

Welcome to E-XFL.COM

#### Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

#### **Applications of Embedded - FPGAs**

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

#### Details

| Product Status                 | Obsolete                                                                  |
|--------------------------------|---------------------------------------------------------------------------|
| Number of LABs/CLBs            | -                                                                         |
| Number of Logic Elements/Cells | 6000                                                                      |
| Total RAM Bits                 | 73728                                                                     |
| Number of I/O                  | 100                                                                       |
| Number of Gates                | -                                                                         |
| Voltage - Supply               | 1.14V ~ 1.26V                                                             |
| Mounting Type                  | Surface Mount                                                             |
| Operating Temperature          | 0°C ~ 85°C (TJ)                                                           |
| Package / Case                 | 144-LQFP                                                                  |
| Supplier Device Package        | 144-TQFP (20x20)                                                          |
| Purchase URL                   | https://www.e-xfl.com/product-detail/lattice-semiconductor/lfxp6e-4tn144c |
|                                |                                                                           |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



# LatticeXP Family Data Sheet Introduction

#### July 2007

### **Features**

### ■ Non-volatile, Infinitely Reconfigurable

- Instant-on powers up in microseconds
- No external configuration memory
- Excellent design security, no bit stream to intercept
- Reconfigure SRAM based logic in milliseconds
- SRAM and non-volatile memory programmable through system configuration and JTAG ports
- Sleep Mode
  - Allows up to 1000x static current reduction
- TransFR<sup>™</sup> Reconfiguration (TFR)
  In-field logic update while system operates
- Extensive Density and Package Options
  - 3.1K to 19.7K LUT4s
  - 62 to 340 I/Os
  - Density migration supported

#### Embedded and Distributed Memory

- 54 Kbits to 396 Kbits sysMEM<sup>™</sup> Embedded Block RAM
- Up to 79 Kbits distributed RAM
- Flexible memory resources:
  - Distributed and block memory

### ■ Flexible I/O Buffer

• Programmable sysIO<sup>™</sup> buffer supports wide range of interfaces:

Data Sheet DS1001

- LVCMOS 3.3/2.5/1.8/1.5/1.2
- LVTTL
- SSTL 18 Class I
- SSTL 3/2 Class I, II
- HSTL15 Class I, III
- HSTL 18 Class I, II, III
- PCI
- LVDS, Bus-LVDS, LVPECL, RSDS
- Dedicated DDR Memory Support
  - Implements interface up to DDR333 (166MHz)

#### ■ sysCLOCK<sup>™</sup> PLLs

- Up to 4 analog PLLs per device
- Clock multiply, divide and phase shifting
- System Level Support
  - IEEE Standard 1149.1 Boundary Scan, plus ispTRACY™ internal logic analyzer capability
  - Onboard oscillator for configuration
  - Devices operate with 3.3V, 2.5V, 1.8V or 1.2V power supply

| Device                       | LFXP3            | LFXP6            | LFXP10           | LFXP15           | LFXP20           |
|------------------------------|------------------|------------------|------------------|------------------|------------------|
| PFU/PFF Rows                 | 16               | 24               | 32               | 40               | 44               |
| PFU/PFF Columns              | 24               | 30               | 38               | 48               | 56               |
| PFU/PFF (Total)              | 384              | 720              | 1216             | 1932             | 2464             |
| LUTs (K)                     | 3                | 6                | 10               | 15               | 20               |
| Distributed RAM (KBits)      | 12               | 23               | 39               | 61               | 79               |
| EBR SRAM (KBits)             | 54               | 72               | 216              | 324              | 396              |
| EBR SRAM Blocks              | 6                | 8                | 24               | 36               | 44               |
| V <sub>CC</sub> Voltage      | 1.2/1.8/2.5/3.3V | 1.2/1.8/2.5/3.3V | 1.2/1.8/2.5/3.3V | 1.2/1.8/2.5/3.3V | 1.2/1.8/2.5/3.3V |
| PLLs                         | 2                | 2                | 4                | 4                | 4                |
| Max. I/O                     | 136              | 188              | 244              | 300              | 340              |
| Packages and I/O Combination | ons:             |                  |                  |                  |                  |
| 100-pin TQFP (14 x 14 mm)    | 62               |                  |                  |                  |                  |
| 144-pin TQFP (20 x 20 mm)    | 100              | 100              |                  |                  |                  |
| 208-pin PQFP (28 x 28 mm)    | 136              | 142              |                  |                  |                  |
| 256-ball fpBGA (17 x 17 mm)  |                  | 188              | 188              | 188              | 188              |
| 388-ball fpBGA (23 x 23 mm)  |                  |                  | 244              | 268              | 268              |
| 484-ball fpBGA (23 x 23 mm)  |                  |                  |                  | 300              | 340              |

Table 1-1. LatticeXP Family Selection Guide

© 2007 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

### Lattice Semiconductor

#### Figure 2-8. Per Quadrant Secondary Clock Selection



#### Figure 2-9. Slice Clock Selection



### sysCLOCK Phase Locked Loops (PLLs)

The PLL clock input, from pin or routing, feeds into an input clock divider. There are three sources of feedback signals to the feedback divider: from CLKOP (PLL internal), from clock net (CLKOP or CLKOS) or from a user clock (PIN or logic). There is a PLL\_LOCK signal to indicate that VCO has locked on to the input clock signal. Figure 2-10 shows the sysCLOCK PLL diagram.

The setup and hold times of the device can be improved by programming a delay in the feedback or input path of the PLL which will advance or delay the output clock with reference to the input clock. This delay can be either programmed during configuration or can be adjusted dynamically. In dynamic mode, the PLL may lose lock after adjustment and not relock until the t<sub>LOCK</sub> parameter has been satisfied. Additionally, the phase and duty cycle block allows the user to adjust the phase and duty cycle of the CLKOS output.

The sysCLOCK PLLs provide the ability to synthesize clock frequencies. Each PLL has four dividers associated with it: input clock divider, feedback divider, post scalar divider and secondary clock divider. The input clock divider is used to divide the input clock signal, while the feedback divider is used to multiply the input clock signal. The post scalar divider allows the VCO to operate at higher frequencies than the clock output, thereby increasing the frequency range. The secondary divider is used to derive lower frequency outputs.

For more information on the PLL, please see details of additional technical documentation at the end of this data sheet.

## **Dynamic Clock Select (DCS)**

The DCS is a global clock buffer with smart multiplexer functions. It takes two independent input clock sources and outputs a clock signal without any glitches or runt pulses. This is achieved irrespective of where the select signal is toggled. There are eight DCS blocks per device, located in pairs at the center of each side. Figure 2-12 illustrates the DCS Block Macro.

### Figure 2-12. DCS Block Primitive



Figure 2-13 shows timing waveforms of the default DCS operating mode. The DCS block can be programmed to other modes. For more information on the DCS, please see details of additional technical documentation at the end of this data sheet.

#### Figure 2-13. DCS Waveforms



### sysMEM Memory

The LatticeXP family of devices contain a number of sysMEM Embedded Block RAM (EBR). The EBR consists of a 9-Kbit RAM, with dedicated input and output registers.

### sysMEM Memory Block

The sysMEM block can implement single port, dual port or pseudo dual port memories. Each block can be used in a variety of depths and widths as shown in Table 2-6.





#### Figure 2-22. INDDRXB Primitive



### **Output Register Block**

The output register block provides the ability to register signals from the core of the device before they are passed to the sysIO buffers. The block contains a register for SDR operation that is combined with an additional latch for DDR operation. Figure 2-23 shows the diagram of the Output Register Block.

In SDR mode, ONEG0 feeds one of the flip-flops that then feeds the output. The flip-flop can be configured as a Dtype or as a latch. In DDR mode, ONEG0 is fed into one register on the positive edge of the clock and OPOS0 is latched. A multiplexer running off the same clock selects the correct register for feeding to the output (D0).

Figure 2-24 shows the design tool DDR primitives. The SDR output register has reset and clock enable available. The additional register for DDR operation does not have reset or clock enable available.

Figure 2-23. Output Register Block



\*Latch is transparent when input is low.

### Figure 2-24. ODDRXB Primitive



### Tristate Register Block

The tristate register block provides the ability to register tri-state control signals from the core of the device before they are passed to the sysIO buffers. The block contains a register for SDR operation and an additional latch for DDR operation. Figure 2-25 shows the diagram of the Tristate Register Block.

