

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	-
Number of Logic Elements/Cells	6000
Total RAM Bits	73728
Number of I/O	100
Number of Gates	-
Voltage - Supply	1.71V ~ 3.465V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	144-LQFP
Supplier Device Package	144-TQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lfxp6c-4tn144c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Function	Туре	Signal Names	Description
Input	Data signal	A0, B0, C0, D0	Inputs to LUT4
Input	Data signal	A1, B1, C1, D1	Inputs to LUT4
Input	Multi-purpose	MO	Multipurpose Input
Input	Multi-purpose	M1	Multipurpose Input
Input	Control signal	CE	Clock Enable
Input	Control signal	LSR	Local Set/Reset
Input	Control signal	CLK	System Clock
Input	Inter-PFU signal	FCIN	Fast Carry In ¹
Output	Data signals	F0, F1	LUT4 output register bypass signals
Output	Data signals	Q0, Q1	Register Outputs
Output	Data signals	OFX0	Output of a LUT5 MUX
Output	Data signals	OFX1	Output of a LUT6, LUT7, LUT8 ² MUX depending on the slice
Output	Inter-PFU signal	FCO	For the right most PFU the fast carry chain output ¹

Table 2-1. Slice Signal Descriptions

1. See Figure 2-2 for connection details.

2. Requires two PFUs.

Modes of Operation

Each Slice is capable of four modes of operation: Logic, Ripple, RAM and ROM. The Slice in the PFF is capable of all modes except RAM. Table 2-2 lists the modes and the capability of the Slice blocks.

Table 2-2. Slice Modes

	Logic	Ripple	RAM	ROM
PFU Slice	LUT 4x2 or LUT 5x1	2-bit Arithmetic Unit	SP 16x2	ROM 16x1 x 2
PFF Slice	LUT 4x2 or LUT 5x1	2-bit Arithmetic Unit	N/A	ROM 16x1 x 2

Logic Mode: In this mode, the LUTs in each Slice are configured as 4-input combinatorial lookup tables. A LUT4 can have 16 possible input combinations. Any logic function with four inputs can be generated by programming this lookup table. Since there are two LUT4s per Slice, a LUT5 can be constructed within one Slice. Larger lookup tables such as LUT6, LUT7 and LUT8 can be constructed by concatenating other Slices.

Ripple Mode: Ripple mode allows the efficient implementation of small arithmetic functions. In ripple mode, the following functions can be implemented by each Slice:

- Addition 2-bit
- Subtraction 2-bit
- Add/Subtract 2-bit using dynamic control
- Up counter 2-bit
- Down counter 2-bit
- Ripple mode multiplier building block
- Comparator functions of A and B inputs
 - A greater-than-or-equal-to B
 - A not-equal-to B
 - A less-than-or-equal-to B

Two additional signals: Carry Generate and Carry Propagate are generated per Slice in this mode, allowing fast arithmetic functions to be constructed by concatenating Slices.

RAM Mode: In this mode, distributed RAM can be constructed using each LUT block as a 16x1-bit memory. Through the combination of LUTs and Slices, a variety of different memories can be constructed.

Lattice Semiconductor

Figure 2-8. Per Quadrant Secondary Clock Selection

Figure 2-9. Slice Clock Selection

sysCLOCK Phase Locked Loops (PLLs)

The PLL clock input, from pin or routing, feeds into an input clock divider. There are three sources of feedback signals to the feedback divider: from CLKOP (PLL internal), from clock net (CLKOP or CLKOS) or from a user clock (PIN or logic). There is a PLL_LOCK signal to indicate that VCO has locked on to the input clock signal. Figure 2-10 shows the sysCLOCK PLL diagram.

The setup and hold times of the device can be improved by programming a delay in the feedback or input path of the PLL which will advance or delay the output clock with reference to the input clock. This delay can be either programmed during configuration or can be adjusted dynamically. In dynamic mode, the PLL may lose lock after adjustment and not relock until the t_{LOCK} parameter has been satisfied. Additionally, the phase and duty cycle block allows the user to adjust the phase and duty cycle of the CLKOS output.

The sysCLOCK PLLs provide the ability to synthesize clock frequencies. Each PLL has four dividers associated with it: input clock divider, feedback divider, post scalar divider and secondary clock divider. The input clock divider is used to divide the input clock signal, while the feedback divider is used to multiply the input clock signal. The post scalar divider allows the VCO to operate at higher frequencies than the clock output, thereby increasing the frequency range. The secondary divider is used to derive lower frequency outputs.

Figure 2-15. Memory Core Reset

For further information on sysMEM EBR block, see the details of additional technical documentation at the end of this data sheet.

EBR Asynchronous Reset

EBR asynchronous reset or GSR (if used) can only be applied if all clock enables are low for a clock cycle before the reset is applied and released a clock cycle after the reset is released, as shown in Figure 2-16. The GSR input to the EBR is always asynchronous.

Figure 2-16. EBR Asynchronous Reset (Including GSR) Timing Diagram

Reset	
Clock	
Clock Enable	

If all clock enables remain enabled, the EBR asynchronous reset or GSR may only be applied and released after the EBR read and write clock inputs are in a steady state condition for a minimum of $1/f_{MAX}$ (EBR clock). The reset release must adhere to the EBR synchronous reset setup time before the next active read or write clock edge.

If an EBR is pre-loaded during configuration, the GSR input must be disabled or the release of the GSR during device Wake Up must occur before the release of the device I/Os becoming active.

These instructions apply to all EBR RAM and ROM implementations.

Note that there are no reset restrictions if the EBR synchronous reset is used and the EBR GSR input is disabled.

