I/O pins.				
PLL and Clock Functions (Used as user	progra	ammable I/O pins when not in use for PLL or clock pins)				
[LOC][num]_PLL[T, C]_IN_A		Reference clock (PLL) input Pads: ULM, LLM, URM, LRM, num = row from center, T = true and C = complement, index A, B, Cat each side.				
[LOC][num]_PLL[T, C]_FB_A	_	Optional feedback (PLL) input Pads: ULM, LLM, URM, LRM, num = row from center, T = true and C = complement, index A, B, Cat each side.				
PCLK[T, C]_[n:0]_[3:0]	_	Primary Clock Pads, $T =$ true and $C =$ complement, n per side, indexed by bank and 0,1, 2, 3 within bank.				
[LOC]DQS[num]		DQS input Pads: T (Top), R (Right), B (Bottom), L (Left), DQS, num = Ball function number. Any pad can be configured to be DQS output.				

© 2007 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Signal Descriptions (Cont.)

Signal Name	I/O	Descriptions
Test and Programming (Dedicated pins.	Pull-up	b is enabled on input pins during configuration.)
TMS	I	Test Mode Select input, used to control the 1149.1 state machine.
ТСК	I	Test Clock input pin, used to clock the 1149.1 state machine.
тді	I	Test Data in pin, used to load data into device using 1149.1 state machine. After power-up, this TAP port can be activated for configuration by sending appropriate command. (Note: once a configuration port is selected it is locked. Another configuration port cannot be selected until the power-up sequence).
TDO	0	Output pin -Test Data out pin used to shift data out of device using 1149.1.
V _{CCJ}	—	V _{CCJ} - The power supply pin for JTAG Test Access Port.
Configuration Pads (used during sysCON	√FIG)	
CFG[1:0]	I	Mode pins used to specify configuration modes values latched on rising edge of INITN. During configuration, a pull-up is enabled.
INITN	I/O	Open Drain pin - Indicates the FPGA is ready to be configured. During con- figuration, a pull-up is enabled. If CFG1 and CFG0 are high (SDM) then this pin is pulled low.
PROGRAMN	I	Initiates configuration sequence when asserted low. This pin always has an active pull-up.
DONE	I/O	Open Drain pin - Indicates that the configuration sequence is complete, and the startup sequence is in progress.
CCLK	I/O	Configuration Clock for configuring an FPGA in sysCONFIG mode.
BUSY	I/O	Generally not used. After configuration it is a user-programmable I/O pin.
CSN	I	sysCONFIG chip select (Active low). During configuration, a pull-up is enabled. After configuration it is user a programmable I/O pin.
CS1N	I	sysCONFIG chip select (Active Low). During configuration, a pull-up is enabled. After configuration it is user programmable I/O pin
WRITEN	I	Write Data on Parallel port (Active low). After configuration it is a user pro- grammable I/O pin
D[7:0]	I/O	sysCONFIG Port Data I/O. After configuration these are user programmable I/O pins.
DOUT, CSON	0	Output for serial configuration data (rising edge of CCLK) when using sys- CONFIG port. After configuration, it is a user-programmable I/O pin.
DI	I	Input for serial configuration data (clocked with CCLK) when using sysCON- FIG port. During configuration, a pull-up is enabled. After configuration it is a user-programmable I/O pin.
SLEEPN ²	I	Sleep Mode pin - Active low sleep pin.b When this pin is held high, the device operates normally.b When driven low, the device moves into Sleep Mode after a specified time. This pin has a weak internal pull-up, but when not used an external pull-up to V_{CC} is recommended.
TOE ³	I	Test Output Enable tri-states all I/O pins when driven low. This pin has a weak internal pull-up, but when not used an external pull-up to $V_{\rm CC}$ is recommended.

Applies tob LFXP10, LFXP15 and LFXP20 only.
Applies to LFXP "C" devices only.
Applies to LFXP "E" devices only.

