

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	H8/300H
Core Size	16-Bit
Speed	25MHz
Connectivity	SCI, SmartCard
Peripherals	DMA, PWM, WDT
Number of I/O	70
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 75°C (TA)
Mounting Type	Surface Mount
Package / Case	100-BFQFP
Supplier Device Package	100-QFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/df3029f25v

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Instruction	Size	Function						
Bcc	_	Branches to a specified address if address specified condition is motivation branching conditions are listed below.						
		Mnemonic	Description	Condition				
		BRA (BT)	Always (true)	Always				
		BRN (BF)	Never (false)	Never				
		BHI	High	C ∨ Z = 0				
		BLS	Low or same	C ∨ Z = 1				
		Bcc (BHS)	Carry clear (high or same)	C = 0				
		BCS (BLO)	Carry set (low)	C = 1				
		BNE	Not equal	Z = 0				
		BEQ	Equal	Z = 1				
		BVC	Overflow clear	V = 0				
		BVS	Overflow set	V = 1				
		BPL	Plus	N = 0				
		BMI	Minus	N = 1				
		BGE	Greater or equal	N ⊕ V = 0				
		BLT	Less than	N ⊕ V = 1				
		BGT	Greater than	$Z \lor (N \oplus V) = 0$				
		BLE	Less or equal	$Z \lor (N \oplus V) = 1$				
JMP	_	Branches unconditional	lly to a specified address					
BSR	—	Branches to a subroutir	ne at a specified address					
JSR	—	Branches to a subroutir	ne at a specified address					
RTS		Returns from a subrout	Returns from a subroutine					

Table 2.8Branching Instructions

Rev. 2.0, 06/04, page 39 of 980

Bit 3—Priority Level A3 (IPRA3): Selects the priority level of WDT, DRAM interface, and A/D converter interrupt requests.

Bit 3 IPRA3	Description
0	WDT, DRAM interface, and A/D converter interrupt requests have priority level 0 (low priority) (Initial value)
1	WDT, DRAM interface, and A/D converter interrupt requests have priority level 1 (high priority)

Bit 2—Priority Level A2 (IPRA2): Selects the priority level of 16-bit timer channel 0 interrupt requests.

Bit 2

IPRA2	Description
0	16-bit timer channel 0 interrupt requests have priority level 0 (low priority) (Initial value)
1	16-bit timer channel 0 interrupt requests have priority level 1 (high priority)

Bit 1—Priority Level A1 (IPRA1): Selects the priority level of 16-bit timer channel 1 interrupt requests.

Bit 1 IPRA1	Description
0	16-bit timer channel 1 interrupt requests have priority level 0 (low priority) (Initial value)
1	16-bit timer channel 1 interrupt requests have priority level 1 (high priority)

Bit 0—Priority Level A0 (IPRA0): Selects the priority level of 16-bit timer channel 2 interrupt requests.

Bit 0 IPRA0	Description
0	16-bit timer channel 2 interrupt requests have priority level 0 (low priority) (Initial value)
1	16-bit timer channel 2 interrupt requests have priority level 1 (high priority)

Use the RLW bit in DRCRB to adjust the \overline{RAS} signal width. A single refresh wait state (T_{RW}) can be inserted between the T_{R1} state and T_{R2} state by setting the RLW bit to 1.

The RLW bit setting is valid only for CBR refresh cycles, and does not affect DRAM read/write cycles. The number of states in the CBR refresh cycle is not affected by the settings in ASTCR, WCRH, or WCRL, or by the state of the \overline{WAIT} pin.

Figure 6.29 shows the timing when the TPC bit and RLW bit are both set to 1.

Figure 6.29 CBR Refresh Timing (CSEL = 0, TPC = 1, RLW = 1)

DRAM must be refreshed immediately after powering on in order to stabilize its internal state. When using the H8/3029 CAS-before-RAS refresh function, therefore, a DRAM stabilization period should be provided by means of interrupts by another timer module, or by counting the number of times bit 7 (CMF) of RTMCSR is set, for instance, immediately after bits DRAS2 to DRAS0 have been set in DRCRA.

