

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	-
Number of Logic Elements/Cells	6000
Total RAM Bits	73728
Number of I/O	188
Number of Gates	-
Voltage - Supply	1.71V ~ 3.465V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	256-BGA
Supplier Device Package	256-FPBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lfxp6c-5f256c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 2-5. Primary Clock Sources

Note: Smaller devices have two PLLs.

Secondary Clock Sources

LatticeXP devices have four secondary clock resources per quadrant. The secondary clock branches are tapped at every PFU. These secondary clock networks can also be used for controls and high fanout data. These secondary clocks are derived from four clock input pads and 16 routing signals as shown in Figure 2-6.

For more information on the PLL, please see details of additional technical documentation at the end of this data sheet.

Dynamic Clock Select (DCS)

The DCS is a global clock buffer with smart multiplexer functions. It takes two independent input clock sources and outputs a clock signal without any glitches or runt pulses. This is achieved irrespective of where the select signal is toggled. There are eight DCS blocks per device, located in pairs at the center of each side. Figure 2-12 illustrates the DCS Block Macro.

Figure 2-12. DCS Block Primitive

Figure 2-13 shows timing waveforms of the default DCS operating mode. The DCS block can be programmed to other modes. For more information on the DCS, please see details of additional technical documentation at the end of this data sheet.

Figure 2-13. DCS Waveforms

sysMEM Memory

The LatticeXP family of devices contain a number of sysMEM Embedded Block RAM (EBR). The EBR consists of a 9-Kbit RAM, with dedicated input and output registers.

sysMEM Memory Block

The sysMEM block can implement single port, dual port or pseudo dual port memories. Each block can be used in a variety of depths and widths as shown in Table 2-6.

Table 2-6. sysMEM Block Configurations

Memory Mode	Configurations
Memory Mode Single Port True Dual Port	8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9 512 x 18 256 x 36
True Dual Port	8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9 512 x 18
Pseudo Dual Port	8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9 512 x 18 256 x 36

Bus Size Matching

All of the multi-port memory modes support different widths on each of the ports. The RAM bits are mapped LSB word 0 to MSB word 0, LSB word 1 to MSB word 1 and so on. Although the word size and number of words for each port varies, this mapping scheme applies to each port.

RAM Initialization and ROM Operation

If desired, the contents of the RAM can be pre-loaded during device configuration. By preloading the RAM block during the chip configuration cycle and disabling the write controls, the sysMEM block can also be utilized as a ROM.

Memory Cascading

Larger and deeper blocks of RAMs can be created using EBR sysMEM Blocks. Typically, the Lattice design tools cascade memory transparently, based on specific design inputs.

Single, Dual and Pseudo-Dual Port Modes

Figure 2-14 shows the four basic memory configurations and their input/output names. In all the sysMEM RAM modes the input data and address for the ports are registered at the input of the memory array. The output data of the memory is optionally registered at the output.

Figure 2-23. Output Register Block

*Latch is transparent when input is low.

Figure 2-24. ODDRXB Primitive

Tristate Register Block

The tristate register block provides the ability to register tri-state control signals from the core of the device before they are passed to the sysIO buffers. The block contains a register for SDR operation and an additional latch for DDR operation. Figure 2-25 shows the diagram of the Tristate Register Block.

In SDR mode, ONEG1 feeds one of the flip-flops that then feeds the output. The flip-flop can be configured a Dtype or latch. In DDR mode, ONEG1 is fed into one register on the positive edge of the clock and OPOS1 is latched. A multiplexer running off the same clock selects the correct register for feeding to the output (D0).

Figure 2-25. Tristate Register Block

*Latch is transparent when input is low.

Control Logic Block

The control logic block allows the selection and modification of control signals for use in the PIO block. A clock is selected from one of the clock signals provided from the general purpose routing and a DQS signal provided from the programmable DQS pin. The clock can optionally be inverted.

The clock enable and local reset signals are selected from the routing and optionally inverted. The global tristate signal is passed through this block.

DDR Memory Support

Implementing high performance DDR memory interfaces requires dedicated DDR register structures in the input (for read operations) and in the output (for write operations). As indicated in the PIO Logic section, the LatticeXP devices provide this capability. In addition to these registers, the LatticeXP devices contain two elements to simplify the design of input structures for read operations: the DQS delay block and polarity control logic.

DLL Calibrated DQS Delay Block

Source Synchronous interfaces generally require the input clock to be adjusted in order to correctly capture data at the input register. For most interfaces a PLL is used for this adjustment, however in DDR memories the clock (referred to as DQS) is not free running so this approach cannot be used. The DQS Delay block provides the required clock alignment for DDR memory interfaces.

The DQS signal (selected PIOs only) feeds from the PAD through a DQS delay element to a dedicated DQS routing resource. The DQS signal also feeds the polarity control logic which controls the polarity of the clock to the sync registers in the input register blocks. Figures 2-26 and 2-27 show how the polarity control logic are routed to the PIOs.

The temperature, voltage and process variations of the DQS delay block are compensated by a set of calibration (6-bit bus) signals from two DLLs on opposite sides of the device. Each DLL compensates DQS Delays in its half of the device as shown in Figure 2-27. The DLL loop is compensated for temperature, voltage and process variations by the system clock and feedback loop.