In SDR mode, ONEG1 feeds one of the flip-flops that then feeds the output. The flip-flop can be configured a Dtype or latch. In DDR mode, ONEG1 is fed into one register on the positive edge of the clock and OPOS1 is latched. A multiplexer running off the same clock selects the correct register for feeding to the output (D0).

| Table 2-8. Supported | <b>Output Standards</b> |
|----------------------|-------------------------|
|----------------------|-------------------------|

| Output Standard                       | Drive                      | V <sub>CCIO</sub> (Nom.) |
|---------------------------------------|----------------------------|--------------------------|
| Single-ended Interfaces               | •                          |                          |
| LVTTL                                 | 4mA, 8mA, 12mA, 16mA, 20mA | 3.3                      |
| LVCMOS33                              | 4mA, 8mA, 12mA 16mA, 20mA  | 3.3                      |
| LVCMOS25                              | 4mA, 8mA, 12mA 16mA, 20mA  | 2.5                      |
| LVCMOS18                              | 4mA, 8mA, 12mA 16mA        | 1.8                      |
| LVCMOS15                              | 4mA, 8mA                   | 1.5                      |
| LVCMOS12                              | 2mA, 6mA                   | 1.2                      |
| LVCMOS33, Open Drain                  | 4mA, 8mA, 12mA 16mA, 20mA  | —                        |
| LVCMOS25, Open Drain                  | 4mA, 8mA, 12mA 16mA, 20mA  | —                        |
| LVCMOS18, Open Drain                  | 4mA, 8mA, 12mA 16mA        | —                        |
| LVCMOS15, Open Drain                  | 4mA, 8mA                   | —                        |
| LVCMOS12, Open Drain                  | 2mA. 6mA                   | —                        |
| PCI33                                 | N/A                        | 3.3                      |
| HSTL18 Class I, II, III               | N/A                        | 1.8                      |
| HSTL15 Class I, III                   | N/A                        | 1.5                      |
| SSTL3 Class I, II                     | N/A                        | 3.3                      |
| SSTL2 Class I, II                     | N/A                        | 2.5                      |
| SSTL18 Class I                        | N/A                        | 1.8                      |
| Differential Interfaces               | •                          |                          |
| Differential SSTL3, Class I, II       | N/A                        | 3.3                      |
| Differential SSTL2, Class I, II       | N/A                        | 2.5                      |
| Differential SSTL18, Class I          | N/A                        | 1.8                      |
| Differential HSTL18, Class I, II, III | N/A                        | 1.8                      |
| Differential HSTL15, Class I, III     | N/A                        | 1.5                      |
| LVDS                                  | N/A                        | 2.5                      |
| BLVDS <sup>1</sup>                    | N/A                        | 2.5                      |
| LVPECL <sup>1</sup>                   | N/A                        | 3.3                      |

1. Emulated with external resistors.

### Hot Socketing

The LatticeXP devices have been carefully designed to ensure predictable behavior during power-up and powerdown. Power supplies can be sequenced in any order. During power up and power-down sequences, the I/Os remain in tristate until the power supply voltage is high enough to ensure reliable operation. In addition, leakage into I/O pins is controlled to within specified limits, which allows easy integration with the rest of the system. These capabilities make the LatticeXP ideal for many multiple power supply and hot-swap applications.

## Sleep Mode

The LatticeXP "C" devices ( $V_{CC} = 1.8/2.5/3.3V$ ) have a sleep mode that allows standby current to be reduced by up to three orders of magnitude during periods of system inactivity. Entry and exit to Sleep Mode is controlled by the SLEEPN pin.

During Sleep Mode, the FPGA logic is non-operational, registers and EBR contents are not maintained and I/Os are tri-stated. Do not enter Sleep Mode during device programming or configuration operation. In Sleep Mode, power supplies can be maintained in their normal operating range, eliminating the need for external switching of power supplies. Table 2-9 compares the characteristics of Normal, Off and Sleep Modes.

# Hot Socketing Specifications<sup>1, 2, 3, 4, 5, 6</sup>

| Symbol          | Parameter                    | Condition                        | Min. | Тур. | Max.    | Units |
|-----------------|------------------------------|----------------------------------|------|------|---------|-------|
| I <sub>DK</sub> | Input or I/O Leakage Current | $0 \le V_{IN} \le V_{IH}$ (MAX.) | -    |      | +/-1000 | μΑ    |

1. Insensitive to sequence of  $V_{CC}$ ,  $V_{CCAUX}$  and  $V_{CCIO}$ . However, assumes monotonic rise/fall rates for  $V_{CC}$ ,  $V_{CCAUX}$  and  $V_{CCIO}$ . 2.  $0 \le V_{CC} \le V_{CC}$  (MAX) or  $0 \le V_{CCAUX} \le V_{CCAUX}$  (MAX). 3.  $0 \le V_{CCIO} \le V_{CCIO}$  (MAX) for top and bottom I/O banks. 4.  $0.2 \le V_{CCIO} \le V_{CCIO}$  (MAX) for left and right I/O banks. 5.  $I_{DK}$  is additive to  $I_{PU}$ ,  $I_{PW}$  or  $I_{BH}$ . 6. LVCMOS and LVTTL only.

## **DC Electrical Characteristics**

| Symbol            | Parameter                                | Condition                                      | Min.           | Тур. | Max.           | Units |
|-------------------|------------------------------------------|------------------------------------------------|----------------|------|----------------|-------|
| I., I., 1, 2, 4   |                                          | $0 \le V_{IN} \le (V_{CCIO} - 0.2V)$           | —              | _    | 10             | μΑ    |
| 'IL, 'IH          | Input of I/O Leakage                     | $(V_{CCIO} - 0.2V) < V_{IN} \le 3.6V$          | —              | _    | 40             | μΑ    |
| I <sub>PU</sub>   | I/O Active Pull-up Current               | $0 \leq V_{IN} \leq 0.7 \ V_{CCIO}$            | -30            | _    | -150           | μΑ    |
| I <sub>PD</sub>   | I/O Active Pull-down Current             | $V_{IL}$ (MAX) $\leq V_{IN} \leq V_{IH}$ (MAX) | 30             | _    | 150            | μΑ    |
| I <sub>BHLS</sub> | Bus Hold Low sustaining current          | $V_{IN} = V_{IL}$ (MAX)                        | 30             | _    | —              | μΑ    |
| I <sub>BHHS</sub> | Bus Hold High sustaining current         | $V_{IN} = 0.7 V_{CCIO}$                        | -30            | _    | —              | μΑ    |
| I <sub>BHLO</sub> | Bus Hold Low Overdrive current           | $0 \le V_{IN} \le V_{IH}$ (MAX)                | —              | _    | 150            | μΑ    |
| I <sub>BHHO</sub> | Bus Hold High Overdrive current          | $0 \le V_{IN} \le V_{IH}$ (MAX)                | —              | _    | -150           | μΑ    |
| V <sub>BHT</sub>  | Bus Hold trip Points                     | $0 \le V_{IN} \le V_{IH}$ (MAX)                | $V_{IL}$ (MAX) | —    | $V_{IH}$ (MIN) | V     |
| C1                | I/O Capacitance <sup>3</sup>             |                                                | _              | 8    | _              | pf    |
| C2                | Dedicated Input Capacitance <sup>3</sup> |                                                | _              | 8    | _              | pf    |

#### **Over Recommended Operating Conditions**

1. Input or I/O leakage current is measured with the pin configured as an input or as an I/O with the output driver tri-stated. It is not measured with the output driver active. Bus maintenance circuits are disabled.

2. Not applicable to SLEEPN/TOE pin.

3. T<sub>A</sub> 25°C, f = 1.0MHz

4. When V<sub>IH</sub> is higher than V<sub>CCIO</sub>, a transient current typically of 30ns in duration or less with a peak current of 6mA can be expected on the high-to-low transition.