Self-Refreshing: A self-refresh mode (battery backup mode) is provided for DRAM as a kind of standby mode. In this mode, refresh timing and refresh addresses are generated within the DRAM. The H8/3029 has a function that places the DRAM in self-refresh mode when the chip enters software standby mode.

Rev. 2.0, 06/04, page 172 of 980

			Expanded Modes				Single-Chip Modes	
Port	Description	Pins	Mode 1	Mode 2	Mode 3	Mode 4	Mode 5	Mode 7
Port 1	• 8-bit I/O port Can drive LEDs	$P1_7$ to $P1_0/A_7$ to A_0	Address out	put pins (A ₇ to	, A ₀)		Address output (A, to A ₀) and generic input DDR = 0: generic input DDR = 1: address output	Generic input/output
Port 2	8-bit I/O port Built-in input pull-up transistors Can drive LEDs	$P2_7$ to $P2_7$ / A ₁₅ to A ₈	Address output pins (A ₁₅ to A ₈) Address output (A ₁₅ to CA ₈) Address output (A ₁₅ to CA ₈) and generic input DDR = 0: generic input DDR = 1: address output					Generic input/output
Port 3	 8-bit I/O port 	$P3_7$ to $P3_0$ / D_{15} to D_8	Data input/o	utput (D ₁₅ to E	D ₈)			Generic input/output
Port 4	 8-bit I/O port Built-in input pull- up transistors 	$P4_7 \text{ to } P4_0/D_7 \text{ to } D_0$	Data input/o 8-bit bus mo 16-bit bus m	utput (D ₇ to D de: generic ir ode: data inp	and 8-bit g put/output ut/output	eneric inpu	ut/output	Generic input/output
Port 5	 4-bit I/O port Built-in input pull- up transistors Can drive LEDs 	$P5_{3}$ to $P5_{0}$ / A ₁₉ to A ₁₆	Address out	Address output $(A_{19} \text{ to } A_{16})$ Address output $(A_{19} \text{ to } A_{16})$ Address output $(A_{19} \text{ to } A_{16})$ Address output A ₁₀ and 4-bit generic input DDR = 0: generic input DDR = 0: generic input DDR = 1: address output				Generic input/output
Port 6	 7-bit I/O port and 1-bit input port 	P6,/¢	Clock output	t (ø) and gene				
		P6 ₆ / LWR P6 ₅ / HWR P6₄/ RD P6₄/ RD	Bus control signal output (LWR, HWR, RD, AS)					Generic input/output
		P6 ₂ /BACK P6 ₁ /BREQ P6 ₂ /WAIT	Bus control signal input/output (BACK, BREQ, WAIT) and 3-bit generic input/output					
Port 7	8-bit input port	P7 ₇ /AN ₇ /DA ₁ P7 ₆ /AN ₆ /DA ₀	Analog input from D/A cor	t (AN ₇ , AN ₆) to nverter, and g	o A/D convert generic input	er, analog	output (DA ₁ , DA ₀)	
		$P7_{s}$ to $P7_{o}$ / AN _s to AN _o	Analog input	t (AN ₅ to AN ₀)	to A/D conve	erter, and g	generic input	
Port 8	 5-bit I/O port P8₂ to P8₀ have Schmitt inputs 	P8₄/ CS ₀	DDR = 0: generic input DDR = 0 (i DDR = 1 (reset value): \overline{CS}_0 output generic inp DDR = 1: \overline{O} \overline{ODR} = 1: \overline{O}		DDR = 0 (reset value): generic input DDR = 1: \overline{CS}_0 output	Generic input/output		
		P8,/IRQ,/ CS,/ADTRG	IRQ, input, CS, output, external trigger input (ADTRG) to A/D converter, and generic input DDR = 0 (after reset): generic input DDR = 1: CS, output				IRQ ₃ input, external trigger input (ADTRG) to A/D converter, and generic input/output	
		P8 ₂ /IRQ ₂ /CS ₂ P8 ₁ /IRQ ₁ /CS ₃	\overline{IRQ}_{2} and \overline{IRQ}_{1} input, \overline{CS}_{2} and \overline{CS}_{3} output, and generic input* DDR = 0 (reset value): generic input DDR = 1: \overline{CS}_{2} and \overline{CS}_{3} output					IRQ ₂ and IRQ, input and generic input/output
		P8 ₀ ∕IRQ₀ /RFSH	IRQ₀ input, F	RFSH output,	IRQ₀input and generic input/output			

Table 8.1Port Functions

Note: * P8, can be used as an output port by making a setting in DRCRA.