Programmable I/O Cells (PICs)

Each PIC contains two PIOs connected to their respective sysIO Buffers which are then connected to the PADs as shown in Figure 2-17. The PIO Block supplies the output data (DO) and the Tri-state control signal (TO) to sysIO buffer, and receives input from the buffer.

Figure 2-23. Output Register Block

*Latch is transparent when input is low.

Figure 2-24. ODDRXB Primitive

Tristate Register Block

The tristate register block provides the ability to register tri-state control signals from the core of the device before they are passed to the sysIO buffers. The block contains a register for SDR operation and an additional latch for DDR operation. Figure 2-25 shows the diagram of the Tristate Register Block.

In SDR mode, ONEG1 feeds one of the flip-flops that then feeds the output. The flip-flop can be configured a Dtype or latch. In DDR mode, ONEG1 is fed into one register on the positive edge of the clock and OPOS1 is latched. A multiplexer running off the same clock selects the correct register for feeding to the output (D0).

Figure 2-26. DQS Local Bus

Figure 2-27. DLL Calibration Bus and DQS/DQS Transition Distribution

Polarity Control Logic

In a typical DDR Memory interface design, the phase relation between the incoming delayed DQS strobe and the internal system Clock (during the READ cycle) is unknown.

The LatticeXP family contains dedicated circuits to transfer data between these domains. To prevent setup and hold violations at the domain transfer between DQS (delayed) and the system Clock a clock polarity selector is used. This changes the edge on which the data is registered in the synchronizing registers in the input register block. This requires evaluation at the start of the each READ cycle for the correct clock polarity.

Prior to the READ operation in DDR memories DQS is in tristate (pulled by termination). The DDR memory device drives DQS low at the start of the preamble state. A dedicated circuit detects this transition. This signal is used to control the polarity of the clock to the synchronizing registers.

sysIO Buffer

Each I/O is associated with a flexible buffer referred to as a sysIO buffer. These buffers are arranged around the periphery of the device in eight groups referred to as Banks. The sysIO buffers allow users to implement the wide variety of standards that are found in today's systems including LVCMOS, SSTL, HSTL, LVDS and LVPECL.

sysIO Buffer Banks

LatticeXP devices have eight sysIO buffer banks; each is capable of supporting multiple I/O standards. Each sysIO bank has its own I/O supply voltage (V_{CCIO}), and two voltage references V_{REF1} and V_{REF2} resources allowing each bank to be completely independent from each other. Figure 2-28 shows the eight banks and their associated supplies.

In the LatticeXP devices, single-ended output buffers and ratioed input buffers (LVTTL, LVCMOS, PCI and PCI-X) are powered using V_{CCIO} . LVTTL, LVCMOS33, LVCMOS25 and LVCMOS12 can also be set as a fixed threshold input independent of V_{CCIO} . In addition to the bank V_{CCIO} supplies, the LatticeXP devices have a V_{CC} core logic power supply, and a V_{CCAUX} supply that power all differential and referenced buffers.

Each bank can support up to two separate VREF voltages, VREF1 and VREF2 that set the threshold for the referenced input buffers. In the LatticeXP devices, a dedicated pin in a bank can be configured to be a reference voltage supply pin. Each I/O is individually configurable based on the bank's supply and reference voltages.

master serial clock is 2.5MHz. Table 2-10 lists all the available Master Serial Clock frequencies. When a different Master Serial Clock is selected during the design process, the following sequence takes place:

- 1. User selects a different Master Serial Clock frequency for configuration.
- 2. During configuration the device starts with the default (2.5MHz) Master Serial Clock frequency.
- 3. The clock configuration settings are contained in the early configuration bit stream.
- 4. The Master Serial Clock frequency changes to the selected frequency once the clock configuration bits are received.

For further information on the use of this oscillator for configuration, please see details of additional technical documentation at the end of this data sheet.

Table 2-10. Selectable Master Serial Clock (CCLK) Frequencies During Configuration

CCLK (MHz)	CCLK (MHz)	CCLK (MHz)
2.5 ¹	13	45
4.3	15	51
5.4	20	55
6.9	26	60
8.1	30	130
9.2	34	—
10.0	41	—
1. Default	•	•

Density Shifting

The LatticeXP family has been designed to ensure that different density devices in the same package have the same pin-out. Furthermore, the architecture ensures a high success rate when performing design migration from lower density parts to higher density parts. In many cases, it is also possible to shift a lower utilization design targeted for a high-density device to a lower density device. However, the exact details of the final resource utilization will impact the likely success in each case.

Programming and Erase Flash Supply Current^{1, 2, 3, 4, 5}

Symbol	Parameter	Device	Typ. ⁶	Units
		LFXP3E	30	mA
		LFXP6E	40	mA
		LFXP10E	50	mA
		LFXP15E	60	mA
1	Coro Powor Supply	LFXP20E	70	mA
CC		LFXP3C	50	mA
		LFXP6C	60	mA
		LFXP10C	90	mA
		LFXP15C	100	mA
		LFXP20C	110	mA
		LFXP3E/C	50	mA
		LFXP6E/C	60	mA
ICCAUX	Auxiliary Power Supply $V_{COMUN} = 3.3V$	LFXP10E/C	90	mA
	CCAUX CICL	LFXP15E/C	110	mA
		LFXP20E/C	130	mA
ICCJ	V _{CCJ} Power Supply ⁷	All	2	mA

1. For further information on supply current, please see details of additional technical documentation at the end of this data sheet.

