

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

E·XFL

Product Status	Obsolete
Number of LABs/CLBs	-
Number of Logic Elements/Cells	6000
Total RAM Bits	73728
Number of I/O	142
Number of Gates	-
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	208-BFQFP
Supplier Device Package	208-PQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lfxp6e-3q208i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Lattice Semiconductor

The Lattice design tools support the creation of a variety of different size memories. Where appropriate, the software will construct these using distributed memory primitives that represent the capabilities of the PFU. Table 2-3 shows the number of Slices required to implement different distributed RAM primitives. Figure 2-4 shows the distributed memory primitive block diagrams. Dual port memories involve the pairing of two Slices, one Slice functions as the read-write port. The other companion Slice supports the read-only port. For more information on RAM mode in LatticeXP devices, please see details of additional technical documentation at the end of this data sheet.

Table 2-3. Number of Slices Required for Implementing Distributed RAM

	SPR16x2	DPR16x2						
Number of Slices	1	2						
Note: SPR = Single Port RAM, DPR = Dual Port RAM								

_				_	
	~ /		 	Duline	

ROM Mode: The ROM mode uses the same principal as the RAM modes, but without the Write port. Pre-loading is accomplished through the programming interface during configuration.

PFU Modes of Operation

Slices can be combined within a PFU to form larger functions. Table 2-4 tabulates these modes and documents the functionality possible at the PFU level.

Figure 2-23. Output Register Block

*Latch is transparent when input is low.

Figure 2-24. ODDRXB Primitive

Tristate Register Block

The tristate register block provides the ability to register tri-state control signals from the core of the device before they are passed to the sysIO buffers. The block contains a register for SDR operation and an additional latch for DDR operation. Figure 2-25 shows the diagram of the Tristate Register Block.

In SDR mode, ONEG1 feeds one of the flip-flops that then feeds the output. The flip-flop can be configured a Dtype or latch. In DDR mode, ONEG1 is fed into one register on the positive edge of the clock and OPOS1 is latched. A multiplexer running off the same clock selects the correct register for feeding to the output (D0).

Figure 2-25. Tristate Register Block

*Latch is transparent when input is low.

Control Logic Block

The control logic block allows the selection and modification of control signals for use in the PIO block. A clock is selected from one of the clock signals provided from the general purpose routing and a DQS signal provided from the programmable DQS pin. The clock can optionally be inverted.

The clock enable and local reset signals are selected from the routing and optionally inverted. The global tristate signal is passed through this block.

DDR Memory Support

Implementing high performance DDR memory interfaces requires dedicated DDR register structures in the input (for read operations) and in the output (for write operations). As indicated in the PIO Logic section, the LatticeXP devices provide this capability. In addition to these registers, the LatticeXP devices contain two elements to simplify the design of input structures for read operations: the DQS delay block and polarity control logic.

DLL Calibrated DQS Delay Block

Source Synchronous interfaces generally require the input clock to be adjusted in order to correctly capture data at the input register. For most interfaces a PLL is used for this adjustment, however in DDR memories the clock (referred to as DQS) is not free running so this approach cannot be used. The DQS Delay block provides the required clock alignment for DDR memory interfaces.

The DQS signal (selected PIOs only) feeds from the PAD through a DQS delay element to a dedicated DQS routing resource. The DQS signal also feeds the polarity control logic which controls the polarity of the clock to the sync registers in the input register blocks. Figures 2-26 and 2-27 show how the polarity control logic are routed to the PIOs.

The temperature, voltage and process variations of the DQS delay block are compensated by a set of calibration (6-bit bus) signals from two DLLs on opposite sides of the device. Each DLL compensates DQS Delays in its half of the device as shown in Figure 2-27. The DLL loop is compensated for temperature, voltage and process variations by the system clock and feedback loop.

Polarity Control Logic

In a typical DDR Memory interface design, the phase relation between the incoming delayed DQS strobe and the internal system Clock (during the READ cycle) is unknown.

The LatticeXP family contains dedicated circuits to transfer data between these domains. To prevent setup and hold violations at the domain transfer between DQS (delayed) and the system Clock a clock polarity selector is used. This changes the edge on which the data is registered in the synchronizing registers in the input register block. This requires evaluation at the start of the each READ cycle for the correct clock polarity.

Prior to the READ operation in DDR memories DQS is in tristate (pulled by termination). The DDR memory device drives DQS low at the start of the preamble state. A dedicated circuit detects this transition. This signal is used to control the polarity of the clock to the synchronizing registers.

sysIO Buffer

Each I/O is associated with a flexible buffer referred to as a sysIO buffer. These buffers are arranged around the periphery of the device in eight groups referred to as Banks. The sysIO buffers allow users to implement the wide variety of standards that are found in today's systems including LVCMOS, SSTL, HSTL, LVDS and LVPECL.

sysIO Buffer Banks

LatticeXP devices have eight sysIO buffer banks; each is capable of supporting multiple I/O standards. Each sysIO bank has its own I/O supply voltage (V_{CCIO}), and two voltage references V_{REF1} and V_{REF2} resources allowing each bank to be completely independent from each other. Figure 2-28 shows the eight banks and their associated supplies.