8.11 Port A

8.11.1 Overview

Port A is an 8-bit input/output port that is also used for output (TP_7 to TP_0) from the programmable timing pattern controller (TPC), input and output, ($TIOCB_2$, $TIOCA_2$, $TIOCB_1$, $TIOCA_1$, $TIOCB_0$, $TIOCA_0$, TCLKD, TCLKC, TCLKB, TCLKA) by the 16-bit timer, input (TCLKD, TCLKC, TCLKB, TCLKA) to the 8-bit timer, output (\overline{TEND}_1 , \overline{TEND}_0) from the DMA controller (DMAC), and address output (A_{23} to A_{20}). A reset or hardware standby transition leaves port A as an input port, except that in modes 3 and 4, one pin is always used for A_{20} output. See table 8.19 to 8.21 for the selection of pin functions.

Usage of pins for TPC, 16-bit timer, 8-bit timer, and DMAC input and output is described in the sections on those modules. For output of address bits A_{23} to A_{20} in modes 3, 4, and 5, see section 6.2.4, Bus Release Control Register (BRCR). Pins not assigned to any of these functions are available for generic input/output. Figure 8.10 shows the pin configuration of port A.

Pins in port A can drive one TTL load and a 30-pF capacitive load. They can also drive a darlington transistor pair. Port A has Schmitt-trigger inputs.

Table 8.21Port A Pin Functions (Modes 1 to 5, 7)

Pin Pin Functions and Selection Method

 PA_/TP_/
 Bit PWM0 in TMDR, bits IOB2 to IOB0 in TIOR0, bits TPSC2 to TPSC0 in 16TCR2 to 16TCR0 of the 16-bit

 TIOCB_/
 timer, bits CKS2 to CKS0 in 8TCR2 of the 8-bit timer, bit NDER3 in NDERA, and bit PA_DDR select the pin

 TCLKD
 function as follows.

16-bit timer channel 0 settings	(1) in table below		(2) in table below		
PA ₃ DDR	—	0	1	1	
NDER3	—	—	0	1	
Pin function	TIOCB ₀ output	PA ₃ input	PA ₃ output	TP ₃ output	
TIOCB				B ₀ input ^{*1}	

Notes: *1 TIOCB₀ input when IOB2 = 1 and PWM0 = 0.

*2 TCLKD input when TPSC2 = TPSC1 = TPSC0 = 1 in any of 16TCR2 to 16TCR0, or bits CKS2 to CKS0 in 8TCR2 are as shown in (3) in the table below.

16-bit timer channel 0 settings	(2) (1)			(2)
IOB2	(1		
IOB1	0	0	1	—
IOB0	0	1	_	—

8-bit timer channel 2 settings	(4	4) (3)		
CKS2	0	1		
CKS1	_	0 1		
CKS0	_	0	1	—

Pin Pin Functions and Selection Method

PB₁/TP₉/ TMIO₁/ DREQ₀/CS₆ Bits OIS3/2 and OS1/0 in 8TCSR1, bits CCLR1 and CCLR0 in TCR1, bit CS6E in CSCR, bit NDER9 in NDERB, and bit PB,DDR select the pin function as follows.

OIS3/2 and OS1/0		Not all 0					
CS6E		_					
PB,DDR	0 1 1			_	_		
NDER9	_	0	1	_	_		
Pin function	PB₁ input	PB, output	TP ₉ output	CS ₆ output	TMIO ₁ output		
	TMIO, input*1						
	DREQ ₀ input* ²						

Notes: *1 TMIO, input when CCLR1 = CCLR0 = 1.

*2 When an external request is specified as a DMAC activation source, DREQ, input regardless of bits OIS3/2 and OS1/0, bits CCLR1/0, bit CS6E, bit NDER9, and bit PB,DDR.

 PB_0/TP_d Bits OIS3/2 and OS1/0 in 8TCSR0, bit CS7E in CSCR, bit NDER8 in NDERB, and bit PB_0DDR select the pin $TMO_d/\overline{CS_{\gamma}}$ function as follows.