## Supply Current (Sleep Mode)<sup>1, 2, 3</sup>

| Symbol                                                              | Parameter                                                                                                                                                                                                                                                                                                 | Device                                                                                                                                                                                                                                                                                                                                                          | Typ.⁴ | Max | Units |
|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|-------|
|                                                                     |                                                                                                                                                                                                                                                                                                           | LFXP3C                                                                                                                                                                                                                                                                                                                                                          | 12    | 65  | μΑ    |
|                                                                     | ParameterLF:LF:LF:LF:LF:LF:LF:LF:LF:LF:LF:LF:LF:LF:LF:LF:LF:LF:LF:LF:LF:LF:LF:LF:LF:LF:LF:LF:LF:LF:LF:LF:LF:LF:LF:LF:LF:LF:LF:LF:LF:LF:LF:LF:LF:LF:LF:LF:LF:LF:LF:LF:LF:LF:LF:LF:LF:LF:LF:LF:LF:LF:LF:LF:LF:LF:LF:LF:LF:LF:LF:LF:LF:LF:LF:LF:LF:LF:LF:LF:LF:LF:LF:LF:LF:LF:LF:LF:LF:LF:LF:LF:LF:LF:LF:LF: | LFXP6C                                                                                                                                                                                                                                                                                                                                                          | 14    | 75  | μA    |
| I <sub>CC</sub>                                                     | Core Power Supply                                                                                                                                                                                                                                                                                         | LFXP10C                                                                                                                                                                                                                                                                                                                                                         | 16    | 85  | μΑ    |
|                                                                     |                                                                                                                                                                                                                                                                                                           | LFXP15C                                                                                                                                                                                                                                                                                                                                                         | 18    | 95  | μΑ    |
|                                                                     |                                                                                                                                                                                                                                                                                                           | LFXP20C                                                                                                                                                                                                                                                                                                                                                         | 20    | 105 | μA    |
| I <sub>CCP</sub>                                                    | PLL Power Supply (per PLL)                                                                                                                                                                                                                                                                                | All LFXP 'C' Devices                                                                                                                                                                                                                                                                                                                                            | 1     | 5   | μΑ    |
|                                                                     |                                                                                                                                                                                                                                                                                                           | LFXP3C                                                                                                                                                                                                                                                                                                                                                          | 2     | 90  | μΑ    |
|                                                                     |                                                                                                                                                                                                                                                                                                           | LFXP6C                                                                                                                                                                                                                                                                                                                                                          | 2     | 100 | μA    |
| ICCAUX                                                              | Auxiliary Power Supply                                                                                                                                                                                                                                                                                    | LFXP10C                                                                                                                                                                                                                                                                                                                                                         | 2     | 110 | μΑ    |
|                                                                     |                                                                                                                                                                                                                                                                                                           | LFXP15C                                                                                                                                                                                                                                                                                                                                                         | 3     | 120 | μΑ    |
|                                                                     |                                                                                                                                                                                                                                                                                                           | LFXP20C                                                                                                                                                                                                                                                                                                                                                         | 4     | 130 | μA    |
|                                                                     |                                                                                                                                                                                                                                                                                                           | LFXP3C                                                                                                                                                                                                                                                                                                                                                          | 2     | 20  | μΑ    |
|                                                                     |                                                                                                                                                                                                                                                                                                           | LFXP6C                                                                                                                                                                                                                                                                                                                                                          | 2     | 22  | μΑ    |
| Symbol<br>I <sub>CC</sub><br>I <sub>CCP</sub><br>I <sub>CCAUX</sub> | Bank Power Supply⁵                                                                                                                                                                                                                                                                                        | LFXP10C                                                                                                                                                                                                                                                                                                                                                         | 2     | 24  | μA    |
|                                                                     |                                                                                                                                                                                                                                                                                                           | LFXP15C                                                                                                                                                                                                                                                                                                                                                         | 3     | 27  | μΑ    |
|                                                                     |                                                                                                                                                                                                                                                                                                           | ParameterDeviceTy $LFXP3C$ 1 $LFXP3C$ 1 $LFXP6C$ 1 $LFXP6C$ 1 $LFXP10C$ 1 $LFXP10C$ 1 $LFXP10C$ 2upply (per PLL)All LFXP 'C' Devices $LFXP3C$ 1 $LFXP6C$ 1 $LFXP10C$ 1 $LFXP10C$ 1 $LFXP10C$ 1 $LFXP20C$ 1 $LFXP15C$ 1 $LFXP6C$ 1 $LFXP10C$ 1 $LFXP20C$ 1 $Supply$ All LFXP 'C' Devices | 4     | 30  | μΑ    |
| I <sub>CCJ</sub>                                                    | VCCJ Power Supply                                                                                                                                                                                                                                                                                         | All LFXP 'C' Devices                                                                                                                                                                                                                                                                                                                                            | 1     | 5   | μΑ    |

1. Assumes all inputs are configured as LVCMOS and held at the VCCIO or GND.

2. Frequency 0MHz.

3. User pattern: blank.

4.  $T_A=25^{\circ}C$ , power supplies at nominal voltage.

5. Per bank.

## sysIO Recommended Operating Conditions

|                     | V <sub>CCIO</sub> |      |       | V <sub>REF</sub> (V) |      |       |
|---------------------|-------------------|------|-------|----------------------|------|-------|
| Standard            | Min.              | Тур. | Max.  | Min.                 | Тур. | Max.  |
| LVCMOS 3.3          | 3.135             | 3.3  | 3.465 | —                    | —    | —     |
| LVCMOS 2.5          | 2.375             | 2.5  | 2.625 | —                    | —    | —     |
| LVCMOS 1.8          | 1.71              | 1.8  | 1.89  | —                    | —    | —     |
| LVCMOS 1.5          | 1.425             | 1.5  | 1.575 | —                    | —    | —     |
| LVCMOS 1.2          | 1.14              | 1.2  | 1.26  | —                    | —    | —     |
| LVTTL               | 3.135             | 3.3  | 3.465 | —                    | —    | —     |
| PCI33               | 3.135             | 3.3  | 3.465 | —                    | —    | —     |
| SSTL18 Class I      | 1.71              | 1.8  | 1.89  | 0.833                | 0.9  | 0.969 |
| SSTL2 Class I, II   | 2.375             | 2.5  | 2.625 | 1.15                 | 1.25 | 1.35  |
| SSTL3 Class I, II   | 3.135             | 3.3  | 3.465 | 1.3                  | 1.5  | 1.7   |
| HSTL15 Class I      | 1.425             | 1.5  | 1.575 | 0.68                 | 0.75 | 0.9   |
| HSTL15 Class III    | 1.425             | 1.5  | 1.575 | —                    | 0.9  | —     |
| HSTL 18 Class I, II | 1.71              | 1.8  | 1.89  | —                    | 0.9  | —     |
| HSTL 18 Class III   | 1.71              | 1.8  | 1.89  | —                    | 1.08 | —     |
| LVDS                | 2.375             | 2.5  | 2.625 | —                    | —    | —     |
| LVPECL <sup>1</sup> | 3.135             | 3.3  | 3.465 | —                    | —    | —     |
| BLVDS <sup>1</sup>  | 2.375             | 2.5  | 2.625 | —                    | _    | —     |

1. Inputs on chip. Outputs are implemented with the addition of external resistors.

### Figure 3-2. BLVDS Multi-point Output Example



### Table 3-2. BLVDS DC Conditions<sup>1</sup>

|                     |                             | Typical |         |       |
|---------------------|-----------------------------|---------|---------|-------|
| Symbol              | Description                 | Zo = 45 | Zo = 90 | Units |
| Z <sub>OUT</sub>    | Output impedance            | 100     | 100     | ohms  |
| R <sub>TLEFT</sub>  | Left end termination        | 45      | 90      | ohms  |
| R <sub>TRIGHT</sub> | Right end termination       | 45      | 90      | ohms  |
| V <sub>OH</sub>     | Output high voltage         | 1.375   | 1.48    | V     |
| V <sub>OL</sub>     | Output low voltage          | 1.125   | 1.02    | V     |
| V <sub>OD</sub>     | Output differential voltage | 0.25    | 0.46    | V     |
| V <sub>CM</sub>     | Output common mode voltage  | 1.25    | 1.25    | V     |
| I <sub>DC</sub>     | DC output current           | 11.2    | 10.2    | mA    |

