

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

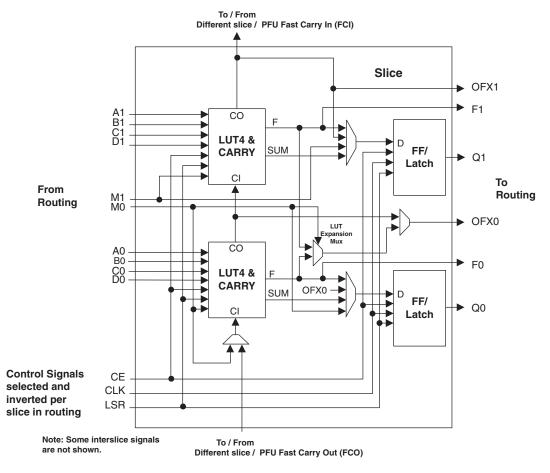
Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	-
Number of Logic Elements/Cells	6000
Total RAM Bits	73728
Number of I/O	188
Number of Gates	-
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	256-BGA
Supplier Device Package	256-FPBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lfxp6e-5fn256c

Email: info@E-XFL.COM

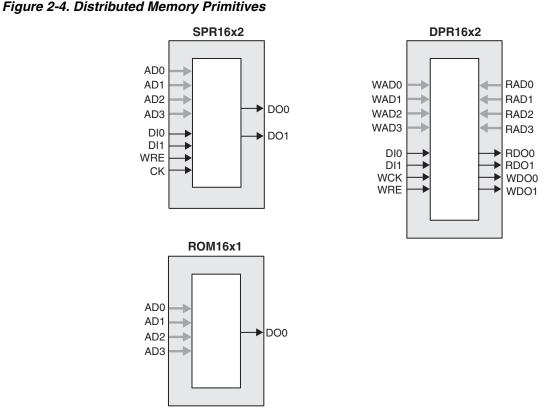

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Slice

Each slice contains two LUT4 lookup tables feeding two registers (programmed to be in FF or Latch mode), and some associated logic that allows the LUTs to be combined to perform functions such as LUT5, LUT6, LUT7 and LUT8. There is control logic to perform set/reset functions (programmable as synchronous/asynchronous), clock select, chip-select and wider RAM/ROM functions. Figure 2-3 shows an overview of the internal logic of the slice. The registers in the slice can be configured for positive/negative and edge/level clocks.

There are 14 input signals: 13 signals from routing and one from the carry-chain (from adjacent slice or PFU). There are 7 outputs: 6 to routing and one to carry-chain (to adjacent PFU). Table 2-1 lists the signals associated with each slice.

Figure 2-3. Slice Diagram

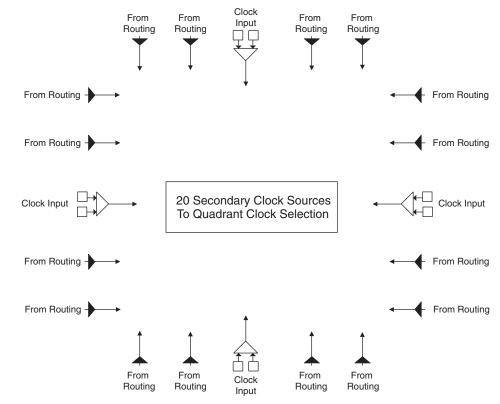

Lattice Semiconductor

The Lattice design tools support the creation of a variety of different size memories. Where appropriate, the software will construct these using distributed memory primitives that represent the capabilities of the PFU. Table 2-3 shows the number of Slices required to implement different distributed RAM primitives. Figure 2-4 shows the distributed memory primitive block diagrams. Dual port memories involve the pairing of two Slices, one Slice functions as the read-write port. The other companion Slice supports the read-only port. For more information on RAM mode in LatticeXP devices, please see details of additional technical documentation at the end of this data sheet.

Table 2-3. Number of Slices Required for Implementing Distributed RAM

	SPR16x2	DPR16x2
Number of Slices	1	2
Note: SPR = Single Port RA	M, DPR = Dual	Port RAM

 District of Manager	


ROM Mode: The ROM mode uses the same principal as the RAM modes, but without the Write port. Pre-loading is accomplished through the programming interface during configuration.

PFU Modes of Operation

Slices can be combined within a PFU to form larger functions. Table 2-4 tabulates these modes and documents the functionality possible at the PFU level.

Lattice Semiconductor

Figure 2-6. Secondary Clock Sources

Clock Routing

The clock routing structure in LatticeXP devices consists of four Primary Clock lines and a Secondary Clock network per quadrant. The primary clocks are generated from MUXs located in each quadrant. Figure 2-7 shows this clock routing. The four secondary clocks are generated from MUXs located in each quadrant as shown in Figure 2-8. Each slice derives its clock from the primary clock lines, secondary clock lines and routing as shown in Figure 2-9.

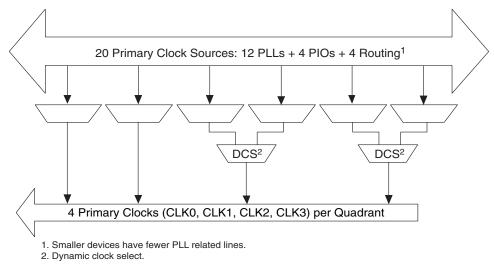
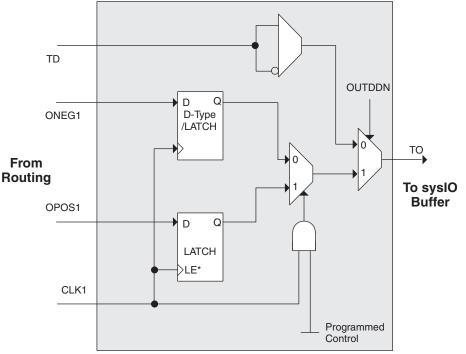



Figure 2-25. Tristate Register Block

*Latch is transparent when input is low.