Figure 2-26. DQS Local Bus

Figure 2-27. DLL Calibration Bus and DQS/DQS Transition Distribution

Table 2-8. Supported	Output Standards
----------------------	-------------------------

Output Standard	Drive	V _{CCIO} (Nom.)				
Single-ended Interfaces						
LVTTL	4mA, 8mA, 12mA, 16mA, 20mA	3.3				
LVCMOS33	4mA, 8mA, 12mA 16mA, 20mA	3.3				
LVCMOS25	4mA, 8mA, 12mA 16mA, 20mA	2.5				
LVCMOS18	4mA, 8mA, 12mA 16mA	1.8				
LVCMOS15	4mA, 8mA	1.5				
LVCMOS12	2mA, 6mA	1.2				
LVCMOS33, Open Drain	4mA, 8mA, 12mA 16mA, 20mA	—				
LVCMOS25, Open Drain	4mA, 8mA, 12mA 16mA, 20mA	—				
LVCMOS18, Open Drain	4mA, 8mA, 12mA 16mA	—				
LVCMOS15, Open Drain	4mA, 8mA	—				
LVCMOS12, Open Drain	2mA. 6mA	—				
PCI33	N/A	3.3				
HSTL18 Class I, II, III	N/A	1.8				
HSTL15 Class I, III	N/A	1.5				
SSTL3 Class I, II	N/A	3.3				
SSTL2 Class I, II	N/A	2.5				
SSTL18 Class I	N/A	1.8				
Differential Interfaces	•					
Differential SSTL3, Class I, II	N/A	3.3				
Differential SSTL2, Class I, II	N/A	2.5				
Differential SSTL18, Class I	N/A	1.8				
Differential HSTL18, Class I, II, III	N/A	1.8				
Differential HSTL15, Class I, III	N/A	1.5				
LVDS	N/A	2.5				
BLVDS ¹	N/A	2.5				
LVPECL ¹	N/A	3.3				

1. Emulated with external resistors.

Hot Socketing

The LatticeXP devices have been carefully designed to ensure predictable behavior during power-up and powerdown. Power supplies can be sequenced in any order. During power up and power-down sequences, the I/Os remain in tristate until the power supply voltage is high enough to ensure reliable operation. In addition, leakage into I/O pins is controlled to within specified limits, which allows easy integration with the rest of the system. These capabilities make the LatticeXP ideal for many multiple power supply and hot-swap applications.

Sleep Mode

The LatticeXP "C" devices ($V_{CC} = 1.8/2.5/3.3V$) have a sleep mode that allows standby current to be reduced by up to three orders of magnitude during periods of system inactivity. Entry and exit to Sleep Mode is controlled by the SLEEPN pin.

During Sleep Mode, the FPGA logic is non-operational, registers and EBR contents are not maintained and I/Os are tri-stated. Do not enter Sleep Mode during device programming or configuration operation. In Sleep Mode, power supplies can be maintained in their normal operating range, eliminating the need for external switching of power supplies. Table 2-9 compares the characteristics of Normal, Off and Sleep Modes.

Differential HSTL and SSTL

Differential HSTL and SSTL outputs are implemented as a pair of complementary single-ended outputs. All allowable single-ended output classes (class I and class II) are supported in this mode.

LVDS25E

The top and bottom side of LatticeXP devices support LVDS outputs via emulated complementary LVCMOS outputs in conjunction with a parallel resistor across the driver outputs. The scheme shown in Figure 3-1 is one possible solution for point-to-point signals.

Figure 3-1. LVDS25E Output Termination Example

Table 3-1. LVDS25E DC Conditions

Parameter	Parameter Description		Units
V _{OH}	Output high voltage	1.43	V
V _{OL}	Output low voltage	1.07	V
V _{OD}	Output differential voltage	0.35	V
V _{CM}	Output common mode voltage	1.25	V
Z _{BACK}	Back impedance	100	ohms
I _{DC}	DC output current	3.66	mA

BLVDS

The LatticeXP devices support BLVDS standard. This standard is emulated using complementary LVCMOS outputs in conjunction with a parallel external resistor across the driver outputs. BLVDS is intended for use when multidrop and bi-directional multi-point differential signaling is required. The scheme shown in Figure 3-2 is one possible solution for bi-directional multi-point differential signals.