In the LatticeXP devices, single-ended output buffers and ratioed input buffers (LVTTL, LVCMOS, PCI and PCI-X) are powered using V_{CCIO} . LVTTL, LVCMOS33, LVCMOS25 and LVCMOS12 can also be set as a fixed threshold input independent of V_{CCIO} . In addition to the bank V_{CCIO} supplies, the LatticeXP devices have a V_{CC} core logic power supply, and a V_{CCAUX} supply that power all differential and referenced buffers.

Each bank can support up to two separate VREF voltages, VREF1 and VREF2 that set the threshold for the referenced input buffers. In the LatticeXP devices, a dedicated pin in a bank can be configured to be a reference voltage supply pin. Each I/O is individually configurable based on the bank's supply and reference voltages.

Figure 2-29 provides a pictorial representation of the different programming ports and modes available in the LatticeXP devices.

On power-up, the FPGA SRAM is ready to be configured with the sysCONFIG port active. The IEEE 1149.1 serial mode can be activated any time after power-up by sending the appropriate command through the TAP port.

Leave Alone I/O

When using 1532 mode for non-volatile memory programming, users may specify I/Os as high, low, tristated or held at current value. This provides excellent flexibility for implementing systems where reprogramming occurs on-the-fly.

TransFR (Transparent Field Reconfiguration)

TransFR (TFR) is a unique Lattice technology that allows users to update their logic in the field without interrupting system operation using a single ispVM command. See Lattice technical note #TN1087, *Minimizing System Interruption During Configuration Using TransFR Technology*, for details.

Security

The LatticeXP devices contain security bits that, when set, prevent the readback of the SRAM configuration and non-volatile memory spaces. Once set, the only way to clear security bits is to erase the memory space.

For more information on device configuration, please see details of additional technical documentation at the end of this data sheet.

Figure 2-29. ispXP Block Diagram

Internal Logic Analyzer Capability (ispTRACY)

All LatticeXP devices support an internal logic analyzer diagnostic feature. The diagnostic features provide capabilities similar to an external logic analyzer, such as programmable event and trigger condition and deep trace memory. This feature is enabled by Lattice's ispTRACY. The ispTRACY utility is added into the user design at compile time.

For more information on ispTRACY, please see information regarding additional technical documentation at the end of this data sheet.

Oscillator

Every LatticeXP device has an internal CMOS oscillator which is used to derive a master serial clock for configuration. The oscillator and the master serial clock run continuously in the configuration mode. The default value of the master serial clock is 2.5MHz. Table 2-10 lists all the available Master Serial Clock frequencies. When a different Master Serial Clock is selected during the design process, the following sequence takes place:

- 1. User selects a different Master Serial Clock frequency for configuration.
- 2. During configuration the device starts with the default (2.5MHz) Master Serial Clock frequency.
- 3. The clock configuration settings are contained in the early configuration bit stream.
- 4. The Master Serial Clock frequency changes to the selected frequency once the clock configuration bits are received.

For further information on the use of this oscillator for configuration, please see details of additional technical documentation at the end of this data sheet.

Table 2-10. Selectable Master Serial Clock (CCLK) Frequencies During Configuration

CCLK (MHz)	CCLK (MHz)	CCLK (MHz)
2.5 ¹	13	45
4.3	15	51
5.4	20	55
6.9	26	60
8.1	30	130
9.2	34	—
10.0	41	—
1. Default	•	•

Density Shifting

The LatticeXP family has been designed to ensure that different density devices in the same package have the same pin-out. Furthermore, the architecture ensures a high success rate when performing design migration from lower density parts to higher density parts. In many cases, it is also possible to shift a lower utilization design targeted for a high-density device to a lower density device. However, the exact details of the final resource utilization will impact the likely success in each case.

Hot Socketing Specifications^{1, 2, 3, 4, 5, 6}

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
I _{DK}	Input or I/O Leakage Current	$0 \le V_{IN} \le V_{IH}$ (MAX.)	-		+/-1000	μΑ

1. Insensitive to sequence of V_{CC} , V_{CCAUX} and V_{CCIO} . However, assumes monotonic rise/fall rates for V_{CC} , V_{CCAUX} and V_{CCIO} . 2. $0 \le V_{CC} \le V_{CC}$ (MAX) or $0 \le V_{CCAUX} \le V_{CCAUX}$ (MAX). 3. $0 \le V_{CCIO} \le V_{CCIO}$ (MAX) for top and bottom I/O banks. 4. $0.2 \le V_{CCIO} \le V_{CCIO}$ (MAX) for left and right I/O banks. 5. I_{DK} is additive to I_{PU} , I_{PW} or I_{BH} . 6. LVCMOS and LVTTL only.

Programming and Erase Flash Supply Current^{1, 2, 3, 4, 5}

Symbol	Parameter	Device	Typ. ⁶	Units
		LFXP3E	30	mA
		LFXP6E	40	mA
		LFXP10E	50	mA
I _{CC}		LFXP15E	60	mA
	Coro Powor Supply	LFXP20E	70	mA
		LFXP3C	50	mA
		LFXP6C	60	mA
		LFXP10C	90	mA
		LFXP15C	100	mA
		LFXP20C	110	mA
		LFXP3E/C	50	mA
		LFXP6E/C	60	mA
ICCAUX	Auxiliary Power Supply $V_{COMUN} = 3.3V$	LFXP10E/C	90	mA
	CCAUX CICL	LFXP15E/C	110	mA
		LFXP20E/C	130	mA
ICCJ	V _{CCJ} Power Supply ⁷	All	2	mA

1. For further information on supply current, please see details of additional technical documentation at the end of this data sheet.