PICs and DDR Data (DQ) Pins Associated with the DDR Strobe (DQS) Pin

PICs Associated with DQS Strobe	PIO within PIC	Polarity	DDR Strobe (DQS) and Data (DQ) Pins	
P[Edge] [n_4]	A	True	DQ	
	В	Complement	DQ	
P[Edge] [p_3]	A	True	DQ	
	В	Complement	DQ	
P[Edge] [p_2]	A	True	DQ	
	В	Complement	DQ	
P[Edge] [p-1]	A	True	DQ	
P[Edge] [n]				
	В	Complement	DQ	
P[Edge] [n+1]	A	True	[Edge]DQSn	
	В	Complement	DQ	
P[Edge] [n 2]	A	True	DQ	
	В	Complement	DQ	
P[Edge] [n 3]	A	True	DQ	
	В	Complement	DQ	

Notes:

1. "n" is a row/column PIC number.

2. The DDR interface is designed for memories that support one DQS strobe per eight bits of data. In some packages, all the potential DDR data (DQ) pins may not be available.

3. The definition of the PIC numbering is provided in the Signal Names column of the Signal Descriptions table in this data sheet.

Power Supply and NC Connections

Signals	100 TQFP	144 TQFP	208 PQFP	256 fpBGA	388 fpBGA	484 fpBGA
V _{cc}	28, 77	14, 39, 73, 112	19, 35, 53, 80, 107, 151, 158, 182	7, D4, D13, E5, E12, H9, J8, J15, K8, M5, M12, N4, N13 K15, L8, L15, M M15, N8, N15, F P15, R9		F10, F13, G9, G10, G13, G14, H8, H15, J7, J16, K6, K7, K16, K17, N6, N7, N16, N17, P7, P16, R8, R15, T9, T10, T13, T14, U10, U13
V _{CCIO0}	94	133	189, 199	F7, F8	G8, G9, G10, G11, H8	F11, G11, H10, H11
V _{CCIO1}	82	119	167, 177	F9, F10	G12, G13, G14, G15, H15	F12, G12, H12, H13
V _{CCIO2}	65	98	140, 149	G11, H11	H16, J16, K16, L16	K15, L15, L16, L17
V _{CCIO3}	58	88	115, 125	J11, K11	M16, N16, P16, R16	M15, M16, M17, N15
V _{CCIO4}	47	61, 68	87, 97	L9, L10	R15, T12, T13, T14, T15	R12, R13, T12, U12
V _{CCIO5}	38	49	64, 74	L7, L8	R8, T8, T9, T10, T11	R10, R11, T11, U11
V _{CCIO6}	22	21	28, 41	J6, K6	M7, N7, P7, R7	M6, M7, M8, N8
V _{CCIO7}	7	8	13, 23	G6, H6	6, H6 H7, J7, K7, L7	
V _{CCJ}	73	108	154	D16 E20		E20
V _{CCP0}	17	19	25	H4	M2	L5
V _{CCP1}	60	91	128	J12	M21	L18
V _{CCAUX}	25, 71	36, 106	50, 152	E4, E13, M4, M13	G7, G16, T7, T16	G7, G8, G15, G16, H7, H16, R7, R16, T7, T8, T15, T16
GND ¹	10, 18, 21, 33, 43, 44, 52, 59, 68, 84, 90, 99	3, 11, 20, 28, 44, 54, 56, 64, 75, 85, 90, 101, 121, 127, 136	5, 7, 16, 26, 38, 47, 49, 59, 69, 79, 82, 92, 106, 109, 118, 121, 127, 130, 135, 143, 163, 172, 181, 184, 194, 207	A1, A16, F6, F11, G7, G8, G9, G10, H5, H7, H8, H9, H10, J7, J8, J9, J10, J13, K7, K8, K9, K10, L6, L11, T1, T16	A1, A22, H10, H11, H12, H13, H14, J9, J10, J11, J12, J13, J14, K9, K10, K11, K12, K13, K14, L9, L10, L11, L12, L13, L14, M9, M10, M11, M12, M13, M14, N1, N9, N10, N11, N12, N13, N14, N22, P9, P10, P11, P12, P13, P14, R10, R11, R12, R13, R14, AB1, AB22	A1, A2, A21, A22, B1, B22, H9, H14, J8, J9, J10, J11, J12, J13, J14, J15, K9, K10, K11, K12, K13, K14, L9, L10, L11, L12, L13, L14, M9, M10, M11, M12, M13, M14, M20, N2, N9, N10, N11, N12, N13, N14, P8, P9, P10, P11, P12, P13, P14, P15, R9, R14, AA1, AA22, AB1, AB2, AB21, AB22
NC ²			XP3: 27, 33, 34, 129, 133, 134		XP10: C2, C15, C16, C17, D4, D5, D6, D7, D16, D17, E4, E19, W3, W4, W7, W17, W18, W19, W20, Y3, Y15, Y16, AA1, AA2	XP15: B21, C4, C5, C6, C18, C19, C20, C21, D6, D18, E4, E6, E18, F6, L1, L19, L20, M1, M2, M19, M21, N1, N21, N22, P1, P2, U5, U6, U17, U18, V5, V6, V17, V18, W17, W18, W19, Y3, Y4, Y5