LatticeXP Internal Timing Parameters¹

		-5		-4		-3		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
PFU/PFF Logic	Mode Timing							
t _{LUT4_PFU}	LUT4 Delay (A to D Inputs to F Output)	—	0.28		0.34		0.40	ns
t _{LUT6_PFU}	LUT6 Delay (A to D Inputs to OFX Output)		0.44		0.53		0.63	ns
t _{LSR_PFU}	Set/Reset to Output of PFU		0.90		1.08		1.29	ns
t _{SUM_PFU}	Clock to Mux (M0,M1) Input Setup Time	0.13		0.15		0.19	_	ns
t _{HM_PFU}	Clock to Mux (M0,M1) Input Hold Time	-0.04		-0.03	—	-0.03	_	ns
t _{SUD_PFU}	Clock to D Input Setup Time	0.13		0.16		0.19	_	ns
t _{HD_PFU}	Clock to D Input Hold Time	-0.03		-0.02	—	-0.02		ns
t _{CK2Q_PFU}	Clock to Q Delay, D-type Register Configuration		0.40		0.48		0.58	ns
t _{LE2Q_PFU}	Clock to Q Delay Latch Configuration		0.53		0.64		0.76	ns
t _{LD2Q_PFU}	D to Q Throughput Delay when Latch is Enabled	—	0.55		0.66		0.79	ns
PFU Dual Port M	Nemory Mode Timing							
t _{CORAM_PFU}	Clock to Output		0.40		0.48		0.58	ns
t _{SUDATA_PFU}	Data Setup Time	-0.18		-0.14	—	-0.11	_	ns
t _{HDATA_PFU}	Data Hold Time	0.28		0.34	—	0.40	_	ns
t _{SUADDR_PFU}	Address Setup Time	-0.46		-0.37	—	-0.30	_	ns
t _{HADDR_PFU}	Address Hold Time	0.71		0.85	—	1.02	_	ns
t _{SUWREN_PFU}	Write/Read Enable Setup Time	-0.22		-0.17	—	-0.14	_	ns
t _{HWREN_PFU}	Write/Read Enable Hold Time	0.33		0.40	—	0.48	_	ns
PIC Timing								
PIO Input/Outpu	It Buffer Timing							
t _{IN_PIO}	Input Buffer Delay		0.62		0.72		0.85	ns
t _{OUT_PIO}	Output Buffer Delay	—	2.12		2.54		3.05	ns
IOLOGIC Input/	Output Timing							
t _{SUI_PIO}	Input Register Setup Time (Data Before Clock)	1.35		1.83		2.37	_	ns
t _{HI_PIO}	Input Register Hold Time (Data After Clock)	0.05		0.05	—	0.05		ns
t _{COO_PIO}	Output Register Clock to Output Delay		0.36		0.44		0.52	ns
t _{SUCE_PIO}	Input Register Clock Enable Setup Time	-0.09	—	-0.07	—	-0.06	_	ns
t _{HCE_PIO}	Input Register Clock Enable Hold Time	0.13		0.16	—	0.19	_	ns
t _{SULSR_PIO}	Set/Reset Setup Time	0.19		0.23	—	0.28	_	ns
t _{HLSR_PIO}	Set/Reset Hold Time	-0.14	—	-0.11	—	-0.09	_	ns
EBR Timing								
t _{CO_EBR}	Clock to Output from Address or Data		4.01		4.81		5.78	ns
t _{COO_EBR}	Clock to Output from EBR Output Register		0.81		0.97		1.17	ns
t _{SUDATA_EBR}	Setup Data to EBR Memory	-0.26		-0.21	—	-0.17	_	ns
t _{HDATA_EBR}	Hold Data to EBR Memory	0.41		0.49	—	0.59	_	ns
t _{SUADDR_EBR}	Setup Address to EBR Memory	-0.26		-0.21	—	-0.17	_	ns
t _{HADDR_EBR}	Hold Address to EBR Memory	0.41	—	0.49	—	0.59	—	ns
t _{SUWREN_EBR}	Setup Write/Read Enable to EBR Memory	-0.17	—	-0.13	—	-0.11	—	ns
t _{HWREN_EBR}	Hold Write/Read Enable to EBR Memory	0.26	—	0.31	—	0.37	—	ns
t _{SUCE_EBR}	Clock Enable Setup Time to EBR Output Register	0.19	—	0.23	—	0.28	—	ns
t _{HCE EBR}	Clock Enable Hold Time to EBR Output Register		—	-0.10	—	-0.08	—	ns

Over Recommended Operating Conditions

Figure 3-10. Read Before Write (SP Read/Write on Port A, Input Registers Only)

Note: Input data and address are registered at the positive edge of the clock and output data appears after the positive of the clock.

Figure 3-11. Write Through (SP Read/Write On Port A, Input Registers Only)

Note: Input data and address are registered at the positive edge of the clock and output data appears after the positive of the clock.

Flash Download Time

Symbol	Parar	neter	Min.	Тур.	Max.	Units
t _{REFRESH} H H		LFXP3	—	1.1	1.7	ms
	PROGRAMN Low-to- High. Transition to Done High.	LFXP6	—	1.4	2.0	ms
		LFXP10	—	0.9	1.5	ms
		LFXP15	—	1.1	1.7	ms
		LFXP20	—	1.3	1.9	ms

JTAG Port Timing Specifications

Over Recommended Operating Conditions

Symbol	Parameter	Min.	Max.	Units
f _{MAX}		_	25	MHz
t _{BTCP}	TCK [BSCAN] clock pulse width	40	—	ns
t _{втсрн}	TCK [BSCAN] clock pulse width high	20	_	ns
t _{BTCPL}	TCK [BSCAN] clock pulse width low	20	_	ns
t _{BTS}	TCK [BSCAN] setup time	10	—	ns
t _{BTH}	TCK [BSCAN] hold time	8	—	ns
t _{BTRF}	TCK [BSCAN] rise/fall time	50	—	ns
t _{втсо}	TAP controller falling edge of clock to valid output		10	ns
t _{BTCODIS}	TAP controller falling edge of clock to valid disable		10	ns
t _{BTCOEN}	TAP controller falling edge of clock to valid enable		10	ns
t _{BTCRS}	BSCAN test capture register setup time	8		ns
t _{BTCRH}	BSCAN test capture register hold time	25	—	ns
t _{BUTCO}	BSCAN test update register, falling edge of clock to valid output	_	25	ns
t _{BTUODIS}	BSCAN test update register, falling edge of clock to valid disable	_	25	ns
t _{BTUPOEN}	BSCAN test update register, falling edge of clock to valid enable	—	25	ns
Timing v.F0.11	•	•	•	

Figure 3-12. JTAG Port Timing Waveforms

Signal Descriptions (Cont.)