Control Logic Block

The control logic block allows the selection and modification of control signals for use in the PIO block. A clock is selected from one of the clock signals provided from the general purpose routing and a DQS signal provided from the programmable DQS pin. The clock can optionally be inverted.

The clock enable and local reset signals are selected from the routing and optionally inverted. The global tristate signal is passed through this block.

DDR Memory Support

Implementing high performance DDR memory interfaces requires dedicated DDR register structures in the input (for read operations) and in the output (for write operations). As indicated in the PIO Logic section, the LatticeXP devices provide this capability. In addition to these registers, the LatticeXP devices contain two elements to simplify the design of input structures for read operations: the DQS delay block and polarity control logic.

DLL Calibrated DQS Delay Block

Source Synchronous interfaces generally require the input clock to be adjusted in order to correctly capture data at the input register. For most interfaces a PLL is used for this adjustment, however in DDR memories the clock (referred to as DQS) is not free running so this approach cannot be used. The DQS Delay block provides the required clock alignment for DDR memory interfaces.

The DQS signal (selected PIOs only) feeds from the PAD through a DQS delay element to a dedicated DQS routing resource. The DQS signal also feeds the polarity control logic which controls the polarity of the clock to the sync registers in the input register blocks. Figures 2-26 and 2-27 show how the polarity control logic are routed to the PIOs.

The temperature, voltage and process variations of the DQS delay block are compensated by a set of calibration (6-bit bus) signals from two DLLs on opposite sides of the device. Each DLL compensates DQS Delays in its half of the device as shown in Figure 2-27. The DLL loop is compensated for temperature, voltage and process variations by the system clock and feedback loop.

Characteristic	Normal	Off	Sleep
SLEEPN Pin	High	—	Low
Static Icc	Typical <100mA	0	Typical <100uA
I/O Leakage	<10µA	<1mA	<10µA
Power Supplies VCC/VCCIO/VCCAUX	Normal Range	Off	Normal Range
Logic Operation	User Defined	Non Operational	Non operational
I/O Operation	User Defined	Tri-state	Tri-state
JTAG and Programming circuitry	Operational	Non-operational	Non-operational
EBR Contents and Registers	Maintained	Non-maintained	Non-maintained

Table 2-9. Characteristics of Normal, Off and Sleep Modes

SLEEPN Pin Characteristics

The SLEEPN pin behaves as an LVCMOS input with the voltage standard appropriate to the VCC supply for the device. This pin also has a weak pull-up typically in the order of 10μ A along with a Schmidt trigger and glitch filter to prevent false triggering. An external pull-up to V_{CC} is recommended when Sleep Mode is not used to ensure the device stays in normal operation mode. Typically the device enters Sleep Mode several hundred ns after SLEEPN is held at a valid low and restarts normal operation as specified in the Sleep Mode Timing table. The AC and DC specifications portion of this data sheet show a detailed timing diagram.

Configuration and Testing

The following section describes the configuration and testing features of the LatticeXP family of devices.

IEEE 1149.1-Compliant Boundary Scan Testability

All LatticeXP devices have boundary scan cells that are accessed through an IEEE 1149.1 compliant test access port (TAP). This allows functional testing of the circuit board, on which the device is mounted, through a serial scan path that can access all critical logic nodes. Internal registers are linked internally, allowing test data to be shifted in and loaded directly onto test nodes, or test data to be captured and shifted out for verification. The test access port consists of dedicated I/Os: TDI, TDO, TCK and TMS. The test access port has its own supply voltage V_{CCJ} and can operate with LVCMOS3.3, 2.5, 1.8, 1.5 and 1.2 standards.

For more details on boundary scan test, please see information regarding additional technical documentation at the end of this data sheet.

Device Configuration

All LatticeXP devices contain two possible ports that can be used for device configuration and programming. The test access port (TAP), which supports serial configuration, and the sysCONFIG port that supports both byte-wide and serial configuration.

The non-volatile memory in the LatticeXP can be configured in three different modes:

- In sysCONFIG mode via the sysCONFIG port. Note this can also be done in background mode.
- In 1532 mode via the 1149.1 port.
- In background mode via the 1149.1 port. This allows the device to be operated while reprogramming takes place.

The SRAM configuration memory can be configured in three different ways:

- At power-up via the on-chip non-volatile memory.
- In 1532 mode via the 1149.1 port SRAM direct configuration.
- In sysCONFIG mode via the sysCONFIG port SRAM direct configuration.