1. All grounds must be electrically connected at the board level. 2. NC pins should not be connected to any active signals, V_{CC} or GND.

LFXP10, LFXP15 & LFXP20 Logic Signal Connections: 388 fpBGA (Cont.)

		L	FXP10)		LFXP15			LFXP20)
Ball Number	Ball Function	Bank	Diff.	Dual Function	Ball Function	Bank	Diff.	Dual Function	Ball Function	Bank	Diff.	Dual Function
C20	PT38A	1	Т	-	PT43A	1	Т	-	PT47A	1	Т	-
C21	PT37B	1	С	-	PT42B	1	С	-	PT46B	1	С	-
C22	PT37A	1	Т	-	PT42A	1	Т	-	PT46A	1	Т	-
B22	PT36B	1	С	-	PT41B	1	С	-	PT45B	1	С	-
A21	PT36A	1	Т	-	PT41A	1	Т	-	PT45A	1	Т	-
D15	PT35B	1	С	-	PT40B	1	С	-	PT44B	1	С	-
D14	PT35A	1	Т	-	PT40A	1	Т	-	PT44A	1	Т	-
B21	PT34B	1	С	VREF1_1	PT39B	1	С	VREF1_1	PT43B	1	С	VREF1_1
-	GNDIO1	1	-	-	GNDIO1	1	-	-	GNDIO1	1	-	-
A20	PT34A	1	Т	DQS	PT39A	1	Т	DQS	PT43A	1	Т	DQS
B20	PT33B	1	-	-	PT38B	1	-	-	PT42B	1	-	-
A19	PT32A	1	-	-	PT37A	1	-	-	PT41A	1	-	-
B19	PT31B	1	С	-	PT36B	1	С	-	PT40B	1	С	-
A18	PT31A	1	Т	-	PT36A	1	Т	-	PT40A	1	Т	-
C14	PT30B	1	С	-	PT35B	1	С	-	PT39B	1	С	-
C13	PT30A	1	Т	D0	PT35A	1	Т	D0	PT39A	1	Т	D0
B18	PT29B	1	С	D1	PT34B	1	С	D1	PT38B	1	С	D1
A17	PT29A	1	Т	VREF2_1	PT34A	1	Т	VREF2_1	PT38A	1	Т	VREF2_1
B17	PT28B	1	С	-	PT33B	1	С	-	PT37B	1	С	-
A16	PT28A	1	Т	D2	PT33A	1	Т	D2	PT37A	1	Т	D2
-	GNDIO1	1	-	-	GNDIO1	1	-	-	GNDIO1	1	-	-
B16	PT27B	1	С	D3	PT32B	1	С	D3	PT36B	1	С	D3
A15	PT27A	1	Т	-	PT32A	1	Т	-	PT36A	1	Т	-
B15	PT26B	1	С	-	PT31B	1	С	-	PT35B	1	С	-
A14	PT26A	1	Т	DQS	PT31A	1	Т	DQS	PT35A	1	Т	DQS
D13	PT25B	1	-	-	PT30B	1	-	-	PT34B	1	-	-
D12	PT24A	1	-	D4	PT29A	1	-	D4	PT33A	1	-	D4
B14	PT23B	1	С	-	PT28B	1	С	-	PT32B	1	С	-
A13	PT23A	1	Т	D5	PT28A	1	Т	D5	PT32A	1	Т	D5
-	GNDIO1	1	-	-	GNDIO1	1	-	-	GNDIO1	1	-	-
B13	PT22B	1	С	D6	PT27B	1	С	D6	PT31B	1	С	D6
A12	PT22A	1	Т	-	PT27A	1	Т	-	PT31A	1	Т	-
B12	PT21B	1	С	D7	PT26B	1	С	D7	PT30B	1	С	D7
C12	PT21A	1	Т	-	PT26A	1	Т	-	PT30A	1	Т	-
C11	PT20B	0	С	BUSY	PT25B	0	С	BUSY	PT29B	0	С	BUSY
-	GNDIO0	0	_	-	GNDIO0	0	-	-	GNDIO0	0	-	-
B11	PT20A	0	т	CS1N	PT25A	0	т	CS1N	PT29A	0	т	CS1N
A11	PT19B	0	C	PCLKC0 0	PT24B	0	C	PCLKC0 0	PT28B	0	C	PCLKC0 0
A10	PT19A	0	T	PCLKT0 0	PT24A	0	т	PCLKT0_0	PT28A	0	Т	PCLKT0_0
B10	PT18B	0	C.	-	PT23B	0	C.	-	PT27B	0	C.	-
B9	PT18A	0	т	DOS	PT23A	0	T	DOS	PT27A	0	T	DOS
D11	PT17B	0	-	-	PT22B	0	-	-	PT26B	0	-	-
D10	PT16A	0	-	DOUT	PT21A	0	-	DOUT	PT25A	0	-	DOUT
Δ9	PT15B	0	C	-	PT20B	0	C	-	PT24R	0	C	-
-	GNDIO0	0	-		GNDIO0	0	-			0	-	-
 C8	PT15A	0	т	WRITEN	PT20A	0	т	WRITEN	PT24A	0	т	WRITEN
P0		0			DT10P	0	· C		DT02B	0	· C	WHILEN
	DT140	0	т Т		DT10A	0	с т		PT23D	0	- С - т	
A0 07				VNEFI_V		0	-	VNEFI_U	FIZ3A	0	1	
07	P113B	U	U	-	P118B	U	U	-	P122B	U	U	-

LFXP15 & LFXP20 Logic Signal Connections: 484 fpBGA (Cont.)