OIS3/2 and OS1/0		Not all 0			
CS7E		—			
PB₀DDR	0	0 1 1			—
NDER8	_	0	1	_	—
Pin function	PB_0 input	PB_0 input PB_0 output TP_8 output \overline{CS}_7 output			

9.1.4 Register Configuration

Table 9.3 summarizes the 16-bit timer registers.

Table 9.316-bit timer Registers

			Abbre-		Initial
Channel	Address* ¹	Name	viation	R/W	Value
Common	H'FFF60	Timer start register	TSTR	R/W	H'F8
	H'FFF61	Timer synchro register	TSNC	R/W	H'F8
	H'FFF62	Timer mode register	TMDR	R/W	H'98
	H'FFF63	Timer output level setting register	TOLR	W	H'C0
	H'FFF64	Timer interrupt status register A	TISRA	R/(W)* ²	H'88
	H'FFF65	Timer interrupt status register B	TISRB	R/(W)* ²	H'88
	H'FFF66	Timer interrupt status register C	TISRC	R/(W)* ²	H'88
0	H'FFF68	Timer control register 0	16TCR0	R/W	H'80
	H'FFF69	Timer I/O control register 0	TIOR0	R/W	H'88
	H'FFF6A	Timer counter 0H	16TCNT0H	R/W	H'00
	H'FFF6B	Timer counter 0L	16TCNT0L	R/W	H'00
	H'FFF6C	General register A0H	GRA0H	R/W	H'FF
	H'FFF6D	General register A0L	GRA0L	R/W	H'FF
	H'FFF6E	General register B0H	GRB0H	R/W	H'FF
	H'FFF6F	General register B0L	GRB0L	R/W	H'FF
1	H'FFF70	Timer control register 1	16TCR1	R/W	H'80
	H'FFF71	Timer I/O control register 1	TIOR1	R/W	H'88
	H'FFF72	Timer counter 1H	16TCNT1H	R/W	H'00
	H'FFF73	Timer counter 1L	16TCNT1L	R/W	H'00
	H'FFF74	General register A1H	GRA1H	R/W	H'FF
	H'FFF75	General register A1L	GRA1L	R/W	H'FF
	H'FFF76	General register B1H	GRB1H	R/W	H'FF
	H'FFF77	General register B1L	GRB1L	R/W	H'FF

10.7.7 Contention between 8TCNT Byte Write and Increment in 16-Bit Count Mode (Cascaded Connection)

If an increment pulse occurs in the T_3 state of an 8TCNT byte write cycle in 16-bit count mode, the counter write takes priority and the byte data for which the write was performed is not incremented. The byte data for which a write was not performed is incremented. Figure 10.24 shows the timing when an increment pulse occurs in the T_2 state of a byte write to 8TCNT (upper byte). If an increment pulse occurs in the T_2 state, on the other hand, the increment takes priority.

Figure 10.24 Contention between 8TCNT Byte Write and Increment in 16-Bit Count Mode

Example of Normal TPC Output (Example of Five-Phase Pulse Output): Figure 11.5 shows an example in which the TPC is used for cyclic five-phase pulse output.

• Five-phase overlapping pulse output (one or two phases active at a time) can be obtained by writing H'40, H'60, H'20, H'30, H'10, H'18, H'08, H'88... at successive IMFA interrupts. If the DMAC is set for activation by this interrupt, pulse output can be obtained without loading the CPU.

Figure 11.5 Normal TPC Output Example (Five-Phase Pulse Output)

Bit 7—Transmit Data Register Empty (TDRE): Indicates that the SCI has loaded transmit data from TDR into TSR and the next serial data can be written in TDR.

Bit 7 TDRE	Description	
0	TDR contains valid transmit data [Clearing conditions] Read TDRE when TDRE = 1, then write 0 in TDRE The DMAC writes data in TDR	
1	TDR does not contain valid transmit data [Setting conditions] The chip is reset or enters standby mode The TE bit in SCR is cleared to 0 TDR contents are loaded into TSR, so new data can be written i	(Initial value) in TDR

Bit 6—Receive Data Register Full (RDRF): Indicates that RDR contains new receive data.