2. Assumes all outputs are tristated, all inputs are configured as LVCMOS and held at the $V_{\mbox{CCIO}}$ or GND.

3. Blank user pattern; typical Flash pattern.

4. Bypass or decoupling capacitor across the supply.

5. JTAG programming is at 1MHz.

6. $T_A=25^{\circ}C$, power supplies at nominal voltage.

7. When programming via JTAG.

Flash Download Time

Symbol	Parar	neter	Min.	Тур.	Max.	Units
t _{REFRESH}		LFXP3	—	1.1	1.7	ms
	PROGRAMN Low-to- High. Transition to Done High.	LFXP6	—	1.4	2.0	ms
		LFXP10	—	0.9	1.5	ms
		LFXP15	—	1.1	1.7	ms
		LFXP20	—	1.3	1.9	ms

JTAG Port Timing Specifications

Over Recommended Operating Conditions

Symbol	Parameter	Min.	Max.	Units
f _{MAX}		_	25	MHz
t _{BTCP}	TCK [BSCAN] clock pulse width	40	—	ns
t _{втсрн}	TCK [BSCAN] clock pulse width high	20	_	ns
t _{BTCPL}	TCK [BSCAN] clock pulse width low	20	_	ns
t _{BTS}	TCK [BSCAN] setup time	10	—	ns
t _{BTH}	TCK [BSCAN] hold time	8	—	ns
t _{BTRF}	TCK [BSCAN] rise/fall time	50	—	ns
t _{втсо}	TAP controller falling edge of clock to valid output		10	ns
t _{BTCODIS}	TAP controller falling edge of clock to valid disable		10	ns
t _{BTCOEN}	TAP controller falling edge of clock to valid enable		10	ns
t _{BTCRS}	BSCAN test capture register setup time	8		ns
t _{BTCRH}	BSCAN test capture register hold time	25	—	ns
t _{BUTCO}	BSCAN test update register, falling edge of clock to valid output	_	25	ns
t _{BTUODIS}	BSCAN test update register, falling edge of clock to valid disable	_	25	ns
t _{BTUPOEN}	BSCAN test update register, falling edge of clock to valid enable	—	25	ns
Timing v.F0.11	•	•	•	

Figure 3-12. JTAG Port Timing Waveforms

LFXP3 & LFXP6 Logic Signal Connections: 144 TQFP (Cont.)

Din	LFXP3				LFXP6			
Number	Pin Function	Bank	Differential	Dual Function	Pin Function	Bank	Differential	Dual Function
93	PR9A	2	Т	PCLKT2_0	PR12A	2	Т	PCLKT2_0
94	PR8B	2	С	RUM0_PLLC_IN_A	PR8B	2	С	RUM0_PLLC_IN_A
95	PR8A	2	Т	RUM0_PLLT_IN_A	PR8A	2	Т	RUM0_PLLT_IN_A
96	PR7B	2	C ³	-	PR7B	2	C ³	-
97	PR7A	2	T ³	DQS	PR7A	2	T ³	DQS
98	VCCIO2	2	-	-	VCCIO2	2	-	-
99	PR6B	2	-	VREF1_2	PR6B	2	-	VREF1_2
100	PR5A	2	-	VREF2_2	PR5A	2	-	VREF2_2
101	GNDIO2	2	-	-	GNDIO2	2	-	-
102	PR3B	2	С	RUM0_PLLC_FB_A	PR3B	2	С	RUM0_PLLC_FB_A
103	PR3A	2	Т	RUM0_PLLT_FB_A	PR3A	2	Т	RUM0_PLLT_FB_A
104	PR2B	2	C ³	-	PR2B	2	C ³	-
105	PR2A	2	T ³	-	PR2A	2	T ³	-
106	VCCAUX	-	-	-	VCCAUX	-	-	-
107	TDO	-	-	-	TDO	-	-	-
108	VCCJ	-	-	-	VCCJ	-	-	-
109	TDI	-	-	-	TDI	-	-	-
110	TMS	-	-	-	TMS	-	-	-
111	TCK	-	-	-	TCK	-	-	-
112	VCC	-	-	-	VCC	-	-	-
113	PT25A	1	-	VREF1_1	PT28A	1	-	VREF1_1
114	PT24A	1	-	-	PT27A	1	-	-
115	PT23A	1	-	D0	PT26A	1	-	D0
116	PT22B	1	С	D1	PT25B	1	C	D1
117	PT22A	1	Т	VREF2_1	PT25A	1	Т	VREF2_1
118	PT21A	1	-	D2	PT24A	1	-	D2
119	VCCIO1	1	-	-	VCCI01	1	-	-
120	PT20B	1	-	D3	PT23B	1	-	D3
121	GNDIO1	1	-	-	GNDIO1	1	-	-
122	PT17A	1	-	D4	PT20A	1	-	D4
123	PT16A	1	-	D5	PT19A	1	-	D5
124	PT15B	1	С	D6	PT18B	1	С	D6
125	PT15A	1	Т	-	PT18A	1	Т	-
126	PT14B	1	-	D7	PT17B	1	-	D7
127	GND	-	-	-	GND	-	-	-
128	PT13B	0	С	BUSY	PT16B	0	C	BUSY
129	PT13A	0	Т	CS1N	PT16A	0	Т	CS1N
130	PT12B	0	С	PCLKC0_0	PT15B	0	C	PCLKC0_0
131	PT12A	0	Т	PCLKT0_0	PT15A	0	Т	PCLKT0_0
132	PT11B	0	С	-	PT14B	0	C	-
133	VCCIO0	0	-	-	VCCIO0	0	-	-
134	PT11A	0	Т	DQS	PT14A	0	Т	DQS
135	PT9A	0	-	DOUT	PT12A	0	-	DOUT
136	GNDIO0	0	-	-	GNDIO0	0	-	-
137	PT8A	0	-	WRITEN	PT11A	0	-	WRITEN
138	PT7A	0	-	VREF1_0	PT10A	0	-	VREF1_0

LFXP3 & LFXP6 Logic Signal Connections: 208 PQFP (Cont.)