		LFXP15		LFXP20					
Ball Number	Ball Function	Bank	Differential	Dual Function	Ball Function	Bank	Differential	Dual Function	
AB19	PB37A	4	-	-	PB41A	4	-	-	
AB20	PB38B	4	-	-	PB42B	4	-	-	
-	GNDIO4	4	-	-	GNDIO4	4	-	-	
V15	PB39A	4	Т	DQS	PB43A	4	Т	DQS	
U15	PB39B	4	С	-	PB43B	4	С	-	
Y15	PB40A	4	Т	-	PB44A	4	Т	-	
W15	PB40B	4	С	-	PB44B	4	С	-	
AA16	PB41A	4	Т	-	PB45A	4	Т	-	
AA17	PB41B	4	С	-	PB45B	4	С	-	
AA18	PB42A	4	Т	-	PB46A	4	Т	-	
AA19	PB42B	4	С	-	PB46B	4	С	-	
Y16	PB43A	4	Т	-	PB47A	4	Т	-	
W16	PB43B	4	С	-	PB47B	4	С	-	
-	GNDIO4	4	-	-	GNDIO4	4	-	-	
AA20	PB44A	4	Т	-	PB48A	4	Т	-	
AA21	PB44B	4	С	-	PB48B	4	С	-	
Y17	PB45A	4	-	-	PB49A	4	-	-	
Y18	PB46B	4	-	-	PB50B	4	-	-	
Y19	PB47A	4	Т	DQS	PB51A	4	Т	DQS	
Y20	PB47B	4	С	-	PB51B	4	С	-	
V16	PB48A	4	Т	-	PB52A	4	Т	-	
U16	PB48B	4	С	-	PB52B	4	С	-	
-	GNDIO4	4	-	-	GNDIO4	4	-	-	
U18	-	-	-	-	PB53A	4	Т	-	
V18	-	-	-	-	PB53B	4	С	-	
W19	-	-	-	-	PB54A	4	Т	-	
W18	-	-	-	-	PB54B	4	С	-	
U17	-	-	-	-	PB55A	4	Т	-	
V17	-	-	-	-	PB55B	4	С	-	
-	GNDIO4	4	-	-	GNDIO4	4	-	-	
W17	-	-	-	-	PB56A	4	-	-	
-	GNDIO3	3	-	-	GNDIO3	3	-	-	
V19	PR43A	3	-	-	PR47A	3	-	-	
U20	PR42B	3	C ³	-	PR46B	3	C ³	-	
U19	PR42A	3	T ³	-	PR46A	3	T ³	-	
V20	PR41B	3	С	-	PR45B	3	С	-	
W20	PR41A	3	Т	-	PR45A	3	Т	-	
T17	PR40B	3	C ³	-	PR44B	3	C ³	-	
T18	PR40A	3	T ³	-	PR44A	3	T ³	-	
T19	PR39B	3	C ³	-	PR43B	3	C ³	-	