2. Assumes all outputs are tristated, all inputs are configured as LVCMOS and held at the $V_{\mbox{CCIO}}$ or GND.

3. Blank user pattern; typical Flash pattern.

4. Bypass or decoupling capacitor across the supply.

5. JTAG programming is at 1MHz.

6. $T_A=25^{\circ}C$, power supplies at nominal voltage.

7. When programming via JTAG.

sysIO Differential Electrical Characteristics LVDS

Parameter Symbol	Parameter Description	Test Conditions	Min.	Тур.	Max.	Units
V _{INP,} V _{INM}	Input Voltage		0	_	2.4	V
V _{THD}	Differential Input Threshold		+/-100	_	—	mV
		$100mV \le V_{THD}$	V _{THD} /2	1.2	1.8	V
V _{CM}	Input Common Mode Voltage	$200mV \leq V_{THD}$	V _{THD} /2	1.2	1.9	V
		$350mV \le V_{THD}$	V _{THD} /2	1.2	2.0	V
I _{IN}	Input current	Power on or power off	—	_	+/-10	μA
V _{OH}	Output high voltage for V_{OP} or V_{OM}	R _T = 100 ohms	—	1.38	1.60	V
V _{OL}	Output low voltage for V_{OP} or V_{OM}	R _T = 100 ohms	0.9V	1.03	—	V
V _{OD}	Output voltage differential	$(V_{OP} - V_{OM}), R_T = 100 \text{ ohms}$	250	350	450	mV
ΔV _{OD}	Change in V _{OD} between high and low		—	_	50	mV
V _{OS}	Output voltage offset	$(V_{OP} - V_{OM})/2, R_T = 100 \text{ ohms}$	1.125	1.25	1.375	V
ΔV_{OS}	Change in V _{OS} between H and L		—	_	50	mV
I _{OSD}	Output short circuit current	V _{OD} = 0V Driver outputs shorted	—	—	6	mA

Over Recommended Operating Conditions

LatticeXP Internal Timing Parameters¹

		-5		-4		-3		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
PFU/PFF Logic	Mode Timing							
t _{LUT4_PFU}	LUT4 Delay (A to D Inputs to F Output)	—	0.28		0.34		0.40	ns
t _{LUT6_PFU}	LUT6 Delay (A to D Inputs to OFX Output)		0.44		0.53		0.63	ns
t _{LSR_PFU}	Set/Reset to Output of PFU		0.90		1.08		1.29	ns
t _{SUM_PFU}	Clock to Mux (M0,M1) Input Setup Time	0.13		0.15		0.19	_	ns
t _{HM_PFU}	Clock to Mux (M0,M1) Input Hold Time	-0.04		-0.03	—	-0.03	_	ns
t _{SUD_PFU}	Clock to D Input Setup Time	0.13		0.16		0.19	_	ns
t _{HD_PFU}	Clock to D Input Hold Time	-0.03		-0.02	—	-0.02		ns
t _{CK2Q_PFU}	Clock to Q Delay, D-type Register Configuration		0.40		0.48		0.58	ns
t _{LE2Q_PFU}	Clock to Q Delay Latch Configuration		0.53		0.64		0.76	ns
t _{LD2Q_PFU}	D to Q Throughput Delay when Latch is Enabled	—	0.55		0.66		0.79	ns
PFU Dual Port M	Nemory Mode Timing							
t _{CORAM_PFU}	Clock to Output		0.40		0.48		0.58	ns
t _{SUDATA_PFU}	Data Setup Time	-0.18		-0.14	—	-0.11	_	ns
t _{HDATA_PFU}	Data Hold Time	0.28		0.34	—	0.40	_	ns
t _{SUADDR_PFU}	Address Setup Time	-0.46		-0.37	—	-0.30	_	ns
t _{HADDR_PFU}	Address Hold Time	0.71		0.85	—	1.02	_	ns
t _{SUWREN_PFU}	Write/Read Enable Setup Time	-0.22		-0.17	—	-0.14	_	ns
t _{HWREN_PFU}	Write/Read Enable Hold Time	0.33		0.40	—	0.48	_	ns
PIC Timing								
PIO Input/Outpu	It Buffer Timing							
t _{IN_PIO}	Input Buffer Delay		0.62		0.72		0.85	ns
t _{OUT_PIO}	Output Buffer Delay	—	2.12		2.54		3.05	ns
IOLOGIC Input/	Output Timing							
t _{SUI_PIO}	Input Register Setup Time (Data Before Clock)	1.35		1.83		2.37	_	ns
t _{HI_PIO}	Input Register Hold Time (Data After Clock)	0.05		0.05	—	0.05		ns
t _{COO_PIO}	Output Register Clock to Output Delay		0.36		0.44		0.52	ns
t _{SUCE_PIO}	Input Register Clock Enable Setup Time	-0.09	—	-0.07	—	-0.06	_	ns
t _{HCE_PIO}	Input Register Clock Enable Hold Time	0.13		0.16	—	0.19	_	ns
t _{SULSR_PIO}	Set/Reset Setup Time	0.19		0.23	—	0.28	_	ns
t _{HLSR_PIO}	Set/Reset Hold Time	-0.14	—	-0.11	—	-0.09	_	ns
EBR Timing								
t _{CO_EBR}	Clock to Output from Address or Data		4.01		4.81		5.78	ns
t _{COO_EBR}	Clock to Output from EBR Output Register		0.81		0.97		1.17	ns
t _{SUDATA_EBR}	Setup Data to EBR Memory	-0.26		-0.21	—	-0.17	_	ns
t _{HDATA_EBR}	Hold Data to EBR Memory	0.41		0.49	—	0.59	_	ns
t _{SUADDR_EBR}	Setup Address to EBR Memory	-0.26		-0.21	—	-0.17	_	ns
t _{HADDR_EBR}	Hold Address to EBR Memory	0.41	—	0.49	—	0.59	—	ns
t _{SUWREN_EBR}	Setup Write/Read Enable to EBR Memory	-0.17	—	-0.13	—	-0.11	—	ns
t _{HWREN_EBR}	Hold Write/Read Enable to EBR Memory	0.26	—	0.31	—	0.37	—	ns
t _{SUCE_EBR}	Clock Enable Setup Time to EBR Output Register	0.19	—	0.23	—	0.28	—	ns
t _{HCE EBR}	Clock Enable Hold Time to EBR Output Register	-0.13	—	-0.10	—	-0.08	—	ns