Din			LFXP3		LFXP6			
Number	Pin Function	Bank	Differential	Dual Function	Pin Function	Bank	Differential	Dual Function
185	PT13A	0	Т	CS1N	PT16A	0	Т	CS1N
186	PT12B	0	С	PCLKC0_0	PT15B	0	С	PCLKC0_0
187	PT12A	0	Т	PCLKT0_0	PT15A	0	Т	PCLKT0_0
188	PT11B	0	С	-	PT14B	0	С	-
189	VCCIO0	0	-	-	VCCIO0	0	-	-
190	PT11A	0	Т	DQS	PT14A	0	Т	DQS
191	PT10B	0	-	-	PT13B	0	-	-
192	PT9A	0	-	DOUT	PT12A	0	-	DOUT
193	PT8B	0	С	-	PT11B	0	С	-
194	GNDIO0	0	-	-	GNDIO0	0	-	-
195	PT8A	0	Т	WRITEN	PT11A	0	Т	WRITEN
196	PT7B	0	С	-	PT10B	0	С	-
197	PT7A	0	Т	VREF1_0	PT10A	0	Т	VREF1_0
198	PT6B	0	С	-	PT9B	0	С	-
199	VCCIO0	0	-	-	VCCIO0	0	-	-
200	PT6A	0	Т	DI	PT9A	0	Т	DI
201	PT5B	0	С	-	PT8B	0	С	-
202	PT5A	0	Т	CSN	PT8A	0	Т	CSN
203	PT4B	0	С	-	PT7B	0	С	-
204	PT4A	0	Т	-	PT7A	0	Т	-
205	PT3B	0	-	VREF2_0	PT6B	0	-	VREF2_0
206	PT2B	0	-	-	PT5B	0	-	-
207	GND	-	-	-	GND	-	-	-
208	CFG0	0	-	-	CFG0	0	-	-

Applies to LFXP "C" only.
 Applies to LFXP "E" only.

3. Supports dedicated LVDS outputs.

LFXP6 & LFXP10 Logic Signal Connections: 256 fpBGA (Cont.)

	LFXP6			LFXP10				
Ball Number	Ball Function	Bank	Differential	Dual Function	Ball Function	Bank	Differential	Dual Function
L15	PR21B	3	C ³	-	PR28B	3	C ³	-
L14	PR21A	3	T ³	-	PR28A	3	T ³	-
-	GNDIO3	3	-	-	GNDIO3	3	-	-
L12	PR17B	3	С	-	PR26A	3	-	-
M16	PR20B	3	С	-	PR25B	3	С	RLM0_PLLC_IN_A
N16	PR20A	3	Т	-	PR25A	3	Т	RLM0_PLLT_IN_A
K14	PR19B	3	C ³	-	PR24B	3	C ³	-
K15	PR19A	3	T ³	-	PR24A	3	T ³	DQS
K12	PR17A	3	Т	-	PR23B	3	-	-
K13	PR22A	3	-	VREF2_3	PR22A	3	-	VREF2_3
-	GNDIO3	3	-	-	GNDIO3	3	-	-
L16	PR18B	3	C ³	-	PR21B	3	C ³	-
K16	PR18A	3	T ³	-	PR21A	3	T ³	-
J15	PR16B	3	C ³	-	PR19B	3	C ³	-
J14	PR16A	3	T ³	-	PR19A	3	T ³	-
J13	GNDP1	-	-	-	GNDP1	-	-	-
J12	VCCP1	-	-	-	VCCP1	-	-	-
-	GNDIO2	2	-	-	GNDIO2	2	-	-
J16	PR12B	2	С	PCLKC2_0	PR17B	2	С	PCLKC2_0
H16	PR12A	2	Т	PCLKT2_0	PR17A	2	Т	PCLKT2_0
H13	PR13B	2	C ³	-	PR16B	2	C ³	-
H12	PR13A	2	T ³	-	PR16A	2	T ³	DQS
H15	PR2B	2	C ³	-	PR15B	2	-	-
H14	PR6B	2	-	VREF1_2	PR14A	2	-	VREF1_2
-	GNDIO2	2	-	-	GNDIO2	2	-	-
G15	PR11B	2	C ³	-	PR13B	2	C ³	-
G14	PR11A	2	T ³	-	PR13A	2	T ³	-
G16	PR8B	2	С	RUM0_PLLC_IN_A	PR12B	2	С	RUM0_PLLC_IN_A
F16	PR8A	2	Т	RUM0_PLLT_IN_A	PR12A	2	Т	RUM0_PLLT_IN_A
G13	PR2A	2	T ³	-	PR11B	2	-	-
-	GNDIO2	2	-	-	GNDIO2	2	-	-
G12	PR9B	2	C ³	-	PR8B	2	С	-
F13	PR9A	2	T ³	-	PR8A	2	Т	-
B16	PR7B	2	C ³	-	PR7B	2	C ³	-
C16	PR7A	2	T ³	DQS	PR7A	2	T ³	DQS
F15	PR14A	2	-	-	PR6B	2	-	-
E15	PR5A	2	-	VREF2_2	PR5A	2	-	VREF2_2
-	GNDIO2	2	-	-	GNDIO2	2	-	-
F14	PR4B	2	C ³	-	PR4B	2	C ³	-
E14	PR4A	2	T ³	-	PR4A	2	T ³	-
D15	PR3B	2	С	RUM0_PLLC_FB_A	PR3B	2	С	RUM0_PLLC_FB_A
C15	PR3A	2	Т	RUM0_PLLT_FB_A	PR3A	2	Т	RUM0_PLLT_FB_A

LFXP6 & LFXP10 Logic Signal Connections: 256 fpBGA (Cont.)