Bit 6 RDRF	Description
0	RDR does not contain new receive data(Initial value)[Clearing conditions]The chip is reset or enters standby modeRead RDRF when RDRF = 1, then write 0 in RDRFThe DMAC reads data from RDR
1	RDR contains new receive data [Setting condition] Serial data is received normally and transferred from RSR to RDR
Note:	The RDR contents and the RDRF flag are not affected by detection of receive errors or by

Note: The RDR contents and the RDRF flag are not affected by detection of receive errors or by clearing of the RE bit to 0 in SCR. They retain their previous values. If the RDRF flag is still set to 1 when reception of the next data ends, an overrun error will occur and the receive data will be lost.

Clock: An internal clock generated by the on-chip baud rate generator or an external clock input from the SCK pin can be selected as the SCI transmit/receive clock. The clock source is selected by the C/\overline{A} bit in SMR and bits CKE1 and CKE0 in SCR. For details of SCI clock source selection, see table 13.9.

When an external clock is input at the SCK pin, it must have a frequency 16 times the desired bit rate.

When the SCI is operated on an internal clock, it can output a clock signal at the SCK pin. The frequency of this output clock is equal to the bit rate. The phase is aligned as shown in figure 13.3 so that the rising edge of the clock occurs at the center of each transmit data bit.

Figure 13.3 Phase Relationship between Output Clock and Serial Data (Asynchronous Mode)

Transmitting and Receiving Data:

• SCI Initialization (Asynchronous Mode): Before transmitting or receiving data, clear the TE and RE bits to 0 in SCR, then initialize the SCI as follows.

When changing the communication mode or format, always clear the TE and RE bits to 0 before following the procedure given below. Clearing TE to 0 sets the TDRE flag to 1 and initializes TSR. Clearing RE to 0, however, does not initialize the RDRF, PER, FER, and ORER flags, or RDR, which retain their previous contents.

When an external clock is used the clock should not be stopped during initialization or subsequent operation, since operation will be unreliable in this case.

14.1.2 Block Diagram

Figure 14.1 shows a block diagram of the smart card interface.

Figure 14.1 Block Diagram of Smart Card Interface

14.1.3 Pin Configuration

Table 14.1 shows the smart card interface pins.

Table 14.1 Smart Card Interface Pins

Pin Name	Abbreviation	I/O	Function
Serial clock pin	SCK	I/O	Clock input/output
Receive data pin	RxD	Input	Receive data input
Transmit data pin	TxD	Output	Transmit data output

(a) Flash programming/erasing frequency parameter (FPEFEQ: general register ER0 of CPU)

This parameter sets the operating frequency of the CPU.

Bit :	31	30	29	28	27	26	25	24
	0	0	0	0	0	0	0	0
Bit :	23	22	21	20	19	18	17	16
	0	0	0	0	0	0	0	0
Bit :	15	14	13	12	11	10	9	8
	F15	F14	F13	F12	F11	F10	F9	F8
Bit :	7	6	5	4	3	2	1	0
	F7	F6	F5	F4	F3	F2	F1	F0

For the range of the operating frequency of this LSI, see section 21.4.1, Clock Timing.

Bits 31 to 16—Unused: Only 0 may be written to these bits.

Bits 15 to 0—Frequency Set (F15 to F0): Set the operating frequency of the CPU. The setting value must be calculated as the following methods.

- 1. The operating frequency which is shown in MHz units must be rounded in a number to three decimal places and be shown in a number of two decimal places.
- 2. The centuplicated value is converted to the binary digit and is written to the FPEFEQ parameter (general register R0). For example, when the operating frequency of the CPU is 25.000 MHz, the value is as follows.
 - The number to three decimal places of 25.000 is rounded and the value is thus 25.00.
 - The formula that 25.00 × 100 = 2500 is converted to the binary digit and b'0000,1001,1100,0100 (H'09C4) is set to R0.