Signal Name	I/O	Descriptions				
Test and Programming (Dedicated pins. Pull-up is enabled on input pins during configuration.)						
TMS	I	Test Mode Select input, used to control the 1149.1 state machine.				
ТСК	I	Test Clock input pin, used to clock the 1149.1 state machine.				
тді	I	Test Data in pin, used to load data into device using 1149.1 state machine. After power-up, this TAP port can be activated for configuration by sending appropriate command. (Note: once a configuration port is selected it is locked. Another configuration port cannot be selected until the power-up sequence).				
TDO	0	Output pin -Test Data out pin used to shift data out of device using 1149.1.				
V _{CCJ}	—	V _{CCJ} - The power supply pin for JTAG Test Access Port.				
Configuration Pads (used during sysCON	√FIG)					
CFG[1:0]	I	Mode pins used to specify configuration modes values latched on rising edge of INITN. During configuration, a pull-up is enabled.				
INITN	I/O	Open Drain pin - Indicates the FPGA is ready to be configured. During con- figuration, a pull-up is enabled. If CFG1 and CFG0 are high (SDM) then this pin is pulled low.				
PROGRAMN	I	Initiates configuration sequence when asserted low. This pin always has an active pull-up.				
DONE	I/O	Open Drain pin - Indicates that the configuration sequence is complete, and the startup sequence is in progress.				
CCLK	I/O	Configuration Clock for configuring an FPGA in sysCONFIG mode.				
BUSY	I/O	Generally not used. After configuration it is a user-programmable I/O pin.				
CSN	I	sysCONFIG chip select (Active low). During configuration, a pull-up is enabled. After configuration it is user a programmable I/O pin.				
CS1N	I	sysCONFIG chip select (Active Low). During configuration, a pull-up is enabled. After configuration it is user programmable I/O pin				
WRITEN	I	Write Data on Parallel port (Active low). After configuration it is a user pro- grammable I/O pin				
D[7:0]	I/O	sysCONFIG Port Data I/O. After configuration these are user programmable I/O pins.				
DOUT, CSON	0	Output for serial configuration data (rising edge of CCLK) when using sys- CONFIG port. After configuration, it is a user-programmable I/O pin.				
DI	I	Input for serial configuration data (clocked with CCLK) when using sysCON- FIG port. During configuration, a pull-up is enabled. After configuration it is a user-programmable I/O pin.				
SLEEPN ²	I	Sleep Mode pin - Active low sleep pin.b When this pin is held high, the device operates normally.b When driven low, the device moves into Sleep Mode after a specified time. This pin has a weak internal pull-up, but when not used an external pull-up to V_{CC} is recommended.				
TOE ³	I	Test Output Enable tri-states all I/O pins when driven low. This pin has a weak internal pull-up, but when not used an external pull-up to $V_{\rm CC}$ is recommended.				

Applies tob LFXP10, LFXP15 and LFXP20 only.
Applies to LFXP "C" devices only.
Applies to LFXP "E" devices only.

PICs and DDR Data (DQ) Pins Associated with the DDR Strobe (DQS) Pin

PICs Associated with DQS Strobe	PIO within PIC	Polarity	DDR Strobe (DQS) and Data (DQ) Pins
P[Edge] [n_4]	A	True	DQ
	В	Complement	DQ
P[Edge] [p_3]	A	True	DQ
	В	Complement	DQ
P[Edge] [p_2]	A	True	DQ
	В	Complement	DQ
P[Edge] [p-1]	A	True	DQ
P[Edge] [n]			
	В	Complement	DQ
P[Edge] [n+1]	A	True	[Edge]DQSn
	В	Complement	DQ
P[Edge] [n 2]	A	True	DQ
	В	Complement	DQ
P[Edge] [n 3]	A	True	DQ
	В	Complement	DQ

Notes:

1. "n" is a row/column PIC number.

2. The DDR interface is designed for memories that support one DQS strobe per eight bits of data. In some packages, all the potential DDR data (DQ) pins may not be available.

3. The definition of the PIC numbering is provided in the Signal Names column of the Signal Descriptions table in this data sheet.

LFXP3 Logic Signal Connections: 100 TQFP (Cont.)

Pin Number	Pin Function	Bank	Differential	Dual Function
88	PT14B	1	-	D7
89	PT13B	0	С	BUSY
90	GNDIO0	0	-	-
91	PT13A	0	Т	CS1N
92	PT12B	0	С	PCLKC0_0
93	PT12A	0	Т	PCLKT0_0
94	VCCIO0	0	-	-
95	PT9A	0	-	DOUT
96	PT8A	0	-	WRITEN
97	PT6A	0	-	DI
98	PT5A	0	-	CSN
99	GND	-	-	-
100	CFG0	0	-	-

Applies to LFXP "C" only.
Applies to LFXP "E" only.
Supports dedicated LVDS outputs.