DC Electrical Characteristics

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
I _{IL,} I _{IH} ^{1, 2, 4}	Input or I/O Leakage	$0 \le V_{IN} \le (V_{CCIO} - 0.2V)$	—	_	10	μA
'IL, 'IH	Input of I/O Leakage	$(V_{CCIO} - 0.2V) < V_{IN} \le 3.6V$	—	_	40	μA
I _{PU}	I/O Active Pull-up Current	$0 \le V_{IN} \le 0.7 V_{CCIO}$	-30	_	-150	μA
I _{PD}	I/O Active Pull-down Current	$V_{IL} (MAX) \le V_{IN} \le V_{IH} (MAX)$	30	_	150	μA
I _{BHLS}	Bus Hold Low sustaining current	$V_{IN} = V_{IL}$ (MAX)	30	_	—	μA
I _{BHHS}	Bus Hold High sustaining current	$V_{IN} = 0.7 V_{CCIO}$	-30	_	—	μA
I _{BHLO}	Bus Hold Low Overdrive current	$0 \le V_{IN} \le V_{IH}$ (MAX)		_	150	μΑ
I _{BHHO}	Bus Hold High Overdrive current	$0 \le V_{IN} \le V_{IH}$ (MAX)	—	_	-150	μA
V _{BHT}	Bus Hold trip Points	$0 \le V_{IN} \le V_{IH}$ (MAX)	V _{IL} (MAX)	_	V _{IH} (MIN)	V
C1	I/O Capacitance ³		—	8	—	pf
C2	Dedicated Input Capacitance ³		—	8	—	pf

Over Recommended Operating Conditions

1. Input or I/O leakage current is measured with the pin configured as an input or as an I/O with the output driver tri-stated. It is not measured with the output driver active. Bus maintenance circuits are disabled.

2. Not applicable to SLEEPN/TOE pin.

3. T_A 25°C, f = 1.0MHz

4. When V_{IH} is higher than V_{CCIO}, a transient current typically of 30ns in duration or less with a peak current of 6mA can be expected on the high-to-low transition.

Supply Current (Sleep Mode)^{1, 2, 3}

Symbol	Parameter	Device	Typ.⁴	Max	Units
		LFXP3C	12	65	μA
		LFXP6C	14	75	μA
I _{CC}	Core Power Supply	LFXP10C	16	85	μΑ
		LFXP15C	18	95	μΑ
		LFXP20C	20	105	μA
I _{CCP}	PLL Power Supply (per PLL)	All LFXP 'C' Devices	1	5	μA
		LFXP3C	2	90	μA
		LFXP6C	2	100	μA
I _{CCAUX}	Auxiliary Power Supply	LFXP10C	2	110	μA
		LFXP15C	3	120	μA
		LFXP20C	4	130	μΑ
		LFXP3C	2	20	μA
		LFXP6C	2	22	μA
Iccio	Bank Power Supply⁵	LFXP10C	2	24	μΑ
		LFXP15C	3	27	μΑ
		LFXP20C	4	30	μA
I _{CCJ}	VCCJ Power Supply	All LFXP 'C' Devices	1	5	μA

1. Assumes all inputs are configured as LVCMOS and held at the VCCIO or GND.

2. Frequency 0MHz.

3. User pattern: blank.

4. $T_A=25^{\circ}C$, power supplies at nominal voltage.

5. Per bank.

Initialization Supply Current^{1, 2, 3, 4, 5, 6}

Symbol	Parameter	Device	Typ. ⁷	Units
		LFXP3E	40	mA
		LFXP6E	50	mA
		LFXP10E	110	mA
		LFXP15E	140	mA
	Core Power Supply	LFXP20E	250	mA
I _{CC}	Core Power Supply	LFXP3C	60	mA
		LFXP6C	70	mA
		LFXP10C	150	mA
	Γ	LFXP15C	180	mA
		LFXP20C	290	mA
		LFXP3E/C	50	mA
		LFXP6E/C	60	mA
I _{CCAUX}	Auxiliary Power Supply V _{CCAUX} = 3.3V	LFXP10E/C	90	mA
	CCAUX - 0.0V	LFXP15 /C	110	mA
		LFXP20E/C	130	mA
ICCJ	V _{CCJ} Power Supply	All	2	mA

Over Recommended Operating Conditions

1. Until DONE signal is active.

2. For further information on supply current, please see details of additional technical documentation at the end of this data sheet.

3. Assumes all outputs are tristated, all inputs are configured as LVCMOS and held at the V_{CCIO} or GND.

4. Frequency 0MHz.

5. Typical user pattern.

6. Assume normal bypass capacitor/decoupling capacitor across the supply.

7. $T_A=25^{\circ}C$, power supplies at nominal voltage.

Programming and Erase Flash Supply Current^{1, 2, 3, 4, 5}

Symbol	Parameter	Device	Тур.6	Units
		LFXP3E	30	mA
		LFXP6E	40	mA
		LFXP10E	50	mA
		LFXP15E	60	mA
	Core Dower Supply	LFXP20E	70	mA
Icc	Core Power Supply	LFXP3C	50	mA
		LFXP6C	60	mA
		LFXP10C	90	mA
		LFXP15C	100	mA
		LFXP20C	110	mA
		LFXP3E/C	50	mA
		LFXP6E/C	60	mA
I _{CCAUX}	Auxiliary Power Supply V _{CCAUX} = 3.3V	LFXP10E/C	90	mA
		LFXP15E/C	110	mA
		LFXP20E/C	130	mA
I _{CCJ}	V _{CCJ} Power Supply ⁷	All	2	mA

1. For further information on supply current, please see details of additional technical documentation at the end of this data sheet.

2. Assumes all outputs are tristated, all inputs are configured as LVCMOS and held at the $V_{\mbox{CCIO}}$ or GND.

3. Blank user pattern; typical Flash pattern.

4. Bypass or decoupling capacitor across the supply.

5. JTAG programming is at 1MHz.

6. $T_A=25^{\circ}C$, power supplies at nominal voltage.