#### **Over Recommended Operating Conditions**

1. For input buffer, see LVDS table.

### LatticeXP External Switching Characteristics

|                      |                                                                   |                        |       | 5    | -4    |      | -3    |      |       |
|----------------------|-------------------------------------------------------------------|------------------------|-------|------|-------|------|-------|------|-------|
| Parameter            | Description                                                       | Device                 | Min.  | Max. | Min.  | Max. | Min.  | Max. | Units |
| General I/C          | Pin Parameters (Using Primary Clock wit                           | hout PLL) <sup>1</sup> |       |      |       |      |       |      |       |
|                      |                                                                   | LFXP3                  | —     | 5.12 |       | 6.12 | —     | 7.43 | ns    |
| t <sub>co</sub>      |                                                                   | LFXP6                  | —     | 5.30 | —     | 6.34 | -     | 7.69 | ns    |
|                      | Clock to Output - PIO Output Register                             | LFXP10                 | _     | 5.52 |       | 6.60 | —     | 8.00 | ns    |
|                      |                                                                   | LFXP15                 | —     | 5.72 | —     | 6.84 | -     | 8.29 | ns    |
|                      |                                                                   | LFXP20                 | —     | 5.97 | —     | 7.14 | -     | 8.65 | ns    |
|                      |                                                                   | LFXP3                  | -0.40 | —    | -0.28 | —    | -0.16 | —    | ns    |
|                      |                                                                   | LFXP6                  | -0.33 | —    | -0.32 |      | -0.30 | —    | ns    |
| t <sub>SU</sub>      | Clock to Data Setup - PIO Input Register                          | LFXP10                 | -0.61 | —    | -0.71 |      | -0.81 | —    | ns    |
|                      |                                                                   | LFXP15                 | -0.71 | —    | -0.77 |      | -0.87 | —    | ns    |
|                      |                                                                   | LFXP20                 | -0.95 | —    | -1.14 |      | -1.35 | —    | ns    |
|                      |                                                                   | LFXP3                  | 2.10  | —    | 2.50  |      | 2.98  | —    | ns    |
|                      |                                                                   | LFXP6                  | 2.28  | —    | 2.72  | —    | 3.24  | —    | ns    |
| t <sub>H</sub>       | Clock to Data Hold - PIO Input Register                           | LFXP10                 | 3.02  | —    | 3.51  |      | 3.71  | —    | ns    |
|                      |                                                                   | LFXP15                 | 2.70  | —    | 3.22  |      | 3.85  | —    | ns    |
|                      |                                                                   | LFXP20                 | 2.95  | —    | 3.52  | —    | 4.21  | —    | ns    |
|                      |                                                                   | LFXP3                  | 2.38  | —    | 2.49  | —    | 2.66  | —    | ns    |
|                      |                                                                   | LFXP6                  | 2.92  | —    | 3.18  | —    | 3.42  | —    | ns    |
| t <sub>SU_DEL</sub>  | Clock to Data Setup - PIO Input Register<br>with Input Data Delay | LFXP10                 | 2.72  | —    | 2.75  | —    | 2.84  | —    | ns    |
|                      |                                                                   | LFXP15                 | 2.99  | —    | 3.13  | —    | 3.18  | —    | ns    |
|                      |                                                                   | LFXP20                 | 4.47  | —    | 4.56  | —    | 4.80  | —    | ns    |
|                      |                                                                   | LFXP3                  | -0.70 | —    | -0.80 |      | -0.92 | —    | ns    |
|                      |                                                                   | LFXP6                  | -0.47 | —    | -0.38 | —    | -0.31 | —    | ns    |
| t <sub>H_DEL</sub>   | Clock to Data Hold - PIO Input Register with                      | LFXP10                 | -0.60 | —    | -0.47 |      | -0.32 | —    | ns    |
|                      | input bata bolay                                                  | LFXP15                 | -1.05 | —    | -0.98 | —    | -1.01 | —    | ns    |
|                      |                                                                   | LFXP20                 | -0.80 | —    | -0.58 | —    | -0.31 | —    | ns    |
| f <sub>MAX_IO</sub>  | Clock Frequency of I/O and PFU Register                           | All                    | —     | 400  |       | 360  | —     | 320  | MHz   |
| DDR I/O Pi           | n Parameters <sup>2</sup>                                         |                        |       |      |       |      | •     |      |       |
| t <sub>DVADQ</sub>   | Data Valid After DQS (DDR Read)                                   | All                    |       | 0.19 |       | 0.19 | —     | 0.19 | UI    |
| t <sub>DVEDQ</sub>   | Data Hold After DQS (DDR Read)                                    | All                    | 0.67  |      | 0.67  |      | 0.67  | _    | UI    |
| t <sub>DQVBS</sub>   | Data Valid Before DQS                                             | All                    | 0.20  | —    | 0.20  |      | 0.20  | —    | UI    |
| t <sub>DQVAS</sub>   | Data Valid After DQS                                              | All                    | 0.20  |      | 0.20  |      | 0.20  | _    | UI    |
| f <sub>MAX_DDR</sub> | DDR Clock Frequency                                               | All                    | 95    | 166  | 95    | 133  | 95    | 100  | MHz   |
| Primary an           | Primary and Secondary Clocks                                      |                        |       |      |       |      |       |      |       |
| f <sub>MAX_PRI</sub> | Frequency for Primary Clock Tree                                  | All                    | —     | 450  |       | 412  | —     | 375  | MHz   |
| t <sub>W_PRI</sub>   | Clock Pulse Width for Primary Clock                               | All                    | 1.19  | —    | 1.19  |      | 1.19  | —    | ns    |
| t                    | Primany Clock Skow within an I/O Bank                             | LFXP3/6/10/15          | —     | 250  | —     | 300  | —     | 350  | ps    |
| 'SKEW_PRI            |                                                                   | LFXP20                 | —     | 300  |       | 350  | —     | 400  | ps    |

### **Over Recommended Operating Conditions**

1. General timing numbers based on LVCMOS 2.5, 12mA.

2. DDR timing numbers based on SSTL I/O.

Timing v.F0.11

## LatticeXP Family Timing Adders<sup>1</sup> (Continued)

| Over Recommended O | perating Conditions |
|--------------------|---------------------|
|--------------------|---------------------|

| Buffer Type   | Description                    | -5   | -4   | -3   | Units |
|---------------|--------------------------------|------|------|------|-------|
| HSTL15_I      | HSTL_15 class I                | 0.2  | 0.2  | 0.2  | ns    |
| HSTL15_III    | HSTL_15 class III              | 0.2  | 0.2  | 0.2  | ns    |
| HSTL15D_I     | Differential HSTL 15 class I   | 0.2  | 0.2  | 0.2  | ns    |
| HSTL15D_III   | Differential HSTL 15 class III | 0.2  | 0.2  | 0.2  | ns    |
| SSTL33_I      | SSTL_3 class I                 | 0.1  | 0.1  | 0.1  | ns    |
| SSTL33_II     | SSTL_3 class II                | 0.3  | 0.3  | 0.3  | ns    |
| SSTL33D_I     | Differential SSTL_3 class I    | 0.1  | 0.1  | 0.1  | ns    |
| SSTL33D_II    | Differential SSTL_3 class II   | 0.3  | 0.3  | 0.3  | ns    |
| SSTL25_I      | SSTL_2 class I                 | -0.1 | -0.1 | -0.1 | ns    |
| SSTL25_II     | SSTL_2 class II                | 0.3  | 0.3  | 0.3  | ns    |
| SSTL25D_I     | Differential SSTL_2 class I    | -0.1 | -0.1 | -0.1 | ns    |
| SSTL25D_II    | Differential SSTL_2 class II   | 0.3  | 0.3  | 0.3  | ns    |
| SSTL18_I      | SSTL_1.8 class I               | 0.1  | 0.1  | 0.1  | ns    |
| SSTL18D_I     | Differential SSTL_1.8 class I  | 0.1  | 0.1  | 0.1  | ns    |
| LVTTL33_4mA   | LVTTL 4mA drive                | 0.8  | 0.8  | 0.8  | ns    |
| LVTTL33_8mA   | LVTTL 8mA drive                | 0.5  | 0.5  | 0.5  | ns    |
| LVTTL33_12mA  | LVTTL 12mA drive               | 0.3  | 0.3  | 0.3  | ns    |
| LVTTL33_16mA  | LVTTL 16mA drive               | 0.4  | 0.4  | 0.4  | ns    |
| LVTTL33_20mA  | LVTTL 20mA drive               | 0.3  | 0.3  | 0.3  | ns    |
| LVCMOS33_2mA  | LVCMOS 3.3 2mA drive           | 0.8  | 0.8  | 0.8  | ns    |
| LVCMOS33_4mA  | LVCMOS 3.3 4mA drive           | 0.8  | 0.8  | 0.8  | ns    |
| LVCMOS33_8mA  | LVCMOS 3.3 8mA drive           | 0.5  | 0.5  | 0.5  | ns    |
| LVCMOS33_12mA | LVCMOS 3.3 12mA drive          | 0.3  | 0.3  | 0.3  | ns    |
| LVCMOS33_16mA | LVCMOS 3.3 16mA drive          | 0.4  | 0.4  | 0.4  | ns    |
| LVCMOS33_20mA | LVCMOS 3.3 20mA drive          | 0.3  | 0.3  | 0.3  | ns    |
| LVCMOS25_2mA  | LVCMOS 2.5 2mA drive           | 0.7  | 0.7  | 0.7  | ns    |
| LVCMOS25_4mA  | LVCMOS 2.5 4mA drive           | 0.7  | 0.7  | 0.7  | ns    |
| LVCMOS25_8mA  | LVCMOS 2.5 8mA drive           | 0.4  | 0.4  | 0.4  | ns    |
| LVCMOS25_12mA | LVCMOS 2.5 12mA drive          | 0.0  | 0.0  | 0.0  | ns    |
| LVCMOS25_16mA | LVCMOS 2.5 16mA drive          | 0.2  | 0.2  | 0.2  | ns    |
| LVCMOS25_20mA | LVCMOS 2.5 20mA drive          | 0.4  | 0.4  | 0.4  | ns    |
| LVCMOS18_2mA  | LVCMOS 1.8 2mA drive           | 0.6  | 0.6  | 0.6  | ns    |
| LVCMOS18_4mA  | LVCMOS 1.8 4mA drive           | 0.6  | 0.6  | 0.6  | ns    |
| LVCMOS18_8mA  | LVCMOS 1.8 8mA drive           | 0.4  | 0.4  | 0.4  | ns    |
| LVCMOS18_12mA | LVCMOS 1.8 12mA drive          | 0.2  | 0.2  | 0.2  | ns    |
| LVCMOS18_16mA | LVCMOS 1.8 16mA drive          | 0.2  | 0.2  | 0.2  | ns    |
| LVCMOS15_2mA  | LVCMOS 1.5 2mA drive           | 0.6  | 0.6  | 0.6  | ns    |
| LVCMOS15_4mA  | LVCMOS 1.5 4mA drive           | 0.6  | 0.6  | 0.6  | ns    |
| LVCMOS15_8mA  | LVCMOS 1.5 8mA drive           | 0.2  | 0.2  | 0.2  | ns    |
| LVCMOS12_2mA  | LVCMOS 1.2 2mA drive           | 0.4  | 0.4  | 0.4  | ns    |
| LVCMOS12_6mA  | LVCMOS 1.2 6mA drive           | 0.4  | 0.4  | 0.4  | ns    |
| PCI33         | PCI33                          | 0.3  | 0.3  | 0.3  | ns    |