T20	PR39A	3	T ³	-	PR43A	3	T ³	-	
-	GNDIO3	3	-	-	GNDIO3	3	-	-	
		-				-			

LFXP15 & LFXP20 Logic Signal Connections: 484 fpBGA (Cont.)

			LFXP20					
Ball Number	Ball Function	Bank	Differential	Dual Function	Ball Function	Bank	Differential	Dual Function
B3	PT8B	0	С	-	PT12B	0	С	-
A3	PT8A	0	Т	-	PT12A	0	Т	-
-	GNDIO0	0	-	-	GNDIO0	0	-	-
D7	PT7B	0	С	-	PT11B	0	С	-
C7	PT7A	0	Т	DQS	PT11A	0	Т	DQS
B2	PT6B	0	-	-	PT10B	0	-	-
C2	PT5A	0	-	-	PT9A	0	-	-
C3	PT4B	0	С	-	PT8B	0	С	-
D3	PT4A	0	Т	-	PT8A	0	Т	-
F7	PT3B	0	С	-	PT7B	0	С	-
E7	PT3A	0	Т	-	PT7A	0	Т	-
-	GNDIO0	0	-	-	GNDIO0	0	-	-
C6	-	-	-	-	PT6B	0	С	-
D6	-	-	-	-	PT6A	0	Т	-
C5	-	-	-	-	PT5B	0	С	-
C4	-	-	-	-	PT5A	0	Т	-
F6	-	-	-	-	PT4B	0	С	-
E6	-	-	-	-	PT4A	0	Т	-
-	GNDIO0	0	-	-	GNDIO0	0	-	-
E4	-	-	-	-	PT3B	0	-	-
E5	CFG0	0	-	-	CFG0	0	-	-
D4	CFG1	0	-	-	CFG1	0	-	-
D5	DONE	0	-	-	DONE	0	-	-
A1	GND	-	-	-	GND	-	-	-
A2	GND	-	-	-	GND	-	-	-
A21	GND	-	-	-	GND	-	-	-
A22	GND	-	-	-	GND	-	-	-
AA1	GND	-	-	-	GND	-	-	-
AA22	GND	-	-	-	GND	-	-	-
AB1	GND	-	-	-	GND	-	-	-
AB2	GND	-	-	-	GND	-	-	-
AB21	GND	-	-	-	GND	-	-	-
AB22	GND	-	-	-	GND	-	-	-
B1	GND	-	-	-	GND	-	-	-
B22	GND	-	-	-	GND	-	-	-
H14	GND	-	-	-	GND	-	-	-
H9	GND	-	-	-	GND	-	-	-
J10	GND	-	-	-	GND	-	-	-
J11	GND	-	-	-	GND	-	-	-
J12	GND	-	-	-	GND	-	-	-
J13	GND	-	-	-	GND	-	-	-
J14	GND	-	-	-	GND	-	-	-