7. When programming via JTAG.

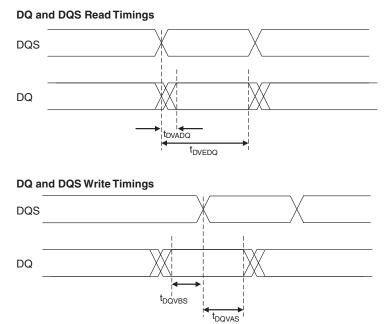
sysIO Differential Electrical Characteristics LVDS

Parameter Symbol	Parameter Description	Test Conditions	Min.	Тур.	Max.	Units
V _{INP,} V _{INM}	Input Voltage		0	_	2.4	V
V _{THD}	Differential Input Threshold		+/-100	_	_	mV
		$100mV \le V_{THD}$	V _{THD} /2	1.2	1.8	V
V _{CM}	Input Common Mode Voltage	$200mV \le V_{THD}$	V _{THD} /2	1.2	1.9	V
		$350mV \le V_{THD}$	V _{THD} /2	1.2	2.0	V
I _{IN}	Input current	Power on or power off			+/-10	μA
V _{OH}	Output high voltage for V_{OP} or V_{OM}	R _T = 100 ohms	_	1.38	1.60	V
V _{OL}	Output low voltage for V_{OP} or V_{OM}	R _T = 100 ohms	0.9V	1.03	—	V
V _{OD}	Output voltage differential	$(V_{OP} - V_{OM}), R_T = 100 \text{ ohms}$	250	350	450	mV
ΔV_{OD}	Change in V _{OD} between high and low		_	_	50	mV
V _{OS}	Output voltage offset	$(V_{OP} - V_{OM})/2, R_T = 100 \text{ ohms}$	1.125	1.25	1.375	V
ΔV_{OS}	Change in V _{OS} between H and L		—	_	50	mV
I _{OSD}	Output short circuit current	V _{OD} = 0V Driver outputs shorted	_	_	6	mA

Over Recommended Operating Conditions

LatticeXP External Switching Characteristics

			-	5	-	4	-	3	
Parameter	Description	Device	Min.	Max.	Min.	Max.	Min.	Max.	Units
General I/C	Pin Parameters (Using Primary Clock wit	hout PLL) ¹							
		LFXP3		5.12		6.12	_	7.43	ns
		LFXP6	—	5.30	—	6.34	-	7.69	ns
t _{CO}	Clock to Output - PIO Output Register	LFXP10	_	5.52		6.60	—	8.00	ns
		LFXP15	_	5.72		6.84	—	8.29	ns
		LFXP20	—	5.97	—	7.14	-	8.65	ns
		LFXP3	-0.40	—	-0.28	—	-0.16	—	ns
		LFXP6	-0.33	—	-0.32	—	-0.30	—	ns
t _{SU}	Clock to Data Setup - PIO Input Register	LFXP10	-0.61	—	-0.71	—	-0.81	—	ns
		LFXP15	-0.71		-0.77	_	-0.87	_	ns
		LFXP20	-0.95		-1.14	_	-1.35	_	ns
		LFXP3	2.10		2.50	_	2.98	_	ns
		LFXP6	2.28	_	2.72	—	3.24	—	ns
t _H	Clock to Data Hold - PIO Input Register	LFXP10	3.02	_	3.51	—	3.71	—	ns
		LFXP15	2.70		3.22	—	3.85	—	ns
		LFXP20	2.95	_	3.52	—	4.21	_	ns
		LFXP3	2.38		2.49	—	2.66	—	ns
		LFXP6	2.92		3.18	—	3.42	—	ns
t _{SU_DEL}	Clock to Data Setup - PIO Input Register with Input Data Delay	LFXP10	2.72	_	2.75	—	2.84	_	ns
	with input Data Delay	LFXP15	2.99		3.13	—	3.18	—	ns
		LFXP20	4.47	_	4.56	—	4.80	—	ns
		LFXP3	-0.70	_	-0.80	—	-0.92	_	ns
		LFXP6	-0.47		-0.38	—	-0.31	—	ns
t _{H_DEL}	Clock to Data Hold - PIO Input Register with Input Data Delay	LFXP10	-0.60		-0.47	—	-0.32	—	ns
		LFXP15	-1.05	—	-0.98	—	-1.01	_	ns
		LFXP20	-0.80	_	-0.58	—	-0.31	_	ns
f _{MAX_IO}	Clock Frequency of I/O and PFU Register	All	—	400	_	360	—	320	MHz
	n Parameters ²		I	l	l	I		l	L
t _{DVADQ}	Data Valid After DQS (DDR Read)	All	_	0.19		0.19	—	0.19	UI
t _{DVEDQ}	Data Hold After DQS (DDR Read)	All	0.67		0.67	—	0.67	—	UI
t _{DQVBS}	Data Valid Before DQS	All	0.20	—	0.20	—	0.20	_	UI
t _{DQVAS}	Data Valid After DQS	All	0.20		0.20		0.20	_	UI
f _{MAX_DDR}	DDR Clock Frequency	All	95	166	95	133	95	100	MHz
	nd Secondary Clocks	1	1	1	1	1	1	1	<u> </u>
f _{MAX_PRI}	Frequency for Primary Clock Tree	All	—	450	—	412	—	375	MHz
t _{W_PRI}	Clock Pulse Width for Primary Clock	All	1.19	—	1.19	—	1.19	—	ns
		LFXP3/6/10/15		250		300	—	350	ps
^t SKEW_PRI	Primary Clock Skew within an I/O Bank	LFXP20		300		350	—	400	ps
		1	1		1	1	1	1	1


Over Recommended Operating Conditions

1. General timing numbers based on LVCMOS 2.5, 12mA.

2. DDR timing numbers based on SSTL I/O.

Timing v.F0.11

Figure 3-5. DDR Timings

Switching Test Conditions

Figure 3-13 shows the output test load that is used for AC testing. The specific values for resistance, capacitance, voltage, and other test conditions are shown in Figure 3-5.

