

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	72MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	DMA, I ² S, POR, PWM, WDT
Number of I/O	37
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 11x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f303c8t6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	6.3.5	Supply current characteristics
	6.3.6	Wakeup time from low-power mode64
	6.3.7	External clock source characteristics64
	6.3.8	Internal clock source characteristics
	6.3.9	PLL characteristics
	6.3.10	Memory characteristics
	6.3.11	EMC characteristics
	6.3.12	Electrical sensitivity characteristics
	6.3.13	I/O current injection characteristics74
	6.3.14	I/O port characteristics
	6.3.15	NRST pin characteristics
	6.3.16	Timer characteristics
	6.3.17	Communication interfaces
	6.3.18	ADC characteristics
	6.3.19	DAC electrical specifications94
	6.3.20	Comparator characteristics96
	6.3.21	Operational amplifier characteristics97
	6.3.22	Temperature sensor (TS) characteristics
	6.3.23	V _{BAT} monitoring characteristics
Pacl	kage info	ormation
7.1	Packag	ge mechanical data
7.2	LQFP3	2 package information
7.3	LQFP4	8 package information
7.4	LQFP6	4 package information
7.5	Therma	al characteristics
	7.5.1	Reference document
	7.5.2	Selecting the product temperature range

7

8

9

1 Introduction

This datasheet provides the ordering information and the mechanical device characteristics of the STM32F303x6/8 microcontrollers.

This document should be read in conjunction with the STM32F303xx, STM32F358xx and STM32F328xx advanced ARM[®]-based 32-bit MCUs reference manual (RM00316) available from the STMicroelectronics website *www.st.com*.

For information on the Cortex[®]-M4 core with FPU, refer to:

- ARM[®] Cortex[®]-M4 Processor Technical Reference Manual available from the www.arm.com website.
- STM32F3xxx and STM32F4xxx Cortex[®]-M4 programming manual (PM0214) available from the <u>www.st.com</u> website.

Group	Capacitive sensing group name	Pin name
	TSC_G3_IO1	PC5
3	TSC_G3_IO2	PB0
5	TSC_G3_IO3	PB1
	TSC_G3_IO4	PB2
	TSC_G4_IO1	PA9
4	TSC_G4_IO2	PA10
4	TSC_G4_IO3	PA13
	TSC_G4_IO4	PA14
	TSC_G5_IO1	PB3
5	TSC_G5_IO2	PB4
5	TSC_G5_IO3	PB6
	TSC_G5_IO4	PB7
	TSC_G6_IO1	PB11
6	TSC_G6_IO2	PB12
U	TSC_G6_IO3	PB13
	TSC_G6_IO4	PB14

Table 10. Capacitive sensing GPIOs available on STM32F303x6/8 devices (continued)

Table 11. Capacitive sensing GPIO available

Group	Capacitive sensing group name	Pin name
	TSC_G1_IO1	PA0
1	TSC_G1_IO2	PA1
1	TSC_G1_IO3	PA2
	TSC_G1_IO4	PA3
	TSC_G2_IO1	PA4
2	TSC_G2_IO2	PA5
2	TSC_G2_IO3	PA6
	TSC_G2_IO4	PA7
	TSC_G3_IO1	PC5
3	TSC_G3_IO2	PB0
ы С	TSC_G3_IO3	PB1
	TSC_G3_IO1	PC5

Na	me	Abbreviation	Definition	
Pin r	name		specified in brackets below the pin name, the pin function during and ame as the actual pin name	
		S	Supply pin	
Pin	type	I	Input only pin	
		I/O	Input / output pin	
		FT	5 V tolerant I/O	
		FTf	5 V tolerant I/O, FM+ capable	
		TTa	3.3 V tolerant I/O directly connected to ADC	
		TT	3.3 V tolerant I/O	
I/O str	ructure	TC	Standard 3.3 V I/O	
		В	Dedicated BOOT0 pin	
		RST	Bi-directional reset pin with embedded weak pull-up resistor	
		POR	External power-on reset pin with embedded weak pull-up resistor, powered from V _{DDA} .	
No	tes	Unless otherwise s reset	specified by a note, all I/Os are set as floating inputs during and after	
Alternate functions		Functions selected through GPIOx_AFR registers		
Pin functions	Additional functions	Functions directly selected/enabled through peripheral registers		

Table 13. Legend/abbreviations used in the pinout table

Table 14. STM32F303x6/8 pin definitions

Pi	n Numb	er				Pin functions	
LQFP 32	LQFP 48	LQFP 64	Pin name (function after reset)	Pin type	I/O structure	Alternate functions	Additional functions
-	1	1	VBAT	S	-	Backı	up power supply
-	2	2	PC13 ⁽¹⁾	I/O	тс	TIM1_CH1N RTC_TAMP1/RTC_TS/ RTC_OUT/WKUP2	
-	3	3	PC14 / OSC32_IN ⁽¹⁾	I/O	TC	- OSC32_IN	
-	4	4	PC15 / OSC32_OUT ⁽¹⁾	I/O	TC	- OSC32_OUT	
2	5	5	PF0 / OSC_IN	I/O	FT	TIM1_CH3N	OSC_IN