1. General timing numbers based on LVCMOS 2.5, 12mA.

Timing v.F0.11

## Pin Information Summary<sup>1</sup>

|                                         | XP3       |      |      | XP6      |          |          |           |
|-----------------------------------------|-----------|------|------|----------|----------|----------|-----------|
| Pin T                                   | Pin Type  |      |      | 208 PQFP | 144 TQFP | 208 PQFP | 256 fpBGA |
| Single Ended User I/O                   |           | 62   | 100  | 136      | 100      | 142      | 188       |
| Differential Pair User I/O <sup>2</sup> |           | 19   | 35   | 56       | 35       | 58       | 80        |
| Configuration                           | Dedicated | 11   | 11   | 11       | 11       | 11       | 11        |
| Configuration                           | Muxed     | 14   | 14   | 14       | 14       | 14       | 14        |
| TAP                                     |           | 5    | 5    | 5        | 5        | 5        | 5         |
| Dedicated (total without s              | supplies) | 6    | 6    | 6        | 6        | 6        | 6         |
| V <sub>CC</sub>                         |           | 2    | 4    | 8        | 4        | 8        | 8         |
| V <sub>CCAUX</sub>                      |           | 2    | 2    | 2        | 2        | 2        | 4         |
| V <sub>CCPLL</sub>                      |           | 2    | 2    | 2        | 2        | 2        | 2         |
|                                         | Bank0     | 1    | 1    | 2        | 1        | 2        | 2         |
|                                         | Bank1     | 1    | 1    | 2        | 1        | 2        | 2         |
|                                         | Bank2     | 1    | 1    | 2        | 1        | 2        | 2         |
| V                                       | Bank3     | 1    | 1    | 2        | 1        | 2        | 2         |
| V CCIO                                  | Bank4     | 1    | 2    | 2        | 2        | 2        | 2         |
|                                         | Bank5     | 1    | 1    | 2        | 1        | 2        | 2         |
|                                         | Bank6     | 1    | 1    | 2        | 1        | 2        | 2         |
|                                         | Bank7     | 1    | 1    | 2        | 1        | 2        | 2         |
| GND                                     |           | 10   | 13   | 24       | 13       | 24       | 24        |
| GND <sub>PLL</sub>                      |           | 2    | 2    | 2        | 2        | 2        | 2         |
| NC                                      |           | 0    | 0    | 6        | 0        | 0        | 0         |
|                                         | Bank0     | 8/2  | 12/3 | 20/8     | 12/3     | 20/8     | 26/11     |
|                                         | Bank1     | 9/0  | 12/2 | 18/6     | 12/2     | 18/6     | 26/11     |
|                                         | Bank2     | 8/3  | 12/5 | 14/6     | 12/5     | 17/7     | 21/9      |
| Single Ended/Differential               | Bank3     | 6/2  | 13/5 | 14/6     | 13/5     | 14/6     | 21/9      |
| I/O per Bank <sup>2</sup>               | Bank4     | 5/2  | 14/6 | 21/9     | 14/6     | 21/9     | 26/11     |
|                                         | Bank5     | 12/4 | 12/4 | 21/9     | 12/4     | 21/9     | 26/11     |
|                                         | Bank6     | 4/2  | 13/5 | 14/6     | 13/5     | 17/7     | 21/9      |
|                                         | Bank7     | 10/4 | 12/5 | 14/6     | 12/5     | 14/6     | 21/9      |
| V <sub>CCJ</sub>                        |           | 1    | 1    | 1        | 1        | 1        | 1         |

1. During configuration the user-programmable I/Os are tri-stated with an internal pull-up resistor enabled. If any pin is not used (or not bonded to a package pin), it is also tri-stated with an internal pull-up resistor enabled after configuration.

2. The differential I/O per bank includes both dedicated LVDS and emulated LVDS pin pairs. Please see the Logic Signal Connections table for more information.

## Pin Information Summary<sup>1</sup> (Cont.)

|                               |                         | XF        | 210       |           | XP15      |           | XP20      |           |           |
|-------------------------------|-------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Pin Ty                        | pe                      | 256 fpBGA | 388 fpBGA | 256 fpBGA | 388 fpBGA | 484 fpBGA | 256 fpBGA | 388 fpBGA | 484 fpBGA |
| Single Ended U                | Jser I/O                | 188       | 244       | 188       | 268       | 300       | 188       | 268       | 340       |
| Differential Pair             | r User I/O <sup>2</sup> | 76        | 104       | 76        | 112       | 128       | 76        | 112       | 144       |
| Configuration                 | Dedicated               | 11        | 11        | 11        | 11        | 11        | 11        | 11        | 11        |
| Configuration                 | Muxed                   | 14        | 14        | 14        | 14        | 14        | 14        | 14        | 14        |
| TAP                           |                         | 5         | 5         | 5         | 5         | 5         | 5         | 5         | 5         |
| Dedicated<br>(total without s | upplies)                | 6         | 6         | 6         | 6         | 6         | 6         | 6         | 6         |
| V <sub>CC</sub>               |                         | 8         | 14        | 8         | 14        | 28        | 8         | 14        | 28        |
| V <sub>CCAUX</sub>            |                         | 4         | 4         | 4         | 4         | 12        | 4         | 4         | 12        |
| V <sub>CCPLL</sub>            |                         | 2         | 2         | 2         | 2         | 2         | 2         | 2         | 2         |
|                               | Bank0                   | 2         | 5         | 2         | 5         | 4         | 2         | 5         | 4         |
|                               | Bank1                   | 2         | 5         | 2         | 5         | 4         | 2         | 5         | 4         |
|                               | Bank2                   | 2         | 4         | 2         | 4         | 4         | 2         | 4         | 4         |
| Veele                         | Bank3                   | 2         | 4         | 2         | 4         | 4         | 2         | 4         | 4         |
| * CCIO                        | Bank4                   | 2         | 5         | 2         | 5         | 4         | 2         | 5         | 4         |
|                               | Bank5                   | 2         | 5         | 2         | 5         | 4         | 2         | 5         | 4         |
|                               | Bank6                   | 2         | 4         | 2         | 4         | 4         | 2         | 4         | 4         |
|                               | Bank7                   | 2         | 4         | 2         | 4         | 4         | 2         | 4         | 4         |
| GND                           |                         | 24        | 50        | 24        | 50        | 56        | 24        | 50        | 56        |
| GND <sub>PLL</sub>            |                         | 2         | 2         | 2         | 2         | 2         | 2         | 2         | 2         |
| NC                            |                         | 0         | 24        | 0         | 0         | 40        | 0         | 0         | 0         |
|                               | Bank0                   | 26/11     | 33/14     | 26/11     | 39/16     | 40/17     | 26/11     | 39/16     | 47/20     |
|                               | Bank1                   | 26/11     | 33/14     | 26/11     | 39/16     | 40/17     | 26/11     | 39/16     | 47/20     |
|                               | Bank2                   | 21/8      | 28/12     | 21/8      | 28/12     | 35/15     | 21/8      | 28/12     | 38/16     |
| Single Ended/                 | Bank3                   | 21/8      | 28/12     | 21/8      | 28/12     | 35/15     | 21/8      | 28/12     | 38/16     |
| per Bank <sup>2</sup>         | Bank4                   | 26/11     | 33/14     | 26/11     | 39/16     | 40/17     | 26/11     | 39/16     | 47/20     |
|                               | Bank5                   | 26/11     | 33/14     | 26/11     | 39/16     | 40/17     | 26/11     | 39/16     | 47/20     |
|                               | Bank6                   | 21/8      | 28/12     | 21/8      | 28/12     | 35/15     | 21/8      | 28/12     | 38/16     |
|                               | Bank7                   | 21/8      | 28/12     | 21/8      | 28/12     | 35/15     | 21/8      | 28/12     | 38/16     |
| V <sub>CCJ</sub>              |                         | 1         | 1         | 1         | 1         | 1         | 1         | 1         | 1         |

1. During configuration the user-programmable I/Os are tri-stated with an internal pull-up resistor enabled. If any pin is not used (or not bonded to a package pin), it is also tri-stated with an internal pull-up resistor enabled after configuration.

2. The differential I/O per bank includes both dedicated LVDS and emulated LVDS pin pairs. Please see the Logic Signal Connections table for more information.