Figure 3-13. Output Test Load, LVTTL and LVCMOS Standards

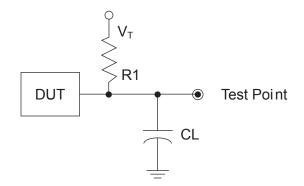


Table 3-5. Test Fixture Required Components, Non-Terminated Interfaces

Test Condition	R ₁	CL	Timing Ref.	V _T
			LVCMOS 3.3 = 1.5V	—
			LVCMOS 2.5 = $V_{CCIO}/2$	—
LVTTL and other LVCMOS settings (L -> H, H -> L)	∞	0pF	LVCMOS 1.8 = V _{CCIO} /2	—
			LVCMOS 1.5 = $V_{CCIO}/2$	—
			LVCMOS 1.2 = $V_{CCIO}/2$	—
LVCMOS 2.5 I/O (Z -> H)			V _{CCIO} /2	V _{OL}
LVCMOS 2.5 I/O (Z -> L)	188	0pF	V _{CCIO} /2	V _{OH}
LVCMOS 2.5 I/O (H -> Z)	100	opi	V _{OH} - 0.15	V _{OL}
LVCMOS 2.5 I/O (L -> Z)			V _{OL} + 0.15	V _{OH}

Note: Output test conditions for all other interfaces are determined by the respective standards.

PICs and DDR Data (DQ) Pins Associated with the DDR Strobe (DQS) Pin

PICs Associated with DQS Strobe	PIO within PIC	Polarity	DDR Strobe (DQS) and Data (DQ) Pins
D[Edge] [p. 4]	А	True	DQ
P[Edge] [n-4]	В	Complement	DQ
D[Edgo] [n 2]	А	True	DQ
P[Edge] [n-3]	В	Complement	DQ
P[Edge] [n-2]	А	True	DQ
	В	Complement	DQ
P[Edge] [n-1]	A	True	DQ
P[Edge] [n]	В	Complement	DQ
	A	True	[Edge]DQSn
P[Edge] [n+1]	В	Complement	DQ
	А	True	DQ
P[Edge] [n+2]	В	Complement	DQ
D[Edgo] [n , 2]	А	True	DQ
P[Edge] [n+3]	В	Complement	DQ

Notes:

1. "n" is a row/column PIC number.

2. The DDR interface is designed for memories that support one DQS strobe per eight bits of data. In some packages, all the potential DDR data (DQ) pins may not be available.

3. The definition of the PIC numbering is provided in the Signal Names column of the Signal Descriptions table in this data sheet.

Pin Information Summary¹

			XP3		XP6			
Pin Type		100 TQFP	144 TQFP	208 PQFP	144 TQFP	208 PQFP	256 fpBGA	
Single Ended User I/O		62	100	136	100	142	188	
Differential Pair User I/O ²		19	35	56	35	58	80	
Configuration	Dedicated	11	11	11	11	11	11	
Conliguration	Muxed	14	14	14	14	14	14	
ТАР		5	5	5	5	5	5	
Dedicated (total without s	upplies)	6	6	6	6	6	6	
V _{CC}		2	4	8	4	8	8	
V _{CCAUX}		2	2	2	2	2	4	
V _{CCPLL}		2	2	2	2	2	2	
	Bank0	1	1	2	1	2	2	
	Bank1	1	1	2	1	2	2	
	Bank2	1	1	2	1	2	2	
M	Bank3	1	1	2	1	2	2	
V _{CCIO}	Bank4	1	2	2	2	2	2	
	Bank5	1	1	2	1	2	2	
	Bank6	1	1	2	1	2	2	
	Bank7	1	1	2	1	2	2	
GND		10	13	24	13	24	24	
GND _{PLL}		2	2	2	2	2	2	
NC		0	0	6	0	0	0	
	Bank0	8/2	12/3	20/8	12/3	20/8	26/11	
	Bank1	9/0	12/2	18/6	12/2	18/6	26/11	
	Bank2	8/3	12/5	14/6	12/5	17/7	21/9	
Single Ended/Differential	Bank3	6/2	13/5	14/6	13/5	14/6	21/9	
I/O per Bank ²	Bank4	5/2	14/6	21/9	14/6	21/9	26/11	
	Bank5	12/4	12/4	21/9	12/4	21/9	26/11	
	Bank6	4/2	13/5	14/6	13/5	17/7	21/9	
	Bank7	10/4	12/5	14/6	12/5	14/6	21/9	
V _{CCJ}	•	1	1	1	1	1	1	

1. During configuration the user-programmable I/Os are tri-stated with an internal pull-up resistor enabled. If any pin is not used (or not bonded to a package pin), it is also tri-stated with an internal pull-up resistor enabled after configuration.

2. The differential I/O per bank includes both dedicated LVDS and emulated LVDS pin pairs. Please see the Logic Signal Connections table for more information.

LFXP6 & LFXP10 Logic Signal Connections: 256 fpBGA (Cont.)