Over Recommended Operating Conditions

LatticeXP Internal Timing Parameters¹ (Continued)

Over Recommended Operating Conditions

		-	5	-	4	-		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{RSTO_EBR}	Reset To Output Delay Time from EBR Output Register	_	1.61	_	1.94	_	2.32	ns
PLL Parameters								
t _{RSTREC}	Reset Recovery to Rising Clock	1.00	_	1.00	_	1.00	—	ns
t _{RSTSU}	Reset Signal Setup Time	1.00	-	1.00	_	1.00	—	ns

1. Internal parameters are characterized but not tested on every device. Timing v.F0.11

EBR Memory Timing Diagrams

Figure 3-8. Read Mode (Normal)

Note: Input data and address are registered at the positive edge of the clock and output data appears after the positive of the clock.

Figure 3-9. Read Mode with Input and Output Registers

LFXP3 & LFXP6 Logic Signal Connections: 144 TQFP (Cont.)

Din			LFXP3		LFXP6				
Number	Pin Function	Bank	Differential	Dual Function	Pin Function	Bank	Differential	Dual Function	
93	PR9A	2	Т	PCLKT2_0	PR12A	2	Т	PCLKT2_0	
94	PR8B	2	С	RUM0_PLLC_IN_A	PR8B	2	С	RUM0_PLLC_IN_A	
95	PR8A	2	Т	RUM0_PLLT_IN_A	PR8A	2	Т	RUM0_PLLT_IN_A	
96	PR7B	2	C ³	-	PR7B	2	C ³	-	
97	PR7A	2	T ³	DQS	PR7A	2	T ³	DQS	
98	VCCIO2	2	-	-	VCCIO2	2	-	-	
99	PR6B	2	-	VREF1_2	PR6B	2	-	VREF1_2	
100	PR5A	2	-	VREF2_2	PR5A	2	-	VREF2_2	
101	GNDIO2	2	-	-	GNDIO2	2	-	-	
102	PR3B	2	С	RUM0_PLLC_FB_A	PR3B	2	С	RUM0_PLLC_FB_A	
103	PR3A	2	Т	RUM0_PLLT_FB_A	PR3A	2	Т	RUM0_PLLT_FB_A	
104	PR2B	2	C ³	-	PR2B	2	C ³	-	
105	PR2A	2	T ³	-	PR2A	2	T ³	-	
106	VCCAUX	-	-	-	VCCAUX	-	-	-	
107	TDO	-	-	-	TDO	-	-	-	
108	VCCJ	-	-	-	VCCJ	-	-	-	
109	TDI	-	-	-	TDI	-	-	-	
110	TMS	-	-	-	TMS	-	-	-	
111	ТСК	-	-	-	TCK	-	-	-	
112	VCC	-	-	-	VCC	-	-	-	
113	PT25A	1	-	VREF1_1	PT28A	1	-	VREF1_1	
114	PT24A	1	-	-	PT27A	1	-	-	
115	PT23A	1	-	D0	PT26A	1	-	D0	
116	PT22B	1	С	D1	PT25B	1	С	D1	
117	PT22A	1	Т	VREF2_1	PT25A	1	Т	VREF2_1	
118	PT21A	1	-	D2	PT24A	1	-	D2	
119	VCCIO1	1	-	-	VCCI01	1	-	-	
120	PT20B	1	-	D3	PT23B	1	-	D3	
121	GNDIO1	1	-	-	GNDIO1	1	-	-	
122	PT17A	1	-	D4	PT20A	1	-	D4	
123	PT16A	1	-	D5	PT19A	1	-	D5	
124	PT15B	1	С	D6	PT18B	1	С	D6	
125	PT15A	1	Т	-	PT18A	1	Т	-	
126	PT14B	1	-	D7	PT17B	1	-	D7	
127	GND	-	-	-	GND	-	-	-	
128	PT13B	0	С	BUSY	PT16B	0	С	BUSY	
129	PT13A	0	Т	CS1N	PT16A	0	Т	CS1N	
130	PT12B	0	С	PCLKC0_0	PT15B	0	С	PCLKC0_0	
131	PT12A	0	Т	PCLKT0_0	PT15A	0	Т	PCLKT0_0	
132	PT11B	0	С	-	PT14B	0	С	-	
133	VCCIO0	0	-	-	VCCIO0	0	-	-	
134	PT11A	0	Т	DQS	PT14A	0	Т	DQS	
135	PT9A	0	-	DOUT	PT12A	0	-	DOUT	
136	GNDIO0	0	-	-	GNDIO0	0	-	-	
137	PT8A	0	-	WRITEN	PT11A	0	-	WRITEN	
138	PT7A	0	-	VREF1_0	PT10A	0	-	VREF1_0	

LFXP3 & LFXP6 Logic Signal Connections: 208 PQFP (Cont.)