## LFXP15 & LFXP20 Logic Signal Connections: 256 fpBGA

|                |                  | LFXP15 |                | LFXP20           |                  |      |                |                  |
|----------------|------------------|--------|----------------|------------------|------------------|------|----------------|------------------|
| Ball<br>Number | Ball<br>Function | Bank   | Differential   | Dual<br>Function | Ball<br>Function | Bank | Differential   | Dual<br>Function |
| C2             | PROGRAMN         | 7      | -              | -                | PROGRAMN         | 7    | -              | -                |
| C1             | CCLK             | 7      | -              | -                | CCLK             | 7    | -              | -                |
| -              | GNDIO7           | 7      | -              | -                | GNDIO7           | 7    | -              | -                |
| -              | GNDIO7           | 7      | -              | -                | GNDIO7           | 7    | -              | -                |
| D2             | PL7A             | 7      | Т              | LUM0_PLLT_FB_A   | PL7A             | 7    | Т              | LUM0_PLLT_FB_A   |
| D3             | PL7B             | 7      | С              | LUM0_PLLC_FB_A   | PL7B             | 7    | С              | LUM0_PLLC_FB_A   |
| D1             | PL9A             | 7      | -              | -                | PL9A             | 7    | -              | -                |
| E2             | PL10B            | 7      | -              | VREF1_7          | PL10B            | 7    | -              | VREF1_7          |
| E1             | PL11A            | 7      | T <sup>3</sup> | DQS              | PL11A            | 7    | T <sup>3</sup> | DQS              |
| F1             | PL11B            | 7      | C <sup>3</sup> | -                | PL11B            | 7    | C <sup>3</sup> | -                |
| -              | GNDIO7           | 7      | -              | -                | GNDIO7           | 7    | -              | -                |
| E3             | PL12A            | 7      | Т              | -                | PL12A            | 7    | Т              | -                |
| F4             | PL12B            | 7      | С              | -                | PL12B            | 7    | С              | -                |
| F3             | PL13A            | 7      | T <sup>3</sup> | -                | PL13A            | 7    | T <sup>3</sup> | -                |
| F2             | PL13B            | 7      | C <sup>3</sup> | -                | PL13B            | 7    | C <sup>3</sup> | -                |
| G1             | PL15B            | 7      | -              | -                | PL15B            | 7    | -              | -                |
| -              | GNDIO7           | 7      | -              | -                | GNDIO7           | 7    | -              | -                |
| G3             | PL16A            | 7      | Т              | LUM0_PLLT_IN_A   | PL16A            | 7    | Т              | LUM0_PLLT_IN_A   |
| G2             | PL16B            | 7      | С              | LUM0_PLLC_IN_A   | PL16B            | 7    | С              | LUM0_PLLC_IN_A   |
| H1             | PL17A            | 7      | Т³             | -                | PL17A            | 7    | T <sup>3</sup> | -                |
| H2             | PL17B            | 7      | C <sup>3</sup> | -                | PL17B            | 7    | C <sup>3</sup> | -                |
| G4             | PL18A            | 7      | -              | VREF2_7          | PL18A            | 7    | -              | VREF2_7          |
| G5             | PL19B            | 7      | -              | -                | PL19B            | 7    | -              | -                |
| J1             | PL20A            | 7      | Т³             | DQS              | PL20A            | 7    | T <sup>3</sup> | DQS              |
| -              | GNDIO7           | 7      | -              | -                | GNDIO7           | 7    | -              | -                |
| J2             | PL20B            | 7      | C <sup>3</sup> | -                | PL20B            | 7    | C <sup>3</sup> | -                |
| H3             | PL22A            | 7      | T³             | -                | PL22A            | 7    | T <sup>3</sup> | -                |
| J3             | PL22B            | 7      | C <sup>3</sup> | -                | PL22B            | 7    | C <sup>3</sup> | -                |
| H4             | VCCP0            | -      | -              | -                | VCCP0            | -    | -              | -                |
| H5             | GNDP0            | -      | -              | -                | GNDP0            | -    | -              | -                |
| K1             | PL24A            | 6      | Т              | PCLKT6_0         | PL28A            | 6    | Т              | PCLKT6_0         |
| -              | GNDIO6           | 6      | -              | -                | GNDIO6           | 6    | -              | -                |
| K2             | PL24B            | 6      | С              | PCLKC6_0         | PL28B            | 6    | С              | PCLKC6_0         |
| J4             | PL26A            | 6      | -              | -                | PL30A            | 6    | -              | -                |
| J5             | PL27B            | 6      | -              | VREF1_6          | PL31B            | 6    | -              | VREF1_6          |
| L1             | PL28A            | 6      | T <sup>3</sup> | DQS              | PL32A            | 6    | T <sup>3</sup> | DQS              |
| L2             | PL28B            | 6      | C <sup>3</sup> | -                | PL32B            | 6    | C <sup>3</sup> | -                |
| -              | GNDIO6           | 6      | -              | -                | GNDIO6           | 6    | -              | -                |
| M1             | PL29A            | 6      | Т              | LLM0_PLLT_IN_A   | PL33A            | 6    | Т              | LLM0_PLLT_IN_A   |
| M2             | PL29B            | 6      | С              | LLM0_PLLC_IN_A   | PL33B            | 6    | С              | LLM0_PLLC_IN_A   |
| K3             | PL30A            | 6      | T <sup>3</sup> | -                | PL34A            | 6    | T <sup>3</sup> | -                |
| L3             | PL30B            | 6      | C <sup>3</sup> | -                | PL34B            | 6    | C <sup>3</sup> | -                |

## LFXP15 & LFXP20 Logic Signal Connections: 256 fpBGA (Cont.)

|                | LFXP15           |      |                |                  | LFXP20           |      |                |                  |
|----------------|------------------|------|----------------|------------------|------------------|------|----------------|------------------|
| Ball<br>Number | Ball<br>Function | Bank | Differential   | Dual<br>Function | Ball<br>Function | Bank | Differential   | Dual<br>Function |
| -              | GNDIO2           | 2    | -              | -                | GNDIO2           | 2    | -              | -                |
| F15            | PR10B            | 2    | -              | -                | PR10B            | 2    | -              | -                |
| E15            | PR9A             | 2    | -              | VREF2_2          | PR9A             | 2    | -              | VREF2_2          |
| F14            | PR8B             | 2    | C <sup>3</sup> | -                | PR8B             | 2    | C <sup>3</sup> | -                |
| E14            | PR8A             | 2    | T <sup>3</sup> | -                | PR8A             | 2    | T <sup>3</sup> | -                |
| D15            | PR7B             | 2    | С              | RUM0_PLLC_FB_A   | PR7B             | 2    | С              | RUM0_PLLC_FB_A   |
| C15            | PR7A             | 2    | Т              | RUM0_PLLT_FB_A   | PR7A             | 2    | Т              | RUM0_PLLT_FB_A   |
| -              | GNDIO2           | 2    | -              | -                | GNDIO2           | 2    | -              | -                |
| E16            | TDO              | -    | -              | -                | TDO              | -    | -              | -                |
| D16            | VCCJ             | -    | -              | -                | VCCJ             | -    | -              | -                |
| D14            | TDI              | -    | -              | -                | TDI              | -    | -              | -                |
| C14            | TMS              | -    | -              | -                | TMS              | -    | -              | -                |
| B14            | ТСК              | -    | -              | -                | ТСК              | -    | -              | -                |
| -              | GNDIO1           | 1    | -              | -                | GNDIO1           | 1    | -              | -                |
| -              | GNDIO1           | 1    | -              | -                | GNDIO1           | 1    | -              | -                |
| -              | GNDIO1           | 1    | -              | -                | GNDIO1           | 1    | -              | -                |
| A15            | PT40B            | 1    | С              | -                | PT44B            | 1    | С              | -                |
| B15            | PT40A            | 1    | Т              | -                | PT44A            | 1    | Т              | -                |
| D12            | PT39B            | 1    | С              | VREF1_1          | PT43B            | 1    | С              | VREF1_1          |
| -              | GNDIO1           | 1    | -              | -                | GNDIO1           | 1    | -              | -                |
| C11            | PT39A            | 1    | Т              | DQS              | PT43A            | 1    | Т              | DQS              |
| A14            | PT38B            | 1    | -              | -                | PT42B            | 1    | -              | -                |
| B13            | PT37A            | 1    | -              | -                | PT41A            | 1    | -              | -                |
| F12            | PT36B            | 1    | С              | -                | PT40B            | 1    | С              | -                |
| E11            | PT36A            | 1    | Т              | -                | PT40A            | 1    | Т              | -                |
| A13            | PT35B            | 1    | С              | -                | PT39B            | 1    | С              | -                |
| C13            | PT35A            | 1    | Т              | D0               | PT39A            | 1    | Т              | D0               |
| C10            | PT34B            | 1    | С              | D1               | PT38B            | 1    | С              | D1               |
| E10            | PT34A            | 1    | Т              | VREF2_1          | PT38A            | 1    | Т              | VREF2_1          |
| A12            | PT33B            | 1    | С              | -                | PT37B            | 1    | С              | -                |
| B12            | PT33A            | 1    | Т              | D2               | PT37A            | 1    | Т              | D2               |
| -              | GNDIO1           | 1    | -              | -                | GNDIO1           | 1    | -              | -                |
| C12            | PT32B            | 1    | С              | D3               | PT36B            | 1    | С              | D3               |
| A11            | PT32A            | 1    | Т              | -                | PT36A            | 1    | Т              | -                |
| B11            | PT31B            | 1    | С              | -                | PT35B            | 1    | С              | -                |
| D11            | PT31A            | 1    | Т              | DQS              | PT35A            | 1    | Т              | DQS              |
| B9             | PT30B            | 1    | -              | -                | PT34B            | 1    | -              | -                |
| D9             | PT29A            | 1    | -              | D4               | PT33A            | 1    | -              | D4               |
| A10            | PT28B            | 1    | С              | -                | PT32B            | 1    | С              | -                |
| B10            | PT28A            | 1    | Т              | D5               | PT32A            | 1    | Т              | D5               |
| -              | GNDIO1           | 1    | -              | -                | GNDIO1           | 1    | -              | -                |
| D10            | PT27B            | 1    | С              | D6               | PT31B            | 1    | С              | D6               |