			LFXP6		LFXP10					
Ball Number	Ball Function Bank Diff		Differential	Dual Function	Ball Function	Bank	Differential	Dual Function		
E8	PT13B	0	-	-	PT17B	0	-	-		
D8	PT12A	0	-	DOUT	PT16A	0	-	DOUT		
A6	PT11B	0	С	-	PT15B	0	С	-		
-	GNDIO0	0	-	-	GNDIO0	0	-	-		
C6	PT11A	0	Т	WRITEN	PT15A	0	Т	WRITEN		
E7	PT10B	0	С	-	PT14B	0	С	-		
D7	PT10A	0	Т	VREF1_0	PT14A	0	Т	VREF1_0		
A5	PT9B	0	С	-	PT13B	0	С	-		
B5	PT9A	0	Т	DI	PT13A	0	Т	DI		
A4	PT8B	0	С	-	PT12B	0	С	-		
B6	PT8A	0	Т	CSN	PT12A	0	Т	CSN		
E6	PT7B	0	С	-	PT11B	0	С	-		
-	GNDIO0	0	-	-	GNDIO0	0	-	-		
D6	PT7A	0	Т	-	PT11A	0	Т	-		
D5	PT6B	0	С	VREF2_0	PT10B	0	С	VREF2_0		
A3	PT6A	0	Т	DQS	PT10A	0	Т	DQS		
B3	PT5B	0	-	-	PT9B	0	-	-		
B2	PT4A	0	-	-	PT8A	0	-	-		
A2	PT3B	0	С	-	PT7B	0	С	-		
B1	PT3A	0	Т	-	PT7A	0	Т	-		
F5	PT2B	0	С	-	PT6B	0	С	-		
-	GNDIO0	0	-	-	GNDIO0	0	-	-		
C5	PT2A	0	Т	-	PT6A	0	Т	-		
C4	CFG0	0	-	-	CFG0	0	-	-		
B4	CFG1	0	-	-	CFG1	0	-	-		
C3	DONE	0	-	-	DONE	0	-	-		
A1	GND	-	-	-	GND	-	-	-		
A16	GND	-	-	-	GND	-	-	-		
F11	GND	-	-	-	GND	-	-	-		
F6	GND	-	-	-	GND	-	-	-		
G10	GND	-	-	-	GND	-	-	-		
G7	GND	-	-	-	GND	-	-	-		
G8	GND	-	-	-	GND	-	-	-		
G9	GND	-	-	-	GND	-	-	-		
H10	GND	-	-	-	GND	-	-	-		
H7	GND	-	-	-	GND	-	-	-		
H8	GND	-	-	-	GND	-	-	-		
H9	GND	-	-	-	GND	-	-	-		
J10	GND	-	-	-	GND	-	-	-		
J7	GND	-	-	-	GND	-	-	-		
J8	GND	-	-	-	GND	-	-	-		
J9	GND	-	-	-	GND	-	-	-		

LFXP15 & LFXP20 Logic Signal Connections: 256 fpBGA (Cont.)

			LFXP15		LFXP20					
Ball Number	Ball Function	Bank	Differential	Dual Function	Ball Function	Bank	Differential	Dual Function		
G10	GND	-	-	-	GND	-	-	-		
G7	GND	-	-	-	GND	-	-	-		
G8	GND	-	-	-	GND	-	-	-		
G9	GND	-	-	-	GND	-	-	-		
H10	GND	-	-	-	GND	-	-	-		
H7	GND	-	-	-	GND	-	-	-		
H8	GND	-	-	-	GND	-	-	-		
H9	GND	-	-	-	GND	-	-	-		
J10	GND	-	-	-	GND	-	-	-		
J7	GND	-	-	-	GND	-	-	-		
J8	GND	-	-	-	GND	-	-	-		
J9	GND	-	-	-	GND	-	-	-		
K10	GND	-	-	-	GND	-	-	-		
K7	GND	-	-	-	GND	-	-	-		
K8	GND	-	-	-	GND	-	-	-		
K9	GND	-	-	-	GND	-	-	-		
L11	GND	-	-	-	GND	-	-	-		
L6	GND	-	-	-	GND	-	-	-		
T1	GND	-	-	-	GND	-	-	-		
T16	GND	-	-	-	GND	-	-	-		
D13	VCC	-	-	-	VCC	-	-	-		
D4	VCC	-	-	-	VCC	-	-	-		
E12	VCC	-	-	-	VCC	-	-	-		
E5	VCC	-	-	-	VCC	-	-	-		
M12	VCC	-	-	-	VCC	-	-	-		
M5	VCC	-	-	-	VCC	-	-	-		
N13	VCC	-	-	-	VCC	-	-	-		
N4	VCC	-	-	-	VCC	-	-	-		
E13	VCCAUX	-	-	-	VCCAUX	-	-	-		
E4	VCCAUX	-	-	-	VCCAUX	-	-	-		
M13	VCCAUX	-	-	-	VCCAUX	-	-	-		
M4	VCCAUX	-	-	-	VCCAUX	-	-	-		
F7	VCCIO0	0	-	-	VCCIO0	0	-	-		
F8	VCCIO0	0	-	-	VCCIO0	0	-	-		
F10	VCCIO1	1	-	-	VCCIO1	1	-	-		
F9	VCCIO1	1	-	-	VCCIO1	1	-	-		
G11	VCCIO2	2	-	-	VCCIO2	2	-	-		
H11	VCCIO2	2	-	-	VCCIO2	2	-	-		
J11	VCCIO3	3	-	-	VCCIO3	3	-	-		
K11	VCCIO3	3	-	-	VCCIO3	3	-	-		
L10	VCCIO4	4	-	-	VCCIO4	4	-	-		
L9	VCCIO4	4	-	-	VCCIO4	4	- +	-		

LFXP15 & LFXP20 Logic Signal Connections: 484 fpBGA (Cont.)