	LFXP6					LFXP10			
Ball Number	Ball Function	Bank	Differential	Dual Function	Ball Function	Bank	Differential	Dual Function	
E8	PT13B	0	-	-	PT17B	0	-	-	
D8	PT12A	0	-	DOUT	PT16A	0	-	DOUT	
A6	PT11B	0	С	-	PT15B	0	С	-	
-	GNDIO0	0	-	-	GNDIO0	0	-	-	
C6	PT11A	0	Т	WRITEN	PT15A	0	Т	WRITEN	
E7	PT10B	0	С	-	PT14B	0	С	-	
D7	PT10A	0	Т	VREF1_0	PT14A	0	Т	VREF1_0	
A5	PT9B	0	С	-	PT13B	0	С	-	
B5	PT9A	0	Т	DI	PT13A	0	Т	DI	
A4	PT8B	0	С	-	PT12B	0	C	-	
B6	PT8A	0	Т	CSN	PT12A	0	Т	CSN	
E6	PT7B	0	С	-	PT11B	0	С	-	
-	GNDIO0	0	-	-	GNDIO0	0	-	-	
D6	PT7A	0	Т	-	PT11A	0	Т	-	
D5	PT6B	0	С	VREF2_0	PT10B	0	С	VREF2_0	
A3	PT6A	0	Т	DQS	PT10A	0	Т	DQS	
B3	PT5B	0	-	-	PT9B	0	-	-	
B2	PT4A	0	-	-	PT8A	0	-	-	
A2	PT3B	0	С	-	PT7B	0	С	-	
B1	PT3A	0	Т	-	PT7A	0	Т	-	
F5	PT2B	0	С	-	PT6B	0	С	-	
-	GNDIO0	0	-	-	GNDIO0	0	-	-	
C5	PT2A	0	Т	-	PT6A	0	Т	-	
C4	CFG0	0	-	-	CFG0	0	-	-	
B4	CFG1	0	-	-	CFG1	0	-	-	
C3	DONE	0	-	-	DONE	0	-	-	
A1	GND	-	-	-	GND	-	-	-	
A16	GND	-	-	-	GND	-	-	-	
F11	GND	-	-	-	GND	-	-	-	
F6	GND	-	-	-	GND	-	-	-	
G10	GND	-	-	-	GND	-	-	-	
G7	GND	-	-	-	GND	-	-	-	
G8	GND	-	-	-	GND	-	-	-	
G9	GND	-	-	-	GND	-	-	-	
H10	GND	-	-	-	GND	-	-	-	
H7	GND	-	-	-	GND	-	-	-	
H8	GND	-	-	-	GND	-	-	-	
H9	GND	-	-	-	GND	-	-	-	
J10	GND	-	-	-	GND	-	-	-	
J7	GND	-	-	-	GND	-	-	-	
J8	GND	-	-	-	GND	-	-	-	
J9	GND	-	-	-	GND	-	-	-	

LFXP6 & LFXP10 Logic Signal Connections: 256 fpBGA (Cont.)

			LFXP6		LFXP10				
Ball Number	Ball Function	Bank	Differential	Dual Function	Ball Function	Bank	Differential	Dual Function	
K10	GND	-	-	-	GND	-	-	-	
K7	GND	-	-	-	GND	-	-	-	
K8	GND	-	-	-	GND	-	-	-	
K9	GND	-	-	-	GND	-	-	-	
L11	GND	-	-	-	GND	-	-	-	
L6	GND	-	-	-	GND	-	-	-	
T1	GND	-	-	-	GND	-	-	-	
T16	GND	-	-	-	GND	-	-	-	
D13	VCC	-	-	-	VCC	-	-	-	
D4	VCC	-	-	-	VCC	-	-	-	
E12	VCC	-	-	-	VCC	-	-	-	
E5	VCC	-	-	-	VCC	-	-	-	
M12	VCC	-	-	-	VCC	-	-	-	
M5	VCC	-	-	-	VCC	-	-	-	
N13	VCC	-	-	-	VCC	-	-	-	
N4	VCC	-	-	-	VCC	-	-	-	
E13	VCCAUX	-	-	-	VCCAUX	-	-	-	
E4	VCCAUX	-	-	-	VCCAUX	-	-	-	
M13	VCCAUX	-	-	-	VCCAUX	-	-	-	
M4	VCCAUX	-	-	-	VCCAUX	-	-	-	
F7	VCCIO0	0	-	-	VCCIO0	0	-	-	
F8	VCCIO0	0	-	-	VCCIO0	0	-	-	
F10	VCCIO1	1	-	-	VCCIO1	1	-	-	
F9	VCCIO1	1	-	-	VCCIO1	1	-	-	
G11	VCCIO2	2	-	-	VCCIO2	2	-	-	
H11	VCCIO2	2	-	-	VCCIO2	2	-	-	
J11	VCCIO3	3	-	-	VCCIO3	3	-	-	
K11	VCCIO3	3	-	-	VCCIO3	3	-	-	
L10	VCCIO4	4	-	-	VCCIO4	4	-	-	
L9	VCCIO4	4	-	-	VCCIO4	4	-	-	
L7	VCCIO5	5	-	-	VCCIO5	5	-	-	
L8	VCCIO5	5	-	-	VCCIO5	5	-	-	
J6	VCCIO6	6	-	-	VCCIO6	6	-	-	
K6	VCCIO6	6	-	-	VCCIO6	6	-	-	
G6	VCCIO7	7	-	-	VCCIO7	7	-	-	
H6	VCCI07	7	-	-	VCCIO7	7	-	-	

1. Applies to LFXP "C" only.

2. Applies to LFXP "E" only.

3. Supports dedicated LVDS outputs.

LFXP10, LFXP15 & LFXP20 Logic Signal Connections: 388 fpBGA (Cont.)