Table 18.25 AC Characteristics Status Read Mode

Condition : $V_{cc} = 3.0$ V to 3.6 V, $V_{ss} = 0$ V, $T_a = 25^{\circ}C \pm 5^{\circ}C$

Code	Symbol	Min	Max	Unit	Note
Command write cycle	t _{nxtc}	20		μs	
CE hold time	t _{ceh}	0		ns	
CE setup time	t _{ces}	0		ns	
Data hold time	t _{dh}	50		ns	
Data setup time	t _{ds}	50		ns	
Programming pulse width	t _{wep}	70		ns	
OE output delay time	t _{oe}		150	ns	
Disable delay time	t _{df}		100	ns	
CE output delay time	t _{ce}		150	ns	
WE rise time	t _r		30	ns	
WE fall time	t,		30	ns	

Table 18.26 Stipulated Transition Times to Command Wait State

Condition : $V_{cc} = 3.0$ V to 3.6 V, $V_{ss} = 0$ V, $T_a = 25^{\circ}C \pm 5^{\circ}C$

Code	Symbol	Min	Max	Unit	Note
Standby release (oscillation settling time)	t _{osc1}	30		ms	
PROM mode setup time	t _{bmv}	10		ms	
V_{cc} hold time	t _{dwn}	0		ms	

20.4.4 Sample Application of Software Standby Mode

Figure 20.1 shows an example in which software standby mode is entered at the fall of NMI and exited at the rise of NMI.

With the NMI edge select bit (NMIEG) cleared to 0 in SYSCR (selecting the falling edge), an NMI interrupt occurs. Next the NMIEG bit is set to 1 (selecting the rising edge) and the SSBY bit is set to 1; then the SLEEP instruction is executed to enter software standby mode.

Software standby mode is exited at the next rising edge of the NMI signal.

Figure 20.1 NMI Timing for Software Standby Mode (Example)

20.4.5 Note

The I/O ports retain their existing states in software standby mode. If a port is in the high output state, its output current is not reduced.

Addross	Pogistor	Data				Bit I	Names				Madula
(Low)	Name	Width	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Name
H'EE080	_		_	_	_	_	_	_	_	_	
H'EE081	_		_	_	_	_	_	_	_	_	-
H'EE082	_		_	_	_	_	_	_	_	_	_
H'EE083	_		_	_	_	_	_	_	_	_	_
H'EE084	_		_	_	_	_	_	_	_	_	_
H'EE085	_		_	_	_	_	_	_	_	_	=
H'EE086	_		_	_	_	_	_	_	_	_	_
H'EE087	_		_	_	_	_	_	_	_	_	_
H'EE088	_		_	_	_	_	_	_	_	_	_
H'EE089	_		_	_	_	_	_	_	_	_	_
H'EE08A	_		_	_	_	_	_	_	_	_	_
H'EE08B	_		_	_	_	_	_	_	_	_	_
H'EE08C	_		_	_	_	_	_	_	_	_	_
H'EE08D	_		_	_	_	_	_	_	_	_	_
H'EE08E	—		_	_	_	_	_	_	_	_	_
H'EE08F	_		_	_	_	_	_	_	_	_	_
H'EE090	_		_	_	_	_	_	_	_	_	
H'EE091	_		_	_	_	_	_	_	_	_	_
H'EE092	_		_	_	_	_	_	_	_	_	_
H'EE093	_		_	_	_	_	_	_	_	_	_
H'EE094	_		_	_	_	_	_	_	_	_	_
H'EE095	_		_	_	_	_	_	_	_	_	_
H'EE096	_		_	_	_	_	_	_	_	_	_
H'EE097	_		_	_	_	_	_	_	_	_	_
H'EE098	_		_	_	_	_	_	_	_	_	_
H'EE099	_		_	_	_	_	_	_	_	_	_
H'EE09A	_		—	_	—	—	—	_	—	—	
H'EE09B	_		_	_	—	_	_	_	_	_	_
H'EE09C	_		_	_	_	_	_	_	_	_	
H'EE09D	_		_	_	_	_	_	_	_	_	
H'EE09E	_										_
H'EE09F	_		_		_	_		_	_	_	

B.2 Addresses (cont)