## LFXP15 & LFXP20 Logic Signal Connections: 484 fpBGA (Cont.)

|                | LFXP15           |      |              |                  |                  | LFXP20 |              |                  |  |
|----------------|------------------|------|--------------|------------------|------------------|--------|--------------|------------------|--|
| Ball<br>Number | Ball<br>Function | Bank | Differential | Dual<br>Function | Ball<br>Function | Bank   | Differential | Dual<br>Function |  |
| D18            | -                | -    | -            | -                | PT55B            | 1      | С            | -                |  |
| E18            | -                | -    | -            | -                | PT55A            | 1      | Т            | -                |  |
| C19            | -                | -    | -            | -                | PT54B            | 1      | C            | -                |  |
| C18            | -                | -    | -            | -                | PT54A            | 1      | Т            | -                |  |
| C21            | -                | -    | -            | -                | PT53B            | 1      | C            | -                |  |
| -              | GNDIO1           | 1    | -            | -                | GNDIO1           | 1      | -            | -                |  |
| B21            | -                | -    | -            | -                | PT53A            | 1      | Т            | -                |  |
| E17            | PT48B            | 1    | С            | -                | PT52B            | 1      | C            | -                |  |
| E16            | PT48A            | 1    | Т            | -                | PT52A            | 1      | Т            | -                |  |
| C17            | PT47B            | 1    | С            | -                | PT51B            | 1      | C            | -                |  |
| D17            | PT47A            | 1    | Т            | DQS              | PT51A            | 1      | Т            | DQS              |  |
| F17            | PT46B            | 1    | -            | -                | PT50B            | 1      | -            | -                |  |
| F16            | PT45A            | 1    | -            | -                | PT49A            | 1      | -            | -                |  |
| C16            | PT44B            | 1    | С            | -                | PT48B            | 1      | C            | -                |  |
| D16            | PT44A            | 1    | Т            | -                | PT48A            | 1      | Т            | -                |  |
| A20            | PT43B            | 1    | С            | -                | PT47B            | 1      | C            | -                |  |
| -              | GNDIO1           | 1    | -            | -                | GNDIO1           | 1      | -            | -                |  |
| B20            | PT43A            | 1    | Т            | -                | PT47A            | 1      | Т            | -                |  |
| A19            | PT42B            | 1    | С            | -                | PT46B            | 1      | C            | -                |  |
| B19            | PT42A            | 1    | Т            | -                | PT46A            | 1      | Т            | -                |  |
| C15            | PT41B            | 1    | С            | -                | PT45B            | 1      | C            | -                |  |
| D15            | PT41A            | 1    | Т            | -                | PT45A            | 1      | Т            | -                |  |
| A18            | PT40B            | 1    | С            | -                | PT44B            | 1      | C            | -                |  |
| B18            | PT40A            | 1    | Т            | -                | PT44A            | 1      | Т            | -                |  |
| F15            | PT39B            | 1    | С            | VREF1_1          | PT43B            | 1      | С            | VREF1_1          |  |
| -              | GNDIO1           | 1    | -            | -                | GNDIO1           | 1      | -            | -                |  |
| E15            | PT39A            | 1    | Т            | DQS              | PT43A            | 1      | Т            | DQS              |  |
| A17            | PT38B            | 1    | -            | -                | PT42B            | 1      | -            | -                |  |
| B17            | PT37A            | 1    | -            | -                | PT41A            | 1      | -            | -                |  |
| E14            | PT36B            | 1    | С            | -                | PT40B            | 1      | C            | -                |  |
| F14            | PT36A            | 1    | Т            | -                | PT40A            | 1      | Т            | -                |  |
| D14            | PT35B            | 1    | С            | -                | PT39B            | 1      | C            | -                |  |
| C14            | PT35A            | 1    | Т            | D0               | PT39A            | 1      | Т            | D0               |  |
| A16            | PT34B            | 1    | С            | D1               | PT38B            | 1      | C            | D1               |  |
| B16            | PT34A            | 1    | Т            | VREF2_1          | PT38A            | 1      | Т            | VREF2_1          |  |
| A15            | PT33B            | 1    | С            | -                | PT37B            | 1      | C            | -                |  |
| B15            | PT33A            | 1    | Т            | D2               | PT37A            | 1      | Т            | D2               |  |
| -              | GNDIO1           | 1    | -            | -                | GNDIO1           | 1      | -            | -                |  |
| E13            | PT32B            | 1    | С            | D3               | PT36B            | 1      | C            | D3               |  |
| D13            | PT32A            | 1    | Т            | -                | PT36A            | 1      | Т            | -                |  |
| C13            | PT31B            | 1    | С            | -                | PT35B            | 1      | C            | -                |  |
| B13            | PT31A            | 1    | Т            | DQS              | PT35A            | 1      | Т            | DQS              |  |

## LFXP15 & LFXP20 Logic Signal Connections: 484 fpBGA (Cont.)

|                | LFXP15           |      |              |                  |                  | LFXP20 |              |                  |  |
|----------------|------------------|------|--------------|------------------|------------------|--------|--------------|------------------|--|
| Ball<br>Number | Ball<br>Function | Bank | Differential | Dual<br>Function | Ball<br>Function | Bank   | Differential | Dual<br>Function |  |
| B3             | PT8B             | 0    | С            | -                | PT12B            | 0      | С            | -                |  |
| A3             | PT8A             | 0    | Т            | -                | PT12A            | 0      | Т            | -                |  |
| -              | GNDIO0           | 0    | -            | -                | GNDIO0           | 0      | -            | -                |  |
| D7             | PT7B             | 0    | С            | -                | PT11B            | 0      | С            | -                |  |
| C7             | PT7A             | 0    | Т            | DQS              | PT11A            | 0      | Т            | DQS              |  |
| B2             | PT6B             | 0    | -            | -                | PT10B            | 0      | -            | -                |  |
| C2             | PT5A             | 0    | -            | -                | PT9A             | 0      | -            | -                |  |
| C3             | PT4B             | 0    | С            | -                | PT8B             | 0      | С            | -                |  |
| D3             | PT4A             | 0    | Т            | -                | PT8A             | 0      | Т            | -                |  |
| F7             | PT3B             | 0    | С            | -                | PT7B             | 0      | С            | -                |  |
| E7             | PT3A             | 0    | Т            | -                | PT7A             | 0      | Т            | -                |  |
| -              | GNDIO0           | 0    | -            | -                | GNDIO0           | 0      | -            | -                |  |
| C6             | -                | -    | -            | -                | PT6B             | 0      | С            | -                |  |
| D6             | -                | -    | -            | -                | PT6A             | 0      | Т            | -                |  |
| C5             | -                | -    | -            | -                | PT5B             | 0      | С            | -                |  |
| C4             | -                | -    | -            | -                | PT5A             | 0      | Т            | -                |  |
| F6             | -                | -    | -            | -                | PT4B             | 0      | С            | -                |  |
| E6             | -                | -    | -            | -                | PT4A             | 0      | Т            | -                |  |
| -              | GNDIO0           | 0    | -            | -                | GNDIO0           | 0      | -            | -                |  |
| E4             | -                | -    | -            | -                | PT3B             | 0      | -            | -                |  |
| E5             | CFG0             | 0    | -            | -                | CFG0             | 0      | -            | -                |  |
| D4             | CFG1             | 0    | -            | -                | CFG1             | 0      | -            | -                |  |
| D5             | DONE             | 0    | -            | -                | DONE             | 0      | -            | -                |  |
| A1             | GND              | -    | -            | -                | GND              | -      | -            | -                |  |
| A2             | GND              | -    | -            | -                | GND              | -      | -            | -                |  |
| A21            | GND              | -    | -            | -                | GND              | -      | -            | -                |  |
| A22            | GND              | -    | -            | -                | GND              | -      | -            | -                |  |
| AA1            | GND              | -    | -            | -                | GND              | -      | -            | -                |  |
| AA22           | GND              | -    | -            | -                | GND              | -      | -            | -                |  |
| AB1            | GND              | -    | -            | -                | GND              | -      | -            | -                |  |
| AB2            | GND              | -    | -            | -                | GND              | -      | -            | -                |  |
| AB21           | GND              | -    | -            | -                | GND              | -      | -            | -                |  |
| AB22           | GND              | -    | -            | -                | GND              | -      | -            | -                |  |
| B1             | GND              | -    | -            | -                | GND              | -      | -            | -                |  |
| B22            | GND              | -    | -            | -                | GND              | -      | -            | -                |  |
| H14            | GND              | -    | -            | -                | GND              | -      | -            | -                |  |
| H9             | GND              | -    | -            | -                | GND              | -      | -            | -                |  |
| J10            | GND              | -    | -            | -                | GND              | -      | -            | -                |  |
| J11            | GND              | -    | -            | -                | GND              | -      | -            | -                |  |
| J12            | GND              | -    | -            | -                | GND              | -      | -            | -                |  |
| J13            | GND              | -    | -            | -                | GND              | -      | -            | -                |  |
| J14            | GND              | -    | -            | -                | GND              | -      | -            | -                |  |
|                |                  |      |              |                  |                  |        |              |                  |  |