)	LFXP15				LFXP20					
Ball Number	Ball Function	Bank	Diff.	Dual Function	Ball Function	Bank	Diff.	Dual Function	Ball Function	Bank	Diff.	Dual Function
AA20	PB36B	4	С	-	PB41B	4	С	-	PB45B	4	С	-
AB21	PB37A	4	Т	-	PB42A	4	Т	-	PB46A	4	Т	-
AA21	PB37B	4	С	-	PB42B	4	С	-	PB46B	4	С	-
AA22	PB38A	4	Т	-	PB43A	4	Т	-	PB47A	4	Т	-
Y21	PB38B	4	С	-	PB43B	4	С	-	PB47B	4	С	-
-	GNDIO4	4	-	-	GNDIO4	4	-	-	GNDIO4	4	-	-
W16	PB39A	4	-	-	PB44A	4	Т	-	PB48A	4	Т	-
W17	-	-	-	-	PB44B	4	С	-	PB48B	4	С	-
Y15	-	-	-	-	PB45A	4	-	-	PB49A	4	-	-
Y16	-	-	-	-	PB46B	4	-	-	PB50B	4	-	-
W19	-	-	-	-	PB47A	4	Т	DQS	PB51A	4	Т	DQS
W18	-	-	-	-	PB47B	4	С	-	PB51B	4	С	-
W20	-	-	-	-	PB48A	4	-	-	PB52A	4	-	-
-	GNDIO4	4	-	-	GNDIO4	4	-	-	GNDIO4	4	-	-
-	GNDIO4	4	-	-	GNDIO4	4	-	-	GNDIO4	4	-	-
-	GNDIO3	3	-	-	GNDIO3	3	-	-	GNDIO3	3	-	-
T20	PR35B	3	C ³	-	PR39B	3	C ³	-	PR43B	3	C ³	-
T19	PR35A	3	T ³	-	PR39A	3	T ³	-	PR43A	3	T ³	-
-	GNDIO3	3	-	-	GNDIO3	3	-	-	GNDIO3	3	-	-
U19	PR34B	3	С	RLM0_PLLC_FB_A	PR38B	3	С	RLM0_PLLC_FB_A	PR42B	3	С	RLM0_PLLC_FB_A
U20	PR34A	3	Т	RLM0_PLLT_FB_A	PR38A	3	Т	RLM0_PLLT_FB_A	PR42A	3	Т	RLM0_PLLT_FB_A
V19	PR33B	3	C ³	-	PR37B	3	C ³	-	PR41B	3	C ³	-
V20	PR33A	3	T ³	DQS	PR37A	3	T ³	DQS	PR41A	3	T ³	DQS
R19	PR32B	3	-	-	PR36B	3	-	-	PR40B	3	-	-
R20	PR31A	3	-	VREF1_3	PR35A	3	-	VREF1_3	PR39A	3	-	VREF1_3
W21	PR30B	3	C ³	-	PR34B	3	C ³	-	PR38B	3	C ³	-
Y22	PR30A	3	T ³	-	PR34A	3	T ³	-	PR38A	3	Т³	-
-	GNDIO3	3	-	-	GNDIO3	3	-	-	GNDIO3	3	-	-
P19	PR29B	3	С	-	PR33B	3	С	-	PR37B	3	С	-
P20	PR29A	3	Т	-	PR33A	3	Т	-	PR37A	3	Т	-
V21	PR28B	3	C ³	-	PR32B	3	C ³	-	PR36B	3	C ³	-
W22	PR28A	3	T ³	-	PR32A	3	T ³	-	PR36A	3	Т³	-
U21	PR26B	3	C ³	-	PR30B	3	C ³	-	PR34B	3	C ³	-
V22	PR26A	3	T ³	-	PR30A	3	T ³	-	PR34A	3	T ³	-
T21	PR25B	3	С	RLM0_PLLC_IN_A	PR29B	3	С	RLM0_PLLC_IN_A	PR33B	3	С	RLM0_PLLC_IN_A
U22	PR25A	3	т	RLM0_PLLT_IN_A	PR29A	3	Т	RLM0_PLLT_IN_A	PR33A	3	Т	RLM0_PLLT_IN_A
-	GNDIO3	3	-		GNDIO3	3	-		GNDIO3	3	-	
R21	PR24B	3	C ³	-	PR28B	3	C ³	-	PR32B	3	C ³	-
T22	PR24A	3	T ³	DQS	PR28A	3	T ³	DQS	PR32A	3	T ³	DQS
N19	PR23B	3	-	-	PR27B	3	-	-	PR31B	3	-	-
N20	PR22A	3	-	VREF2 3	PR26A	3	-	VREF2 3	PR30A	3	-	VREF2 3
B22	PR21B	3	C ³	-	PR25B	3	C ³	-	PR29B	3	C ³	-
P22	PR21A	3	T ³	-	PR25A	3	T ³	-	PR29A	3	T ³	-
P21	PR20B	3	С	_	PR24B	3	С	-	PR28B	3	С	-
N21	PR20A	3	T	-	PR24A	3	T	-	PR28A	3	T	-
	GNDIO3	3	<u>-</u>	_	GNDIO3	3	-	_	GNDIO3	3	-	-
M20	PR19B	3	C3	_	PB23B	3	C ³	-	PR27B	3	C ³	-
M19	PR19A	3	т ³	_	PR23A	3	T ³	_	PR27A	3	T ³	-
N22	GNDP1	-	<u>-</u>		GNDP1	-	-	_	GNDP1	-	-	-
1122	GINDET	<u> </u>	l -				-		GNDET		-	-

LFXP15 & LFXP20 Logic Signal Connections: 484 fpBGA (Cont.)