LFXP3 & LFXP6 Logic Signal Connections: 208 PQFP

Din			LFXP3		LFXP6					
Number	Pin Function	Bank	Differential	Dual Function	Pin Function	Bank	Differential	Dual Function		
1	CFG1	0	-	-	CFG1	0	-	-		
2	DONE	0	-	-	DONE	0	-	-		
3	PROGRAMN	7	-	-	PROGRAMN	7	-	-		
4	CCLK	7	-	-	CCLK	7	-	-		
5	GND	-	-	-	GND	-	-	-		
6	PL2A	7	T ³	-	PL2A	7	T ³	-		
7	GNDIO7	7	-	-	GNDIO7	7	-	-		
8	PL2B	7	C ³	-	PL2B	7	C ³	-		
9	PL3A	7	Т	LUM0_PLLT_FB_A	PL3A	7	Т	LUM0_PLLT_FB_A		
10	PL3B	7	С	LUM0_PLLC_FB_A	PL3B	7	С	LUM0_PLLC_FB_A		
11	PL4A	7	T ³	-	PL4A	7	T ³	-		
12	PL4B	7	C ³	-	PL4B	7	C ³	-		
13	VCCI07	7	-	-	VCCI07	7	-	-		
14	PL5A	7	-	VREF1_7	PL5A	7	-	VREF1_7		
15	PL6B	7	-	VREF2_7	PL6B	7	-	VREF2_7		
16	GNDIO7	7	-	-	GNDIO7	7	-	-		
17	PL7A	7	T ³	DQS	PL7A	7	T ³	DQS		
18	PL7B	7	C ³	-	PL7B	7	C ³	-		
19	VCC	-	-	-	VCC	-	-	-		
20	PL8A	7	Т	LUM0_PLLT_IN_A	PL8A	7	Т	LUM0_PLLT_IN_A		
21	PL8B	7	C	LUM0_PLLC_IN_A	PL8B	7	C	LUM0_PLLC_IN_A		
22	PL9A	7	T³	-	PL9A	7	T³	-		
23	VCCIO7	7	-	-	VCCI07	7	-	-		
24	PL9B	7	C ³	-	PL9B	7	C ³	-		
25	VCCP0	-	-	-	VCCP0	-	-	-		
26	GNDP0	-	-	-	GNDP0	-	-	-		
27	NC	-	-	-	PL15B	6	-	-		
28	VCCIO6	6	-	-	VCCIO6	6		-		
29	PL11A	6	l° Q	-	PL16A	6	l° Q	-		
30	PL11B	6	C ³	-	PL16B	6	C ³	-		
31	PL12A	6	1	PCLK16_0	PL17A	6	1	PCLK16_0		
32	PL12B	6	C	PCLKC6_0	PL17B	6	C T ³	PCLKC6_0		
33	NC	-	-	-	PL18A	6		-		
34	NC	-	-	-	PL18B	6	U ¹	-		
35		-	- T3	-		-	- T3	-		
30		0		-	FL2TA	0		-		
37		0	U	-		0	U.	-		
30		6	-			0	-			
39	PL14A	6	-	VREF1_0	PL22A	0	-	VREF1_0		
40		0	-	VNEF2_0	VCCICE	0	-	VNEF2_0		
41	PI 164	6	- T ³		PI 244	6	- T ³			
42		6	C^3	000		6	C^3	000		
43		6	т	-		6	т	-		
44		6		-		6		-		
40		6	С Т ³	-		6	С Т ³	-		
40	FLIØA	Ö	1-	-	PL26A	Ö	1-	-		