			LFXP15		LFXP20					
Ball Number	Ball Function Bank		Differential	Dual Function	Ball Function	Bank	Differential	Dual Function		
T6	PL41A	6	Т	-	PL45A	6	Т	-		
T5	PL41B	6	С	-	PL45B	6	С	-		
-	GNDIO6	6	-	-	GNDIO6	6	-	-		
U3	PL42A	6	T ³	-	PL46A	6	T ³	-		
U4	PL42B	6	C ³	-	PL46B	6	C ³	-		
V4	PL43A	6	-	-	PL47A	6	-	-		
W4	SLEEPN ¹ / TOE ²	-	-	-	SLEEPN ¹ / TOE ²	-	-	-		
W5	INITN	5	-	-	INITN	5	-	-		
Y3	-	-	-	-	PB3B	5	-	-		
-	GNDIO5	5	-	-	GNDIO5	5	-	-		
U5	-	-	-	-	PB4A	5	Т	-		
V5	-	-	-	-	PB4B	5	С	-		
Y4	-	-	-	-	PB5A	5	Т	-		
Y5	-	-	-	-	PB5B	5	С	-		
V6	-	-	-	-	PB6A	5	Т	-		
-	GNDIO5	5	-	-	GNDIO5	5	-	-		
U6	-	-	-	-	PB6B	5	С	-		
W6	PB3A	5	Т	-	PB7A	5	Т	-		
Y6	PB3B	5	С	-	PB7B	5	С	-		
AA2	PB4A	5	Т	-	PB8A	5	Т	-		
AA3	PB4B	5	С	-	PB8B	5	С	-		
V7	PB5A	5	-	-	PB9A	5	-	-		
U7	PB6B	5	-	-	PB10B	5	-	-		
Y7	PB7A	5	Т	DQS	PB11A	5	Т	DQS		
W7	PB7B	5	С	-	PB11B	5	С	-		
AA4	PB8A	5	Т	-	PB12A	5	Т	-		
-	GNDIO5	5	-	-	GNDIO5	5	-	-		
AA5	PB8B	5	С	-	PB12B	5	С	-		
AB3	PB9A	5	Т	-	PB13A	5	Т	-		
AB4	PB9B	5	С	-	PB13B	5	С	-		
AA6	PB10A	5	Т	-	PB14A	5	Т	-		
AA7	PB10B	5	С	-	PB14B	5	С	-		
U8	PB11A	5	Т	-	PB15A	5	Т	-		
V8	PB11B	5	С	-	PB15B	5	С	-		
Y8	PB12A	5	Т	VREF1_5	PB16A	5	Т	VREF1_5		
-	GNDIO5	5	-	-	GNDIO5	5	-	-		
W8	PB12B	5	С	-	PB16B	5	С	-		
V9	PB13A	5	-	-	PB17A	5	-	-		
U9	PB14B	5	-	-	PB18B	5	-	-		
Y9	PB15A	5	Т	DQS	PB19A	5	Т	DQS		
W9	PB15B	5	С	-	PB19B	5	С	-		

LFXP15 & LFXP20 Logic Signal Connections: 484 fpBGA (Cont.)

			LFXP15			LFXP20					
Ball Number	Ball Function	Bank	Differential	Dual Function	Ball Function	Bank	Differential	Dual Function			
AB19	PB37A	4	-	-	PB41A	4	-	-			
AB20	PB38B	4	-	-	PB42B	4	-	-			
-	GNDIO4	4	-	-	GNDIO4	4	-	-			
V15	PB39A	4	Т	DQS	PB43A	4	Т	DQS			
U15	PB39B	4	С	-	PB43B	4	С	-			
Y15	PB40A	4	Т	-	PB44A	4	Т	-			
W15	PB40B	4	С	-	PB44B	4	С	-			
AA16	PB41A	4	Т	-	PB45A	4	Т	-			
AA17	PB41B	4	С	-	PB45B	4	С	-			
AA18	PB42A	4	Т	-	PB46A	4	Т	-			
AA19	PB42B	4	С	-	PB46B	4	С	-			
Y16	PB43A	4	Т	-	PB47A	4	Т	-			
W16	PB43B	4	С	-	PB47B	4	С	-			
-	GNDIO4	4	-	-	GNDIO4	4	-	-			
AA20	PB44A	4	Т	-	PB48A	4	Т	-			
AA21	PB44B	4	С	-	PB48B	4	С	-			
Y17	PB45A	4	-	-	PB49A	4	-	-			
Y18	PB46B	4	-	-	PB50B	4	-	-			
Y19	PB47A	4	Т	DQS	PB51A	4	Т	DQS			
Y20	PB47B	4	С	-	PB51B	4	С	-			
V16	PB48A	4	Т	-	PB52A	4	Т	-			
U16	PB48B	4	С	-	PB52B	4	С	-			
-	GNDIO4	4	-	-	GNDIO4	4	-	-			
U18	-	-	-	-	PB53A	4	Т	-			
V18	-	-	-	-	PB53B	4	С	-			
W19	-	-	-	-	PB54A	4	Т	-			
W18	-	-	-	-	PB54B	4	С	-			
U17	-	-	-	-	PB55A	4	Т	-			
V17	-	-	-	-	PB55B	4	С	-			
-	GNDIO4	4	-	-	GNDIO4	4	-	-			
W17	-	-	-	-	PB56A	4	-	-			
-	GNDIO3	3	-	-	GNDIO3	3	-	-			
V19	PR43A	3	-	-	PR47A	3	-	-			
U20	PR42B	3	C ³	-	PR46B	3	C ³	-			
U19	PR42A	3	T ³	-	PR46A	3	T ³	-			
V20	PR41B	3	С	-	PR45B	3	С	-			
W20	PR41A	3	Т	-	PR45A	3	Т	-			
T17	PR40B	3	C ³	-	PR44B	3	C ³	-			
T18	PR40A	3	T ³	-	PR44A	3	T ³	-			
T19	PR39B	3	C ³	-	PR43B	3	C ³	-			
T20	PR39A	3	T ³	-	PR43A	3	T ³	-			
-	GNDIO3	3	-	-	GNDIO3	3	-	-			