Din			LFXP3		LFXP6			
Number	Pin Function	Bank	Differential	Dual Function	Pin Function	Bank	Differential	Dual Function
185	PT13A	0	Т	CS1N	PT16A	0	Т	CS1N
186	PT12B	0	С	PCLKC0_0	PT15B	0	С	PCLKC0_0
187	PT12A	0	Т	PCLKT0_0	PT15A	0	Т	PCLKT0_0
188	PT11B	0	С	-	PT14B	0	С	-
189	VCCIO0	0	-	-	VCCIO0	0	-	-
190	PT11A	0	Т	DQS	PT14A	0	Т	DQS
191	PT10B	0	-	-	PT13B	0	-	-
192	PT9A	0	-	DOUT	PT12A	0	-	DOUT
193	PT8B	0	С	-	PT11B	0	С	-
194	GNDIO0	0	-	-	GNDIO0	0	-	-
195	PT8A	0	Т	WRITEN	PT11A	0	Т	WRITEN
196	PT7B	0	С	-	PT10B	0	С	-
197	PT7A	0	Т	VREF1_0	PT10A	0	Т	VREF1_0
198	PT6B	0	С	-	PT9B	0	С	-
199	VCCIO0	0	-	-	VCCIO0	0	-	-
200	PT6A	0	Т	DI	PT9A	0	Т	DI
201	PT5B	0	С	-	PT8B	0	С	-
202	PT5A	0	Т	CSN	PT8A	0	Т	CSN
203	PT4B	0	С	-	PT7B	0	С	-
204	PT4A	0	Т	-	PT7A	0	Т	-
205	PT3B	0	-	VREF2_0	PT6B	0	-	VREF2_0
206	PT2B	0	-	-	PT5B	0	-	-
207	GND	-	-	-	GND	-	-	-
208	CFG0	0	-	-	CFG0	0	-	-

Applies to LFXP "C" only.
Applies to LFXP "E" only.

3. Supports dedicated LVDS outputs.

LFXP6 & LFXP10 Logic Signal Connections: 256 fpBGA (Cont.)

			LFXP6		LFXP10			
Ball Number	Ball Function	Bank	Differential	Dual Function	Ball Function	Bank	Differential	Dual Function
L15	PR21B	3	C ³	-	PR28B	3	C ³	-
L14	PR21A	3	T ³	-	PR28A	3	T ³	-
-	GNDIO3	3	-	-	GNDIO3	3	-	-
L12	PR17B	3	С	-	PR26A	3	-	-
M16	PR20B	3	С	-	PR25B	3	С	RLM0_PLLC_IN_A
N16	PR20A	3	Т	-	PR25A	3	Т	RLM0_PLLT_IN_A
K14	PR19B	3	C ³	-	PR24B	3	C ³	-
K15	PR19A	3	T ³	-	PR24A	3	T ³	DQS
K12	PR17A	3	Т	-	PR23B	3	-	-
K13	PR22A	3	-	VREF2_3	PR22A	3	-	VREF2_3
-	GNDIO3	3	-	-	GNDIO3	3	-	-
L16	PR18B	3	C ³	-	PR21B	3	C ³	-
K16	PR18A	3	T ³	-	PR21A	3	T ³	-
J15	PR16B	3	C ³	-	PR19B	3	C ³	-
J14	PR16A	3	T ³	-	PR19A	3	T ³	-
J13	GNDP1	-	-	-	GNDP1	-	-	-
J12	VCCP1	-	-	-	VCCP1	-	-	-
-	GNDIO2	2	-	-	GNDIO2	2	-	-
J16	PR12B	2	С	PCLKC2_0	PR17B	2	С	PCLKC2_0
H16	PR12A	2	Т	PCLKT2_0	PR17A	2	Т	PCLKT2_0
H13	PR13B	2	C ³	-	PR16B	2	C ³	-
H12	PR13A	2	T ³	-	PR16A	2	T ³	DQS
H15	PR2B	2	C ³	-	PR15B	2	-	-
H14	PR6B	2	-	VREF1_2	PR14A	2	-	VREF1_2
-	GNDIO2	2	-	-	GNDIO2	2	-	-
G15	PR11B	2	C ³	-	PR13B	2	C ³	-
G14	PR11A	2	T ³	-	PR13A	2	T ³	-
G16	PR8B	2	С	RUM0_PLLC_IN_A	PR12B	2	С	RUM0_PLLC_IN_A
F16	PR8A	2	Т	RUM0_PLLT_IN_A	PR12A	2	Т	RUM0_PLLT_IN_A
G13	PR2A	2	T ³	-	PR11B	2	-	-
-	GNDIO2	2	-	-	GNDIO2	2	-	-
G12	PR9B	2	C ³	-	PR8B	2	С	-
F13	PR9A	2	T ³	-	PR8A	2	Т	-
B16	PR7B	2	C ³	-	PR7B	2	C ³	-
C16	PR7A	2	T ³	DQS	PR7A	2	T ³	DQS
F15	PR14A	2	-	-	PR6B	2	-	-
E15	PR5A	2	-	VREF2_2	PR5A	2	-	VREF2_2
-	GNDIO2	2	-	-	GNDIO2	2	-	-
F14	PR4B	2	C ³	-	PR4B	2	C ³	-
E14	PR4A	2	T ³	-	PR4A	2	T ³	-
D15	PR3B	2	С	RUM0_PLLC_FB_A	PR3B	2	С	RUM0_PLLC_FB_A
C15	PR3A	2	Т	RUM0_PLLT_FB_A	PR3A	2	Т	RUM0_PLLT_FB_A