LFXP10, LFXP15 & LFXP20 Logic Signal Connections: 388 fpBGA

	LFXP10)		5	LFXP20					
Ball Number	Ball Function	Bank	Diff.	Dual Function	Ball Function	Bank	Diff.	Dual Function	Ball Function	Bank	Diff.	Dual Function
F4	PROGRAMN	7	-	-	PROGRAMN	7	-	-	PROGRAMN	7	-	-
G4	CCLK	7	-	-	CCLK	7	-	-	CCLK	7	-	-
-	GNDIO7	7	-	-	GNDIO7	7	-	-	GNDIO7	7	-	-
D2	PL2A	7	T ³	-	PL6A	7	T ³	-	PL6A	7	T ³	-
D1	PL2B	7	C ³	-	PL6B	7	C ³	-	PL6B	7	C ³	-
-	GNDIO7	7	-	-	GNDIO7	7	-	-	GNDIO7	7	-	-
E2	PL3A	7	Т	LUM0_PLLT_FB_A	PL7A	7	Т	LUM0_PLLT_FB_A	PL7A	7	Т	LUM0_PLLT_FB_A
E3	PL3B	7	С	LUM0_PLLC_FB_A	PL7B	7	С	LUM0_PLLC_FB_A	PL7B	7	С	LUM0_PLLC_FB_A
F3	PL4A	7	T ³	-	PL8A	7	T ³	-	PL8A	7	T ³	-
F2	PL4B	7	C ³	-	PL8B	7	C ³	-	PL8B	7	C ³	-
H4	PL5A	7	-	-	PL9A	7	-	-	PL9A	7	-	-
H3	PL6B	7	-	VREF1_7	PL10B	7	-	VREF1_7	PL10B	7	-	VREF1_7
G3	PL7A	7	T ³	DQS	PL11A	7	T ³	DQS	PL11A	7	T ³	DQS
G2	PL7B	7	C ³	-	PL11B	7	C ³	-	PL11B	7	C ³	-
-	GNDIO7	7	-	-	GNDIO7	7	-	-	GNDIO7	7	-	-
F1	PL8A	7	Т	-	PL12A	7	Т	-	PL12A	7	Т	-
E1	PL8B	7	С	-	PL12B	7	С	-	PL12B	7	С	-
J4	PL9A	7	T ³	-	PL13A	7	T ³	-	PL13A	7	T ³	-
K4	PL9B	7	C ³	-	PL13B	7	C ³	-	PL13B	7	C ³	-
G1	PL11A	7	T ³	-	PL15A	7	T ³	-	PL15A	7	T ³	-
H2	PL11B	7	C ³	-	PL15B	7	C ³	-	PL15B	7	C ³	-
-	GNDIO7	7	-	-	GNDIO7	7	-	-	GNDIO7	7	-	-
J2	PL12A	7	т	LUM0 PLLT IN A	PL16A	7	т	LUM0 PLLT IN A	PL16A	7	т	LUM0 PLLT IN A
H1	PL12B	7	С	LUM0 PLLC IN A	PL16B	7	С	LUM0 PLLC IN A	PL16B	7	С	LUM0 PLLC IN A
J1	PL13A	7	T ³		PL17A	7	T ³		PL17A	7	T ³	
K2	PL13B	7	C ³	-	PL17B	7	C ³	-	PL17B	7	C ³	-
КЗ	PL14A	7	_	VREF2 7	PL18A	7	-	VREF2 7	PL18A	7	-	VREF2 7
J3	PL15B	7	-	-	PL19B	7	-	-	PL19B	7	-	-
K1	PL16A	7	T ³	DQS	PL20A	7	T ³	DQS	PL20A	7	T ³	DQS
-	GNDIO7	7	-		GNDIO7	7	-		GNDIO7	7	-	
L2	PL16B	7	C ³	-	PL20B	7	C ³	-	PL20B	7	C ³	-
13	PI 17A	7	T	-	PI 21A	7	Т	-	PI 21A	7	T	-
14	PI 17B	7	C	-	PI 21B	7	C	-	PI 21B	7	C	-
11	PI 18A	7	T ³	-	PI 22A	7	т ³	-	PI 22A	7	T ³	-
 M1	PI 18B	7	C ³	-	PI 22B	7	C ³	-	PI 22B	7	C ³	-
M2	VCCP0	-	-	-	VCCP0	-	-	-	VCCP0	-	-	_
N1	GNDP0	-	-	-	GNDP0	-	-	-	GNDP0	-	-	_
M3	PI 19A	6	T ³	_	PI 23A	6	T ³	_	PI 27A	6	T ³	_
M4	PI 19B	6	С ³	_	PL23B	6	C ³	_	PI 27B	6	C ³	_
P1	PL 20A	6	т	PCI KT6 0	PI 24A	6	т	PCI KT6 0	PI 284	6	т	PCLKT6 0
	GNDIO6	6		-		6		-	GNDIO6	6	-	-
N2	PI 20B	6	C		PI 24B	6	C		PI 28B	6	C	PCLKC6 0
R1		6	т ³	-		6	т ³		PI 20A	6	т ³	102100_0
P2	PI 21R	6	C.3		PI 25R	6	C3		PI 29R	6	C3	-
N2	PI 2210	6	-		PI 26A	6	-	-	PI 204	6	-	-
N/A		6	-	VREE1 6		6				6	-	
T1		6	- Т ³			6	- т ³		DI 22A	6	- т ³	
- 11 - P2		6		000		6	C ³	000	PLOZA	6	C ³	000
rī2		0	0-	-		0	U ²	-		0	0-	-
-	GINDIO6	6	-	-	GINDIO6	0	-	-	GINDIO6	0	-	-

LFXP10, LFXP15 & LFXP20 Logic Signal Connections: 388 fpBGA (Cont.)