Lead-free Packaging

Commercial I/Os Part Number Voltage Grade Package Pins Temp. LUTs LFXP3C-3QN208C PQFP 136 1.8/2.5/3.3V -3 208 COM 3.1K LFXP3C-4QN208C 136 1.8/2.5/3.3V PQFP 208 COM -4 3.1K LFXP3C-5QN208C 136 -5 PQFP 208 COM 1.8/2.5/3.3V 3.1K LFXP3C-3TN144C COM 100 1.8/2.5/3.3V -3 TQFP 144 3.1K LFXP3C-4TN144C COM 100 1.8/2.5/3.3V -4 TQFP 144 3.1K LFXP3C-5TN144C 100 1.8/2.5/3.3V -5 TQFP 144 COM 3.1K LFXP3C-3TN100C 62 1.8/2.5/3.3V TQFP 100 COM 3.1K -3 LFXP3C-4TN100C TQFP 100 COM 62 1.8/2.5/3.3V -4 3.1K LFXP3C-5TN100C 62 -5 TQFP 100 COM 1.8/2.5/3.3V 3.1K

Part Number	l/Os	Voltage	Grade	Package	Pins	Temp.	LUTs
LFXP6C-3FN256C	188	1.8/2.5/3.3V	-3	fpBGA	256	COM	5.8K
LFXP6C-4FN256C	188	1.8/2.5/3.3V	-4	fpBGA	256	COM	5.8K
LFXP6C-5FN256C	188	1.8/2.5/3.3V	-5	fpBGA	256	COM	5.8K
LFXP6C-3QN208C	142	1.8/2.5/3.3V	-3	PQFP	208	COM	5.8K
LFXP6C-4QN208C	142	1.8/2.5/3.3V	-4	PQFP	208	COM	5.8K
LFXP6C-5QN208C	142	1.8/2.5/3.3V	-5	PQFP	208	COM	5.8K
LFXP6C-3TN144C	100	1.8/2.5/3.3V	-3	TQFP	144	COM	5.8K
LFXP6C-4TN144C	100	1.8/2.5/3.3V	-4	TQFP	144	COM	5.8K
LFXP6C-5TN144C	100	1.8/2.5/3.3V	-5	TQFP	144	COM	5.8K

Part Number	I/Os	Voltage	Grade	Package	Pins	Temp.	LUTs
LFXP10C-3FN388C	244	1.8/2.5/3.3V	-3	fpBGA	388	COM	9.7K
LFXP10C-4FN388C	244	1.8/2.5/3.3V	-4	fpBGA	388	COM	9.7K
LFXP10C-5FN388C	244	1.8/2.5/3.3V	-5	fpBGA	388	COM	9.7K
LFXP10C-3FN256C	188	1.8/2.5/3.3V	-3	fpBGA	256	COM	9.7K
LFXP10C-4FN256C	188	1.8/2.5/3.3V	-4	fpBGA	256	COM	9.7K
LFXP10C-5FN256C	188	1.8/2.5/3.3V	-5	fpBGA	256	COM	9.7K

Part Number	l/Os	Voltage	Grade	Package	Pins	Temp.	LUTs
LFXP15C-3FN484C	300	1.8/2.5/3.3V	-3	fpBGA	484	COM	15.5K
LFXP15C-4FN484C	300	1.8/2.5/3.3V	-4	fpBGA	484	COM	15.5K
LFXP15C-5FN484C	300	1.8/2.5/3.3V	-5	fpBGA	484	COM	15.5K
LFXP15C-3FN388C	268	1.8/2.5/3.3V	-3	fpBGA	388	COM	15.5K
LFXP15C-4FN388C	268	1.8/2.5/3.3V	-4	fpBGA	388	COM	15.5K
LFXP15C-5FN388C	268	1.8/2.5/3.3V	-5	fpBGA	388	COM	15.5K
LFXP15C-3FN256C	188	1.8/2.5/3.3V	-3	fpBGA	256	COM	15.5K
LFXP15C-4FN256C	188	1.8/2.5/3.3V	-4	fpBGA	256	COM	15.5K
LFXP15C-5FN256C	188	1.8/2.5/3.3V	-5	fpBGA	256	COM	15.5K

LatticeXP Family Data Sheet Supplemental Information

November 2007

Data Sheet DS1001

For Further Information

A variety of technical notes for the LatticeXP family are available on the Lattice website at <u>www.latticesemi.com</u>.

- LatticeECP/EC and LatticeXP sysIO Usage Guide (TN1056)
- Lattice ispTRACY Usage Guide (TN1054)
- LatticeECP/EC and LatticeXP sysCLOCK PLL Design and Usage Guide (TN1049)
- Memory Usage Guide for LatticeECP/EC and LatticeXP Devices (TN1051)
- LatticeECP/EC and XP DDR Usage Guide (TN1050)
- Power Estimation and Management for LatticeECP/EC and LatticeXP Devices (TN1052)
- LatticeXP sysCONFIG Usage Guide (TN1082)

For further information on interface standards refer to the following web sites:

- JEDEC Standards (LVTTL, LVCMOS, SSTL, HSTL): www.jedec.org
- PCI: <u>www.pcisig.com</u>

© 2007 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.