Address	Register	Data Bus				Bit	Names				Module
(Low)	Name	Width	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Name
H'EE020	ABWCR	8	ABW7	ABW6	ABW5	ABW4	ABW3	ABW2	ABW1	ABW0	Bus
H'EE021	ASTCR	8	AST7	AST6	AST5	AST4	AST3	AST2	AST1	AST0	controller
H'EE022	WCRH	8	W71	W70	W61	W60	W51	W50	W41	W40	-
H'EE023	WCRL	8	W31	W30	W21	W20	W11	W10	W01	W00	-
H'EE024	BCR	8	ICIS1	ICIS0	BROME	BRSTS1	BRSTS0	_	RDEA	WAITE	-
H'EE025	_		_	_	_	_	_	_	_	_	-
H'EE026	DRCRA	8	DRAS2	DRAS1	DRAS0	_	BE	RDM	SRFMD	RFSHE	DRAM
H'EE027	DRCRB	8	MXC1	MXC0	CSEL	RCYCE	_	TPC	RCW	RLW	Interface
H'EE028	RTMCSR	8	CMF	CMIE	CKS2	CKS1	CKS0	_	_	_	=
H'EE029	RTCNT	8									=
H'EE02A	RTCOR	8									=
H'EE02B	_		_	_	_	_	_	_	_	_	
H'EE02C	_		_	_	_	_	_	_	_	_	=
H'EE02D	_		_	_	_	_	_	_	_	_	=
H'EE02E	_		_	_	_	_	_	_	_	_	=
H'EE02F	_		_	_	_	_	_	_	_	_	=
H'EE030	_		_	_	_	_	_	_	_	_	
H'EE031	_		_	—	—	_	_	—	—	_	_
H'EE032	_		_	_	_	_	_	_	_	_	-
H'EE033	_		_	_							-
H'EE034	_		_	_	_	_	_	_	_	_	
H'EE035	_		_	_	_	_	_	_	_	_	_
H'EE036	_		_	_	_	_	_	_	_		-
H'EE037	_		_	_	_	_	_	_	_	_	-
H'EE038	Reserved	area (ac	cess proh	ibited)							=
H'EE039	_										
H'EE03A	_										
H'EE03B	_										
H'EE03C	P2PCR	8	P2,PCR	P2₅PCR	P2₅PCR	P2 ₄ PCR	P2₃PCR	P2 ₂ PCR	P2,PCR	P2₀PCR	Port 2
H'EE03D	_		_	_	_	_	_	_	_	—	
H'EE03E	P4PCR	8	P4,PCR	P4 ₆ PCR	P4₅PCR	$P4_4PCR$	P4 ₃ PCR	P4 ₂ PCR	P4,PCR	P4 ₀ PCR	Port 4
H'EE03F	P5PCR	8	_	_	_	_	P5 ₃ PCR	P5 ₂ PCR	P5,PCR	P5₀PCR	Port 5

R—IRQ Enable R	egister			H'EE	E015	Interrup	ot Controlle
Bit	7 6	5 — IRQ5E	4 IRQ4E	3 IRQ3E	2 IRQ2E	1 IRQ1E	0 IRQ0E
Initial value Read/Write	0 0 R/W R/V	0 V R/W	0 R/W	0 R/W	0 R/W	0 R/W	0 R/W
			RQ₅ to IRQ₅ 0 IRQ₅ tı 1 IRQ₅ tı	o enable o IRQo inte o IRQo inte	errupts are	e disabled e enabled]
≀—IRQ Status Re _{Bit}	e gister 7 6	5	4	H'EE 3 2	E016	Interrup	ot Controlle
Initial value Read/Write		- IRQ5F 0 - R/(W)* F	0 3/(W)* B/(Q3F IRQ2 0 0 W)* R/(W	2F IRQ1	F IRQ0F 0 * R/(W)*]
	IRQ5 to IRQ0 Bits 5 to 0 IRQ5F to IRQ0 0	flags F [Clearing cou • Read IRC • IRQnSC = handling i • IRQnSC = carried ou	Setting and nditions] nF when IRC = 0, IRQn inp s being carrie = 1 and IRQn it.	Clearing Co QnF = 1, the ut is high, ar ed out.	nditions n write 0 in nd interrupt ception har	IRQnF. exception	g
	1	[Setting cond IRQnSC = IRQnSC =	ditions] = 0 and IRQn = 1 and IRQn	input is low	Jes from hig	h to low. (n =	5 to 0)
Note: *	Only 0 can be w	itten to clear th	e flag			``	,

Rev. 2.0, 06/04, page 836 of 980