		L	FXP1	0		L	_FXP1	5	LFXP20			
Ball Number	Ball Function	Bank	Diff.	Dual Function	Ball Function	Bank	Diff.	Dual Function	Ball Function	Bank	Diff.	Dual Function
M21	VCCP1	-	-	-	VCCP1	-	-	-	VCCP1	-	-	-
-	GNDIO2	2	-	-	GNDIO2	2	-	-	GNDIO2	2	-	-
M22	PR18B	2	C ³	-	PR22B	2	C ³	-	PR22B	2	C ³	-
L22	PR18A	2	T ³	-	PR22A	2	T ³	-	PR22A	2	T ³	-
K22	PR17B	2	С	PCLKC2_0	PR21B	2	С	PCLKC2_0	PR21B	2	С	PCLKC2_0
K21	PR17A	2	Т	PCLKT2_0	PR21A	2	Т	PCLKT2_0	PR21A	2	Т	PCLKT2_0
L19	PR16B	2	C ³	-	PR20B	2	C ³	-	PR20B	2	C ³	-
K20	PR16A	2	T ³	DQS	PR20A	2	T ³	DQS	PR20A	2	T ³	DQS
L20	PR15B	2	-	-	PR19B	2	-	-	PR19B	2	-	-
L21	PR14A	2	-	VREF1_2	PR18A	2	-	VREF1_2	PR18A	2	-	VREF1_2
-	GNDIO2	2	-	-	GNDIO2	2	-	-	GNDIO2	2	-	-
J22	PR13B	2	C ³	-	PR17B	2	C ³	-	PR17B	2	C ³	-
J21	PR13A	2	T ³	-	PR17A	2	T ³	-	PR17A	2	T ³	-
H22	PR12B	2	С	RUM0_PLLC_IN_A	PR16B	2	С	RUM0_PLLC_IN_A	PR16B	2	С	RUM0_PLLC_IN_A
H21	PR12A	2	Т	RUM0_PLLT_IN_A	PR16A	2	Т	RUM0_PLLT_IN_A	PR16A	2	Т	RUM0_PLLT_IN_A
K19	PR11B	2	C ³	-	PR15B	2	C ³	-	PR15B	2	C ³	-
J19	PR11A	2	T ³	-	PR15A	2	T ³	-	PR15A	2	T ³	-
-	GNDIO2	2	-	-	GNDIO2	2	-	-	GNDIO2	2	-	-
J20	PR9B	2	C ³	-	PR13B	2	C ³	-	PR13B	2	C ³	-
H20	PR9A	2	T ³	-	PR13A	2	T ³	-	PR13A	2	T ³	-
H19	PR8B	2	С	-	PR12B	2	С	-	PR12B	2	С	-
G19	PR8A	2	Т	-	PR12A	2	Т	-	PR12A	2	Т	-
G22	PR7B	2	C ³	-	PR11B	2	C ³	-	PR11B	2	C ³	-
G21	PR7A	2	T ³	DQS	PR11A	2	T ³	DQS	PR11A	2	T ³	DQS
-	GNDIO2	2	-		GNDIO2	2	-		GNDIO2	2	-	
F20	PR6B	2	-	-	PR10B	2	-	-	PR10B	2	-	-
G20	PR5A	2	-	VREF2 2	PR9A	2	-	VREF2 2	PR9A	2	-	VREF2_2
F22	PB4B	2	C3	-	PB8B	2	C3	-	PB8B	2	C ³	-
F21	PR4A	2	- T ³	-	PB8A	2	- T ³	-	PR8A	2	- T ³	-
F22	PB3B	2	C	BUM0 PLIC FB A	PB7B	2	C.	BUMO PLIC FB A	PB7B	2	C.	BUMO PLIC FB A
E22	PR3A	2	т	BUMO PLIT FR A	PR7A	2	т	BUMO PLIT FR A	PR7A	2	т	BUMO PLIT FB A
D22	PR2B	2	C ³	-	PB6B	2	C ³	-	PR6B	2	С ³	-
D21	PR2A	2	т ³	_	PR6A	2	т ³	-	PR6A	2	т ³	_
-	GNDIO2	2		-	GNDIO2	2			GNDIO2	2		-
F19		-	-	-		-	-	-		-	-	-
F20	VCCI	-		_	VCCI	-	_	-	VCCI	-		-
D20		-		_		-	_	-		-		-
D19	TMS	-	_	_	TMS	-			TMS	-		-
D18	TCK	-	_	_	TCK	-			TCK	-		-
DIO		1	_	_		1	_	_		1		_
- E10	GINDIOT		-	-		1	-	-	DTEOA	1	-	-
E19	-	-	-	-		1	-	-	PT52A	1	-	-
D17	-	-	-	-	P147D	1	U T	-	PISID	1	с т	-
010	-	-	-	-		1	1	DQS			1	500
015	-	-	-	-	P146B	1	-	-	P150B		-	-
015	-	-	-	-	P145A	1	-	-	P149A		-	-
017	-	-	-	-	PI44B	1	С -	-	P148B		С -	-
C18	P139A	1	-	-	PI44A	1	ſ	-	P148A	1	1	-
C19	PT38B	1	С	-	PT43B	1	С	-	PT47B	1	С	-
-	GNDIO1	1	-	-	GNDIO1	1	-	-	GNDIO1	1	-	-

Commercial (Cont.)							
Part Number	l/Os	Voltage	Grade	Package	Pins	Temp.	LUTs
LFXP15E-3FN484C	300	1.2V	-3	fpBGA	484	COM	15.5K
LFXP15E-4FN484C	300	1.2V	-4	fpBGA	484	COM	15.5K
LFXP15E-5FN484C	300	1.2V	-5	fpBGA	484	COM	15.5K
LFXP15E-3FN388C	268	1.2V	-3	fpBGA	388	COM	15.5K
LFXP15E-4FN388C	268	1.2V	-4	fpBGA	388	COM	15.5K
LFXP15E-5FN388C	268	1.2V	-5	fpBGA	388	COM	15.5K
LFXP15E-3FN256C	188	1.2V	-3	fpBGA	256	COM	15.5K
LFXP15E-4FN256C	188	1.2V	-4	fpBGA	256	COM	15.5K
LFXP15E-5FN256C	188	1.2V	-5	fpBGA	256	COM	15.5K

Part Number	l/Os	Voltage	Grade	Package	Pins	Temp.	LUTs
LFXP20E-3FN484C	340	1.2V	-3	fpBGA	484	COM	19.7K
LFXP20E-4FN484C	340	1.2V	-4	fpBGA	484	COM	19.7K
LFXP20E-5FN484C	340	1.2V	-5	fpBGA	484	COM	19.7K
LFXP20E-3FN388C	268	1.2V	-3	fpBGA	388	COM	19.7K
LFXP20E-4FN388C	268	1.2V	-4	fpBGA	388	COM	19.7K
LFXP20E-5FN388C	268	1.2V	-5	fpBGA	388	COM	19.7K
LFXP20E-3FN256C	188	1.2V	-3	fpBGA	256	COM	19.7K
LFXP20E-4FN256C	188	1.2V	-4	fpBGA	256	COM	19.7K
LFXP20E-5FN256C	188	1.2V	-5	fpBGA	256	COM	19.7K

Industrial

Part Number	l/Os	Voltage	Grade	Package	Pins	Temp.	LUTs
LFXP3C-3QN208I	136	1.8/2.5/3.3V	-3	PQFP	208	IND	3.1K
LFXP3C-4QN208I	136	1.8/2.5/3.3V	-4	PQFP	208	IND	3.1K
LFXP3C-3TN144I	100	1.8/2.5/3.3V	-3	TQFP	144	IND	3.1K
LFXP3C-4TN144I	100	1.8/2.5/3.3V	-4	TQFP	144	IND	3.1K
LFXP3C-3TN100I	62	1.8/2.5/3.3V	-3	TQFP	100	IND	3.1K
LFXP3C-4TN100I	62	1.8/2.5/3.3V	-4	TQFP	100	IND	3.1K