LFXP6 & LFXP10 Logic Signal Connections: 256 fpBGA (Cont.)

		LFXP6		LFXP10				
Ball Number	Ball Function	Bank	Differential	Dual Function	Ball Function	Bank	Differential	Dual Function
E16	TDO	-	-	-	TDO	-	-	-
D16	VCCJ	-	-	-	VCCJ	-	-	-
D14	TDI	-	-	-	TDI	-	-	-
C14	TMS	-	-	-	TMS	-	-	-
B14	ТСК	-	-	-	ТСК	-	-	-
-	GNDIO1	1	-	-	GNDIO1	1	-	-
A15	PT31B	1	C	-	PT35B	1	C	-
B15	PT31A	1	Т	-	PT35A	1	Т	-
-	GNDIO1	1	-	-	GNDIO1	1	-	-
D12	PT28A	1	-	VREF1_1	PT34B	1	C	VREF1_1
C11	PT30A	1	Т	DQS	PT34A	1	Т	DQS
A14	PT29B	1	-	-	PT33B	1	-	-
B13	PT30B	1	С	-	PT32A	1	-	-
F12	PT27B	1	С	-	PT31B	1	C	-
E11	PT27A	1	Т	-	PT31A	1	Т	-
A13	PT26B	1	С	-	PT30B	1	C	-
C13	PT26A	1	Т	D0	PT30A	1	Т	D0
-	GNDIO1	1	-	-	GNDIO1	1	-	-
C10	PT25B	1	С	D1	PT29B	1	C	D1
E10	PT25A	1	Т	VREF2_1	PT29A	1	Т	VREF2_1
A12	PT24B	1	С	-	PT28B	1	C	-
B12	PT24A	1	Т	D2	PT28A	1	Т	D2
C12	PT23B	1	C	D3	PT27B	1	С	D3
A11	PT23A	1	Т	-	PT27A	1	Т	-
B11	PT22B	1	С	-	PT26B	1	С	-
D11	PT22A	1	Т	DQS	PT26A	1	Т	DQS
-	GNDIO1	1	-	-	GNDIO1	1	-	-
B9	PT21B	1	-	-	PT25B	1	-	-
D9	PT20A	1	-	D4	PT24A	1	-	D4
A10	PT19B	1	C	-	PT23B	1	С	-
B10	PT19A	1	Т	D5	PT23A	1	Т	D5
D10	PT18B	1	С	D6	PT22B	1	С	D6
A9	PT18A	1	Т	-	PT22A	1	Т	-
C9	PT17B	1	C	D7	PT21B	1	С	D7
C8	PT17A	1	Т	-	PT21A	1	Т	-
E9	PT16B	0	С	BUSY	PT20B	0	С	BUSY
-	GNDIO0	0	-	-	GNDIO0	0	-	-
B8	PT16A	0	Т	CS1N	PT20A	0	Т	CS1N
A8	PT15B	0	С	PCLKC0_0	PT19B	0	C	PCLKC0_0
A7	PT15A	0	Т	PCLKT0_0	PT19A	0	Т	PCLKT0_0
B7	PT14B	0	С	-	PT18B	0	С	-
C7	PT14A	0	Т	DQS	PT18A	0	Т	DQS

LFXP15 & LFXP20 Logic Signal Connections: 256 fpBGA (Cont.)