			-	-			
Part Number	I/Os	Voltage	Grade	Package	Pins	Temp.	LUTs
LFXP20E-3F484C	340	1.2V	-3	fpBGA	484	COM	19.7K
LFXP20E-4F484C	340	1.2V	-4	fpBGA	484	COM	19.7K
LFXP20E-5F484C	340	1.2V	-5	fpBGA	484	COM	19.7K
LFXP20E-3F388C	268	1.2V	-3	fpBGA	388	COM	19.7K
LFXP20E-4F388C	268	1.2V	-4	fpBGA	388	COM	19.7K
LFXP20E-5F388C	268	1.2V	-5	fpBGA	388	COM	19.7K
LFXP20E-3F256C	188	1.2V	-3	fpBGA	256	COM	19.7K
LFXP20E-4F256C	188	1.2V	-4	fpBGA	256	COM	19.7K
LFXP20E-5F256C	188	1.2V	-5	fpBGA	256	COM	19.7K

Commercial (Cont.)

Industrial

Part Number	l/Os	Voltage	Grade	Package	Pins	Temp.	LUTs
LFXP3C-3Q208I	136	1.8/2.5/3.3V	-3	PQFP	208	IND	3.1K
LFXP3C-4Q208I	136	1.8/2.5/3.3V	-4	PQFP	208	IND	3.1K
LFXP3C-3T144I	100	1.8/2.5/3.3V	-3	TQFP	144	IND	3.1K
LFXP3C-4T144I	100	1.8/2.5/3.3V	-4	TQFP	144	IND	3.1K
LFXP3C-3T100I	62	1.8/2.5/3.3V	-3	TQFP	100	IND	3.1K
LFXP3C-4T100I	62	1.8/2.5/3.3V	-4	TQFP	100	IND	3.1K

Part Number	l/Os	Voltage	Grade	Package	Pins	Temp.	LUTs
LFXP6C-3F256I	188	1.8/2.5/3.3V	-3	fpBGA	256	IND	5.8K
LFXP6C-4F256I	188	1.8/2.5/3.3V	-4	fpBGA	256	IND	5.8K
LFXP6C-3Q208I	142	1.8/2.5/3.3V	-3	PQFP	208	IND	5.8K
LFXP6C-4Q208I	142	1.8/2.5/3.3V	-4	PQFP	208	IND	5.8K
LFXP6C-3T144I	100	1.8/2.5/3.3V	-3	TQFP	144	IND	5.8K
LFXP6C-4T144I	100	1.8/2.5/3.3V	-4	TQFP	144	IND	5.8K

Part Number	l/Os	Voltage	Grade	Package	Pins	Temp.	LUTs
LFXP10C-3F388I	244	1.8/2.5/3.3V	-3	fpBGA	388	IND	9.7K
LFXP10C-4F388I	244	1.8/2.5/3.3V	-4	fpBGA	388	IND	9.7K
LFXP10C-3F256I	188	1.8/2.5/3.3V	-3	fpBGA	256	IND	9.7K
LFXP10C-4F256I	188	1.8/2.5/3.3V	-4	fpBGA	256	IND	9.7K