		LFXP15		LFXP20				
Ball Number	Ball Function	Bank	Differential	Dual Function	Ball Function	Bank	Differential	Dual Function
J21	PR20B	2	C ³	-	PR20B	2	C ³	-
J22	PR20A	2	T ³	DQS	PR20A	2	T ³	DQS
K18	PR19B	2	-	-	PR19B	2	-	-
K19	PR18A	2	-	VREF1_2	PR18A	2	-	VREF1_2
-	GNDIO2	2	-	-	GNDIO2	2	-	-
K21	PR17B	2	C ³	-	PR17B	2	C ³	-
K20	PR17A	2	T ³	-	PR17A	2	T ³	-
H21	PR16B	2	С	RUM0_PLLC_IN_A	PR16B	2	С	RUM0_PLLC_IN_A
H22	PR16A	2	Т	RUM0_PLLT_IN_A	PR16A	2	Т	RUM0_PLLT_IN_A
J20	PR15B	2	C ³	-	PR15B	2	C ³	-
J19	PR15A	2	T ³	-	PR15A	2	T ³	-
-	GNDIO2	2	-	-	GNDIO2	2	-	-
J17	PR13B	2	C ³	-	PR13B	2	C ³	-
J18	PR13A	2	T ³	-	PR13A	2	T ³	-
G21	PR12B	2	С	-	PR12B	2	С	-
G22	PR12A	2	Т	-	PR12A	2	Т	-
F21	PR11B	2	C ³	-	PR11B	2	C ³	-
F22	PR11A	2	T ³	DQS	PR11A	2	T ³	DQS
-	GNDIO2	2	-	-	GNDIO2	2	-	-
H20	PR10B	2	-	-	PR10B	2	-	-
H19	PR9A	2	-	VREF2_2	PR9A	2	-	VREF2_2
H17	PR8B	2	C ³	-	PR8B	2	C ³	-
H18	PR8A	2	T ³	-	PR8A	2	T ³	-
E21	PR7B	2	С	RUM0_PLLC_FB_A	PR7B	2	С	RUM0_PLLC_FB_A
E22	PR7A	2	Т	RUM0_PLLT_FB_A	PR7A	2	Т	RUM0_PLLT_FB_A
D21	PR6B	2	C ³	-	PR6B	2	C ³	-
D22	PR6A	2	T ³	-	PR6A	2	T ³	-
G20	PR5B	2	C ³	-	PR5B	2	C ³	-
G19	PR5A	2	T ³	-	PR5A	2	T ³	-
G17	PR4B	2	С	-	PR4B	2	С	-
G18	PR4A	2	Т	-	PR4A	2	Т	-
-	GNDIO2	2	-	-	GNDIO2	2	-	-
F18	PR3B	2	C ³	-	PR3B	2	C ³	-
F19	PR3A	2	T ³	-	PR3A	2	T ³	-
C22	PR2B	2	-	-	PR2B	2	-	-
F20	TDO	-	-	-	TDO	-	-	-
E20	VCCJ	-	-	-	VCCJ	-	-	-
D19	TDI	-	-	-	TDI	-	-	-
E19	TMS	- 1	-	-	TMS	-	-	-
D20	ТСК	-	-	-	ТСК	-	-	-
C20	-	-	-	-	PT56A	1	-	-
-	GNDIO1	1	-	-	GNDIO1	1	-	-
	-		1		-	1	1	1

LFXP15 & LFXP20 Logic Signal Connections: 484 fpBGA (Cont.)