		LFXP15		LFXP20				
Ball Number	Ball Function	Bank	Differential	Dual Function	Ball Function	Bank	Differential	Dual Function
L4	PL32A	6	-	-	PL36A	6	-	-
-	GNDIO6	6	-	-	GNDIO6	6	-	-
K4	PL33A	6	Т	-	PL37A	6	Т	-
K5	PL33B	6	С	-	PL37B	6	С	-
N1	PL35A	6	-	VREF2_6	PL39A	6	-	VREF2_6
N2	PL36B	6	-	-	PL40B	6	-	-
P1	PL37A	6	Т³	DQS	PL41A	6	T ³	DQS
P2	PL37B	6	C³	-	PL41B	6	C ³	-
-	GNDIO6	6	-	-	GNDIO6	6	-	-
L5	PL38A	6	Т	LLM0_PLLT_FB_A	PL42A	6	Т	LLM0_PLLT_FB_A
M6	PL38B	6	С	LLM0_PLLC_FB_A	PL42B	6	С	LLM0_PLLC_FB_A
M3	PL39A	6	T ³	-	PL43A	6	T ³	-
N3	PL39B	6	C ³	-	PL43B	6	C ³	-
-	GNDIO6	6	-	-	GNDIO6	6	-	-
P4	SLEEPN ¹ /TOE ²	-	-	-	SLEEPN ¹ /TOE ²	-	-	-
P3	INITN	5	-	-	INITN	5	-	-
-	GNDIO5	5	-	-	GNDIO5	5	-	-
-	GNDIO5	5	-	-	GNDIO5	5	-	-
-	GNDIO5	5	-	-	GNDIO5	5	-	-
R4	PB11A	5	Т	-	PB15A	5	Т	-
N5	PB11B	5	С	-	PB15B	5	С	-
P5	PB12A	5	Т	VREF1_5	PB16A	5	Т	VREF1_5
-	GNDIO5	5	-	-	GNDIO5	5	-	-
R1	PB12B	5	С	-	PB16B	5	С	-
N6	PB13A	5	-	-	PB17A	5	-	-
M7	PB14B	5	-	-	PB18B	5	-	-
R2	PB15A	5	Т	DQS	PB19A	5	Т	DQS
T2	PB15B	5	С	-	PB19B	5	С	-
R3	PB16A	5	Т	-	PB20A	5	Т	-
Т3	PB16B	5	С	-	PB20B	5	С	-
T4	PB17A	5	Т	-	PB21A	5	Т	-
R5	PB17B	5	С	VREF2_5	PB21B	5	С	VREF2_5
N7	PB18A	5	Т	-	PB22A	5	Т	-
-	GNDIO5	5	-	-	GNDIO5	5	-	-
M8	PB18B	5	С	-	PB22B	5	С	-
T5	PB19A	5	Т	-	PB23A	5	Т	-
P6	PB19B	5	С	-	PB23B	5	С	-
T6	PB20A	5	Т	-	PB24A	5	Т	-
R6	PB20B	5	С	-	PB24B	5	С	-
P7	PB21A	5	-	-	PB25A	5	-	-
N8	PB22B	5	-	-	PB26B	5	-	-
R7	PB23A	5	Т	DQS	PB27A	5	Т	DQS

LFXP15 & LFXP20 Logic Signal Connections: 484 fpBGA (Cont.)

			LFXP15		LFXP20				
Ball Number	Ball Function	Bank	Differential	Dual Function	Ball Function	Bank	Differential	Dual Function	
D18	-	-	-	-	PT55B	1	С	-	
E18	-	-	-	-	PT55A	1	Т	-	
C19	-	-	-	-	PT54B	1	C	-	
C18	-	-	-	-	PT54A	1	Т	-	
C21	-	-	-	-	PT53B	1	C	-	
-	GNDIO1	1	-	-	GNDIO1	1	-	-	
B21	-	-	-	-	PT53A	1	Т	-	
E17	PT48B	1	С	-	PT52B	1	C	-	
E16	PT48A	1	Т	-	PT52A	1	Т	-	
C17	PT47B	1	С	-	PT51B	1	C	-	
D17	PT47A	1	Т	DQS	PT51A	1	Т	DQS	
F17	PT46B	1	-	-	PT50B	1	-	-	
F16	PT45A	1	-	-	PT49A	1	-	-	
C16	PT44B	1	С	-	PT48B	1	C	-	
D16	PT44A	1	Т	-	PT48A	1	Т	-	
A20	PT43B	1	С	-	PT47B	1	C	-	
-	GNDIO1	1	-	-	GNDIO1	1	-	-	
B20	PT43A	1	Т	-	PT47A	1	Т	-	
A19	PT42B	1	С	-	PT46B	1	C	-	
B19	PT42A	1	Т	-	PT46A	1	Т	-	
C15	PT41B	1	С	-	PT45B	1	C	-	
D15	PT41A	1	Т	-	PT45A	1	Т	-	
A18	PT40B	1	С	-	PT44B	1	C	-	
B18	PT40A	1	Т	-	PT44A	1	Т	-	
F15	PT39B	1	С	VREF1_1	PT43B	1	C	VREF1_1	
-	GNDIO1	1	-	-	GNDIO1	1	-	-	
E15	PT39A	1	Т	DQS	PT43A	1	Т	DQS	
A17	PT38B	1	-	-	PT42B	1	-	-	
B17	PT37A	1	-	-	PT41A	1	-	-	
E14	PT36B	1	С	-	PT40B	1	C	-	
F14	PT36A	1	Т	-	PT40A	1	Т	-	
D14	PT35B	1	С	-	PT39B	1	C	-	
C14	PT35A	1	Т	D0	PT39A	1	Т	D0	
A16	PT34B	1	С	D1	PT38B	1	C	D1	
B16	PT34A	1	Т	VREF2_1	PT38A	1	Т	VREF2_1	
A15	PT33B	1	С	-	PT37B	1	C	-	
B15	PT33A	1	Т	D2	PT37A	1	Т	D2	
-	GNDIO1	1	-	-	GNDIO1	1	-	-	
E13	PT32B	1	С	D3	PT36B	1	C	D3	
D13	PT32A	1	Т	-	PT36A	1	Т	-	
C13	PT31B	1	С	-	PT35B	1	C	-	
B13	PT31A	1	Т	DQS	PT35A	1	Т	DQS	