# LatticeXP Family Data Sheet Revision History

November 2007

### **Revision History**

Data Sheet DS1001

| Date           | Version | Section                             | Change Summary                                                                                                                                                                                                                 |
|----------------|---------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| February 2005  | 01.0    | _                                   | Initial release.                                                                                                                                                                                                               |
| April 2005     | 01.1    | Architecture                        | EBR memory support section updated with clarification.                                                                                                                                                                         |
| May 2005       | 01.2    | Introduction                        | Added TransFR Reconfiguration to Features section.                                                                                                                                                                             |
|                |         | Architecture                        | Added TransFR section.                                                                                                                                                                                                         |
| June 2005      | 01.3    | Pinout Information                  | Added pinout information for LFXP3, LFXP6, LFXP15 and LFXP20.                                                                                                                                                                  |
| July 2005      | 02.0    | Introduction                        | Updated XP6, XP15 and XP20 EBR SRAM Bits and Block numbers.                                                                                                                                                                    |
|                |         | Architecture                        | Updated Per Quadrant Primary Clock Selection figure.                                                                                                                                                                           |
|                |         |                                     | Added Typical I/O Behavior During Power-up section.                                                                                                                                                                            |
|                |         |                                     | Updated Device Configuration section under Configuration and Testing.                                                                                                                                                          |
|                |         | DC and Switching                    | Clarified Hot Socketing Specification                                                                                                                                                                                          |
|                |         | Characteristics                     | Updated Supply Current (Standby) Table                                                                                                                                                                                         |
|                |         |                                     | Updated Initialization Supply Current Table                                                                                                                                                                                    |
|                |         |                                     | Added Programming and Erase Flash Supply Current table                                                                                                                                                                         |
|                |         |                                     | Added LVDS Emulation section. Updated LVDS25E Output Termination<br>Example figure and LVDS25E DC Conditions table.                                                                                                            |
|                |         |                                     | Updated Differential LVPECL diagram and LVPECL DC Conditions table.                                                                                                                                                            |
|                |         |                                     | Deleted 5V Tolerant Input Buffer section. Updated RSDS figure and RSDS DC Conditions table.                                                                                                                                    |
|                |         |                                     | Updated sysCONFIG Port Timing Specifications                                                                                                                                                                                   |
|                |         |                                     | Updated JTAG Port Timing Specifications. Added Flash Download Time table.                                                                                                                                                      |
|                |         | Pinout Information                  | Updated Signal Descriptions table.                                                                                                                                                                                             |
|                |         |                                     | Updated Logic Signal Connections Dual Function column.                                                                                                                                                                         |
|                |         | Ordering Information                | Added lead-free ordering part numbers.                                                                                                                                                                                         |
| July 2005      | 02.1    | DC and Switching<br>Characteristics | Clarification of Flash Programming Junction Temperature                                                                                                                                                                        |
| August 2005    | 02.2    | Introduction                        | Added Sleep Mode feature.                                                                                                                                                                                                      |
|                |         | Architecture                        | Added Sleep Mode section.                                                                                                                                                                                                      |
|                |         | DC and Switching                    | Added Sleep Mode Supply Current Table                                                                                                                                                                                          |
|                |         | Characteristics                     | Added Sleep Mode Timing section                                                                                                                                                                                                |
|                |         | Pinout Information                  | Added SLEEPN and TOE signal names, descriptions and footnotes.                                                                                                                                                                 |
|                |         |                                     | Added SLEEPN and TOE to pinout information and footnotes.                                                                                                                                                                      |
|                |         |                                     | Added footnote 3 to Logic Signal Connections tables for clarification on emulated LVDS output.                                                                                                                                 |
| September 2005 | 03.0    | Architecture                        | Added clarification of PCI clamp.                                                                                                                                                                                              |
|                |         |                                     | Added clarification to SLEEPN Pin Characteristics section.                                                                                                                                                                     |
|                |         | DC and Switching<br>Characteristics | DC Characteristics, added footnote 4 for clarification. Updated Supply<br>Current (Sleep Mode), Supply Current (Standby), Initialization Supply<br>Current, and Programming and Erase Flash Supply Current typical<br>numbers. |

© 2007 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

| Date                      | Version         | Section                                     | Change Summary                                                                                              |
|---------------------------|-----------------|---------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| September 2005<br>(cont.) | 03.0<br>(cont.) | DC and Switching<br>Characteristics (cont.) | Updated Typical Building Block Function Performance timing numbers.                                         |
|                           |                 |                                             | Updated External Switching Characteristics timing numbers.                                                  |
|                           |                 |                                             | Updated Internal Timing Parameters.                                                                         |
|                           |                 |                                             | Updated LatticeXP Family timing adders.                                                                     |
|                           |                 |                                             | Updated LatticeXP "C" Sleep Mode timing numbers.                                                            |
|                           |                 |                                             | Updated JTAG Port Timing numbers.                                                                           |
|                           |                 | Pinout Information                          | Added clarification to SLEEPN and TOE description.                                                          |
|                           |                 |                                             | Clarification of dedicated LVDS outputs.                                                                    |
|                           |                 | Supplemental<br>Information                 | Updated list of technical notes.                                                                            |
| September 2005            | 03.1            | Pinout Information                          | Power Supply and NC Connections table corrected VCCP1 pin number for 208 PQFP.                              |
| December 2005             | 04.0            | Introduction                                | Moved data sheet from Advance to Final.                                                                     |
|                           |                 | Architecture                                | Added clarification to Typical I/O Behavior During Power-up section.                                        |
|                           |                 | DC and Switching<br>Characteristics         | Added clarification to Recommended Operating Conditions.                                                    |
|                           |                 |                                             | Updated timing numbers.                                                                                     |
|                           |                 | Pinout Information                          | Updated Signal Descriptions table.                                                                          |
|                           |                 |                                             | Added clarification to Differential I/O Per Bank.                                                           |
|                           |                 |                                             | Updated Differential dedicated LVDS output support.                                                         |
|                           |                 | Ordering Information                        | Added 208 PQFP lead-free package and ordering part numbers.                                                 |
| February 2006             | 04.1            | Pinout Information                          | Corrected description of Signal Names VREF1(x) and VREF2(x).                                                |
| March 2006                | 04.2            | DC and Switching<br>Characteristics         | Corrected condition for IIL and IIH.                                                                        |
| March 2006                | 04.3            | DC and Switching<br>Characteristics         | Added clarification to Recommended Operating Conditions for VCCAUX.                                         |
| April 2006                | 04.4            | Pinout Information                          | Removed Bank designator "5" from SLEEPN/TOE ball function.                                                  |
| May 2006                  | 04.5            | DC and Switching<br>Characteristics         | Added footnote 2 regarding threshold level for PROGRAMN to sysCON-<br>FIG Port Timing Specifications table. |
| June 2006                 | 04.6            | DC and Switching<br>Characteristics         | Corrected LVDS25E Output Termination Example.                                                               |
| August 2006               | 04.7            | Architecture                                | Added clarification to Typical I/O Behavior During Power-Up section.                                        |
|                           |                 |                                             | Added clarification to Left and Right sysIO Buffer Pair section.                                            |
|                           |                 | DC and Switching<br>Characteristics         | Changes to LVDS25E Output Termination Example diagram.                                                      |
| December 2006             | 04.8            | Architecture                                | EBR Asynchronous Reset section added.                                                                       |
| February 2007             | 04.9            | Architecture                                | Updated EBR Asynchronous Reset section.                                                                     |
| July 2007                 | 05.0            | Introduction                                | Updated LatticeXP Family Selection Guide table.                                                             |
|                           |                 | Architecture                                | Updated Typical I/O Behavior During Power-up text section.                                                  |
|                           |                 | DC and Switching<br>Characteristics         | Updated sysIO Single-Ended DC Electrical Characteristics table. Split out LVCMOS 1.2 by supply voltage.     |
| November 2007             | 05.1            | DC and Switching<br>Characteristics         | Added JTAG Port Timing Waveforms diagram.                                                                   |
|                           |                 | Pinout Information                          | Added Thermal Management text section.                                                                      |
|                           |                 | Supplemental<br>Information                 | Updated title list.                                                                                         |