Part Number	I/Os	Voltage	Grade	Package	Pins	Temp.	LUTs
LFXP6C-3FN256I	188	1.8/2.5/3.3V	-3	fpBGA	256	IND	5.8K
LFXP6C-4FN256I	188	1.8/2.5/3.3V	-4	fpBGA	256	IND	5.8K
LFXP6C-3QN208I	142	1.8/2.5/3.3V	-3	PQFP	208	IND	5.8K
LFXP6C-4QN208I	142	1.8/2.5/3.3V	-4	PQFP	208	IND	5.8K
LFXP6C-3TN144I	100	1.8/2.5/3.3V	-3	TQFP	144	IND	5.8K
LFXP6C-4TN144I	100	1.8/2.5/3.3V	-4	TQFP	144	IND	5.8K

			•	,			
Part Number	l/Os	Voltage	Grade	Package	Pins	Temp.	LUTs
LFXP10E-3FN388I	244	1.2V	-3	fpBGA	388	IND	9.7K
LFXP10E-4FN388I	244	1.2V	-4	fpBGA	388	IND	9.7K
LFXP10E-3FN256I	188	1.2V	-3	fpBGA	256	IND	9.7K
LFXP10E-4FN256I	188	1.2V	-4	fpBGA	256	IND	9.7K

Industrial (Cont.)

Part Number	I/Os	Voltage	Grade	Package	Pins	Temp.	LUTs
LFXP15E-3FN484I	300	1.2V	-3	fpBGA	484	IND	15.5K
LFXP15E-4FN484I	300	1.2V	-4	fpBGA	484	IND	15.5K
LFXP15E-3FN388I	268	1.2V	-3	fpBGA	388	IND	15.5K
LFXP15E-4FN388I	268	1.2V	-4	fpBGA	388	IND	15.5K
LFXP15E-3FN256I	188	1.2V	-3	fpBGA	256	IND	15.5K
LFXP15E-4FN256I	188	1.2V	-4	fpBGA	256	IND	15.5K

Part Number	l/Os	Voltage	Grade	Package	Pins	Temp.	LUTs
LFXP20E-3FN484I	340	1.2V	-3	fpBGA	484	IND	19.7K
LFXP20E-4FN484I	340	1.2V	-4	fpBGA	484	IND	19.7K
LFXP20E-3FN388I	268	1.2V	-3	fpBGA	388	IND	19.7K
LFXP20E-4FN388I	268	1.2V	-4	fpBGA	388	IND	19.7K
LFXP20E-3FN256I	188	1.2V	-3	fpBGA	256	IND	19.7K
LFXP20E-4FN256I	188	1.2V	-4	fpBGA	256	IND	19.7K

LatticeXP Family Data Sheet Revision History

November 2007

Revision History

Data Sheet DS1001

Date	Version	Section	Change Summary
February 2005	01.0	_	Initial release.
April 2005	01.1	Architecture	EBR memory support section updated with clarification.
May 2005	01.2	Introduction	Added TransFR Reconfiguration to Features section.
		Architecture	Added TransFR section.
June 2005	01.3	Pinout Information	Added pinout information for LFXP3, LFXP6, LFXP15 and LFXP20.
July 2005	02.0	Introduction	Updated XP6, XP15 and XP20 EBR SRAM Bits and Block numbers.
		Architecture	Updated Per Quadrant Primary Clock Selection figure.
			Added Typical I/O Behavior During Power-up section.
			Updated Device Configuration section under Configuration and Testing.
		DC and Switching	Clarified Hot Socketing Specification
		Characteristics	Updated Supply Current (Standby) Table
			Updated Initialization Supply Current Table
			Added Programming and Erase Flash Supply Current table
			Added LVDS Emulation section. Updated LVDS25E Output Termination Example figure and LVDS25E DC Conditions table.
			Updated Differential LVPECL diagram and LVPECL DC Conditions table.
			Deleted 5V Tolerant Input Buffer section. Updated RSDS figure and RSDS DC Conditions table.
			Updated sysCONFIG Port Timing Specifications
			Updated JTAG Port Timing Specifications. Added Flash Download Time table.
		Pinout Information	Updated Signal Descriptions table.
			Updated Logic Signal Connections Dual Function column.
		Ordering Information	Added lead-free ordering part numbers.
July 2005	02.1	DC and Switching Characteristics	Clarification of Flash Programming Junction Temperature
August 2005	02.2	Introduction	Added Sleep Mode feature.
		Architecture	Added Sleep Mode section.
		DC and Switching	Added Sleep Mode Supply Current Table
		Characteristics	Added Sleep Mode Timing section
		Pinout Information	Added SLEEPN and TOE signal names, descriptions and footnotes.
			Added SLEEPN and TOE to pinout information and footnotes.
			Added footnote 3 to Logic Signal Connections tables for clarification on emulated LVDS output.
September 2005	03.0	Architecture	Added clarification of PCI clamp.
			Added clarification to SLEEPN Pin Characteristics section.
		DC and Switching Characteristics	DC Characteristics, added footnote 4 for clarification. Updated Supply Current (Sleep Mode), Supply Current (Standby), Initialization Supply Current, and Programming and Erase Flash Supply Current typical numbers.

© 2007 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.