			LFXP15		LFXP20				
Ball Number	Ball Function	Bank	Differential	Dual Function	Ball Function	Bank	Differential	Dual Function	
A14	PT30B	1	-	-	PT34B	1	-	-	
B14	PT29A	1	-	D4	PT33A	1	-	D4	
C12	PT28B	1	С	-	PT32B	1	С	-	
B12	PT28A	1	Т	D5	PT32A	1	Т	D5	
-	GNDIO1	1	-	-	GNDIO1	1	-	-	
D12	PT27B	1	С	D6	PT31B	1	С	D6	
E12	PT27A	1	Т	-	PT31A	1	Т	-	
A13	PT26B	1	С	D7	PT30B	1	С	D7	
A12	PT26A	1	Т	-	PT30A	1	Т	-	
A11	PT25B	0	С	BUSY	PT29B	0	С	BUSY	
-	GNDIO0	0	-	-	GNDIO0	0	-	-	
A10	PT25A	0	Т	CS1N	PT29A	0	Т	CS1N	
D11	PT24B	0	С	PCLKC0_0	PT28B	0	С	PCLKC0_0	
E11	PT24A	0	Т	PCLKT0_0	PT28A	0	Т	PCLKT0_0	
B11	PT23B	0	С	-	PT27B	0	С	-	
C11	PT23A	0	Т	DQS	PT27A	0	Т	DQS	
B9	PT22B	0	-	-	PT26B	0	-	-	
A9	PT21A	0	-	DOUT	PT25A	0	-	DOUT	
B8	PT20B	0	С	-	PT24B	0	С	-	
-	GNDIO0	0	-	-	GNDIO0	0	-	-	
A8	PT20A	0	Т	WRITEN	PT24A	0	Т	WRITEN	
E10	PT19B	0	С	-	PT23B	0	С	-	
D10	PT19A	0	Т	VREF1_0	PT23A	0	Т	VREF1_0	
C10	PT18B	0	С	-	PT22B	0	С	-	
B10	PT18A	0	Т	DI	PT22A	0	Т	DI	
B7	PT17B	0	С	-	PT21B	0	C	-	
A7	PT17A	0	Т	CSN	PT21A	0	Т	CSN	
C9	PT16B	0	С	-	PT20B	0	С	-	
D9	PT16A	0	Т	-	PT20A	0	Т	-	
B6	PT15B	0	С	VREF2_0	PT19B	0	C	VREF2_0	
A6	PT15A	0	Т	DQS	PT19A	0	Т	DQS	
F9	PT14B	0	-	-	PT18B	0	-	-	
E9	PT13A	0	-	-	PT17A	0	-	-	
-	GNDIO0	0	-	-	GNDIO0	0	-	-	
B5	PT12B	0	С	-	PT16B	0	С	-	
A5	PT12A	0	Т	-	PT16A	0	Т	-	
C8	PT11B	0	С	-	PT15B	0	С	-	
D8	PT11A	0	Т	-	PT15A	0	Т	-	
B4	PT10B	0	С	-	PT14B	0	С	-	
A4	PT10A	0	Т	-	PT14A	0	Т	-	
F8	PT9B	0	С	-	PT13B	0	С	-	
E8	PT9A	0	Т	-	PT13A	0	Т	-	

Thermal Management

Thermal management is recommended as part of any sound FPGA design methodology. To assess the thermal characteristics of a system, Lattice specifies a maximum allowable junction temperature in all device data sheets. Designers must complete a thermal analysis of their specific design to ensure that the device and package do not exceed the junction temperature limits. Refer to the Thermal Management document to find the device/package specific thermal values.

For Further Information

For further information regarding Thermal Management, refer to the following located on the Lattice website at <u>www.latticesemi.com</u>.

- Thermal Management document
- Technical Note TN1052 Power Estimation and Management for LatticeECP/EC and LatticeXP Devices
- Power Calculator tool included with Lattice's ispLEVER design tool, or as a standalone download from
 <u>www.latticesemi.com/software</u>

LatticeXP Family Data Sheet Ordering Information

December 2005

Data Sheet DS1001

Part Number Description

Ordering Information (Contact Factory for Specific Device Availability)

Note:pLatticeXP devices are dual marked. For example, the commercial speed grade LFXP10E-4F256C is also marked with industrial grade -3I (LFXP10E-3F256I). The commercial grade is one speed grade faster than the associated dual mark industrial grade. The slowest commercial speed grade does not have industrial markings. The markings appear as follows:

Lattice
LFXP10E- 4F256C-3I
Datecode

^{© 2005} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

LatticeXP Family Data Sheet Revision History

November 2007

Revision History

Data Sheet DS1001

Date	Version	Section	Change Summary
February 2005	01.0	_	Initial release.
April 2005	01.1	Architecture	EBR memory support section updated with clarification.
May 2005	01.2	Introduction	Added TransFR Reconfiguration to Features section.
		Architecture	Added TransFR section.
June 2005	01.3	Pinout Information	Added pinout information for LFXP3, LFXP6, LFXP15 and LFXP20.
July 2005	02.0	Introduction	Updated XP6, XP15 and XP20 EBR SRAM Bits and Block numbers.
		Architecture	Updated Per Quadrant Primary Clock Selection figure.
			Added Typical I/O Behavior During Power-up section.
			Updated Device Configuration section under Configuration and Testing.
		DC and Switching	Clarified Hot Socketing Specification
		Characteristics	Updated Supply Current (Standby) Table
			Updated Initialization Supply Current Table
			Added Programming and Erase Flash Supply Current table
			Added LVDS Emulation section. Updated LVDS25E Output Termination Example figure and LVDS25E DC Conditions table.
			Updated Differential LVPECL diagram and LVPECL DC Conditions table.
			Deleted 5V Tolerant Input Buffer section. Updated RSDS figure and RSDS DC Conditions table.
			Updated sysCONFIG Port Timing Specifications
			Updated JTAG Port Timing Specifications. Added Flash Download Time table.
		Pinout Information	Updated Signal Descriptions table.
			Updated Logic Signal Connections Dual Function column.
		Ordering Information	Added lead-free ordering part numbers.
July 2005	02.1	DC and Switching Characteristics	Clarification of Flash Programming Junction Temperature
August 2005	02.2	Introduction	Added Sleep Mode feature.
		Architecture	Added Sleep Mode section.
		DC and Switching	Added Sleep Mode Supply Current Table
		Characteristics	Added Sleep Mode Timing section
		Pinout Information	Added SLEEPN and TOE signal names, descriptions and footnotes.
			Added SLEEPN and TOE to pinout information and footnotes.
			Added footnote 3 to Logic Signal Connections tables for clarification on emulated LVDS output.
September 2005	03.0	Architecture	Added clarification of PCI clamp.
			Added clarification to SLEEPN Pin Characteristics section.
		DC and Switching Characteristics	DC Characteristics, added footnote 4 for clarification. Updated Supply Current (Sleep Mode), Supply Current (Standby), Initialization Supply Current, and Programming and Erase Flash Supply Current typical numbers.

© 2007 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.