			•	,			
Part Number	l/Os	Voltage	Grade	Package	Pins	Temp.	LUTs
LFXP6E-3F256C	188	1.2V	-3	fpBGA	256	COM	5.8K
LFXP6E-4F256C	188	1.2V	-4	fpBGA	256	COM	5.8K
LFXP6E-5F256C	188	1.2V	-5	fpBGA	256	COM	5.8K
LFXP6E-3Q208C	142	1.2V	-3	PQFP	208	COM	5.8K
LFXP6E-4Q208C	142	1.2V	-4	PQFP	208	COM	5.8K
LFXP6E-5Q208C	142	1.2V	-5	PQFP	208	COM	5.8K
LFXP6E-3T144C	100	1.2V	-3	TQFP	144	COM	5.8K
LFXP6E-4T144C	100	1.2V	-4	TQFP	144	COM	5.8K
LFXP6E-5T144C	100	1.2V	-5	TQFP	144	COM	5.8K

Part Number	I/Os	Voltage	Grade	Package	Pins	Temp.	LUTs
LFXP10E-3F388C	244	1.2V	-3	fpBGA	388	COM	9.7K
LFXP10E-4F388C	244	1.2V	-4	fpBGA	388	COM	9.7K
LFXP10E-5F388C	244	1.2V	-5	fpBGA	388	COM	9.7K
LFXP10E-3F256C	188	1.2V	-3	fpBGA	256	COM	9.7K
LFXP10E-4F256C	188	1.2V	-4	fpBGA	256	COM	9.7K
LFXP10E-5F256C	188	1.2V	-5	fpBGA	256	COM	9.7K

Part Number	l/Os	Voltage	Grade	Package	Pins	Temp.	LUTs
LFXP15E-3F484C	300	1.2V	-3	fpBGA	484	COM	15.5K
LFXP15E-4F484C	300	1.2V	-4	fpBGA	484	COM	15.5K
LFXP15E-5F484C	300	1.2V	-5	fpBGA	484	COM	15.5K
LFXP15E-3F388C	268	1.2V	-3	fpBGA	388	COM	15.5K
LFXP15E-4F388C	268	1.2V	-4	fpBGA	388	COM	15.5K
LFXP15E-5F388C	268	1.2V	-5	fpBGA	388	COM	15.5K
LFXP15E-3F256C	188	1.2V	-3	fpBGA	256	COM	15.5K
LFXP15E-4F256C	188	1.2V	-4	fpBGA	256	COM	15.5K
LFXP15E-5F256C	188	1.2V	-5	fpBGA	256	COM	15.5K

Commercial (Cont.)

Date	Version	Section	Change Summary
September 2005 (cont.)	03.0 (cont.)	DC and Switching Characteristics (cont.)	Updated Typical Building Block Function Performance timing numbers.
			Updated External Switching Characteristics timing numbers.
			Updated Internal Timing Parameters.
			Updated LatticeXP Family timing adders.
			Updated LatticeXP "C" Sleep Mode timing numbers.
			Updated JTAG Port Timing numbers.
		Pinout Information	Added clarification to SLEEPN and TOE description.
			Clarification of dedicated LVDS outputs.
		Supplemental Information	Updated list of technical notes.
September 2005	03.1	Pinout Information	Power Supply and NC Connections table corrected VCCP1 pin number for 208 PQFP.
December 2005	04.0	Introduction	Moved data sheet from Advance to Final.
		Architecture	Added clarification to Typical I/O Behavior During Power-up section.
		DC and Switching Characteristics	Added clarification to Recommended Operating Conditions.
			Updated timing numbers.
		Pinout Information	Updated Signal Descriptions table.
			Added clarification to Differential I/O Per Bank.
			Updated Differential dedicated LVDS output support.
		Ordering Information	Added 208 PQFP lead-free package and ordering part numbers.
February 2006	04.1	Pinout Information	Corrected description of Signal Names VREF1(x) and VREF2(x).
March 2006	04.2	DC and Switching Characteristics	Corrected condition for IIL and IIH.
March 2006	04.3	DC and Switching Characteristics	Added clarification to Recommended Operating Conditions for VCCAUX.
April 2006	04.4	Pinout Information	Removed Bank designator "5" from SLEEPN/TOE ball function.
May 2006	04.5	DC and Switching Characteristics	Added footnote 2 regarding threshold level for PROGRAMN to sysCON- FIG Port Timing Specifications table.
June 2006	04.6	DC and Switching Characteristics	Corrected LVDS25E Output Termination Example.
August 2006	04.7	Architecture	Added clarification to Typical I/O Behavior During Power-Up section.
			Added clarification to Left and Right sysIO Buffer Pair section.
		DC and Switching Characteristics	Changes to LVDS25E Output Termination Example diagram.
December 2006	04.8	Architecture	EBR Asynchronous Reset section added.
February 2007	04.9	Architecture	Updated EBR Asynchronous Reset section.
July 2007	05.0	Introduction	Updated LatticeXP Family Selection Guide table.
		Architecture	Updated Typical I/O Behavior During Power-up text section.
		DC and Switching Characteristics	Updated sysIO Single-Ended DC Electrical Characteristics table. Split out LVCMOS 1.2 by supply voltage.
November 2007	05.1	DC and Switching Characteristics	Added JTAG Port Timing Waveforms diagram.
		Pinout Information	Added Thermal Management text section.
		Supplemental Information	Updated title list.