Pi	n Numb	er				Pin functions		
LQFP 32	LQFP 48	LQFP 64	Pin name (function after reset)	Pin type	I/O structure	Alternate functions	Additional functions	
12	16	22	PA6 ⁽³⁾	I/O	ТТа	TIM16_CH1, TIM3_CH1, TSC_G2_IO3, SPI1_MISO, TIM1_BKIN, , EVENTOUT	ADC2_IN3 ⁽²⁾ , DAC2_OUT1, OPAMP2_VOUT	
13	17	23	PA7	I/O	ТТа	TIM17_CH1, TIM3_CH2, TSC_G2_IO4, SPI1_MOSI, TIM1_CH1N, EVENTOUT	ADC2_IN4 ⁽²⁾ , COMP2_INP, OPAMP2_VINP	
-	-	24	PC4	I/O	TTa	EVENTOUT, TIM1_ETR, USART1_TX	ADC2_IN5 ⁽²⁾	
-	-	25	PC5	I/O	ТТа	EVENTOUT, TIM15_BKIN, TSC_G3_IO1, USART1_RX	ADC2_IN11, OPAMP2_VINM	
14	18	26	PB0	I/O	ТТа	TIM3_CH3, TSC_G3_IO2, TIM1_CH2N, EVENTOUT	ADC1_IN11, COMP4_INP, OPAMP2_VINP	
15	19	27	PB1	I/O	ТТа	TIM3_CH4, TSC_G3_IO3, TIM1_CH3N, COMP4_OUT, EVENTOUT	ADC1_IN12	
-	20	28	PB2	I/O	TTa	TSC_G3_IO4, EVENTOUT	ADC2_IN12, COMP4_INM	
-	21	29	PB10	I/O	TT	TIM2_CH3, TSC_SYNC, USART3_TX, EVENTOUT	-	
-	22	30	PB11	I/O	ТТа	TIM2_CH4, TSC_G6_IO1, USART3_RX, EVENTOUT	COMP6_INP	
16	23	31	VSS	S	-	Di	igital ground	
17	24	32	VDD	S	-	Digita	al power supply	
-	25	33	PB12	I/O	TTa	TSC_G6_IO2, TIM1_BKIN, USART3_CK, EVENTOUT	ADC2_IN13	
-	26	34	PB13	I/O	ТТа	TSC_G6_IO3, TIM1_CH1N, USART3_CTS, EVENTOUT	ADC1_IN13	
-	27	35	PB14	I/O	ТТа	TIM15_CH1, TSC_G6_IO4, TIM1_CH2N, USART3_RTS_DE, EVENTOUT	ADC2_IN14, OPAMP2_VINP	

Table 14. STM32F303x6/8 pin definitions (continued)

Г

Pi	n Numb	er				Pin functions	
LQFP 32	LQFP 48	LQFP 64	Pin name (function after reset)	Pin type	I/O structure	Alternate functions	Additional functions
25	38	50	PA15	I/O	FTf	JTDI, TIM2_CH1/TIM2_ETR, TSC_SYNC, I2C1_SCL, SPI1_NSS, USART2_RX, TIM1_BKIN, EVENTOUT	-
-	-	51	PC10	I/O	FT	EVENTOUT, USART3_TX	-
-	-	52	PC11	I/O	FT	EVENTOUT, USART3_RX	-
-	-	53	PC12	I/O	FT	EVENTOUT, USART3_CK	-
-	-	54	PD2	I/O	FT	EVENTOUT, TIM3_ETR	-
26	39	55	PB3	I/O	FT	JTDO/TRACE SWO, TIM2_CH2, TSC_G5_IO1, SPI1_SCK, USART2_TX, TIM3_ETR, EVENTOUT	-
27	40	56	PB4	I/O	FT	NJTRST, TIM16_CH1, TIM3_CH1, TSC_G5_IO2, SPI1_MISO, USART2_RX, TIM17_BKIN, EVENTOUT	-
28	41	57	PB5	I/O	FT	TIM16_BKIN, TIM3_CH2, I2C1_SMBA, SPI1_MOSI, USART2_CK, TIM17_CH1, EVENTOUT	-
29	42	58	PB6	I/O	FTf	TIM16_CH1N, TSC_G5_IO3, I2C1_SCL, USART1_TX, EVENTOUT	-
30	43	59	PB7	I/O	FTf	TIM17_CH1N, TSC_G5_IO4, I2C1_SDA, USART1_RX, TIM3_CH4, EVENTOUT	-
31	44	60	BOOT0	I	В	-	-
-	45	61	PB8	I/O	FTf	TIM16_CH1, TSC_SYNC, I2C1_SCL, USART3_RX, CAN_RX, TIM1_BKIN, EVENTOUT	-

Table 14. STM32	F303x6/8	s pin def	initions (continued)

5 Memory mapping

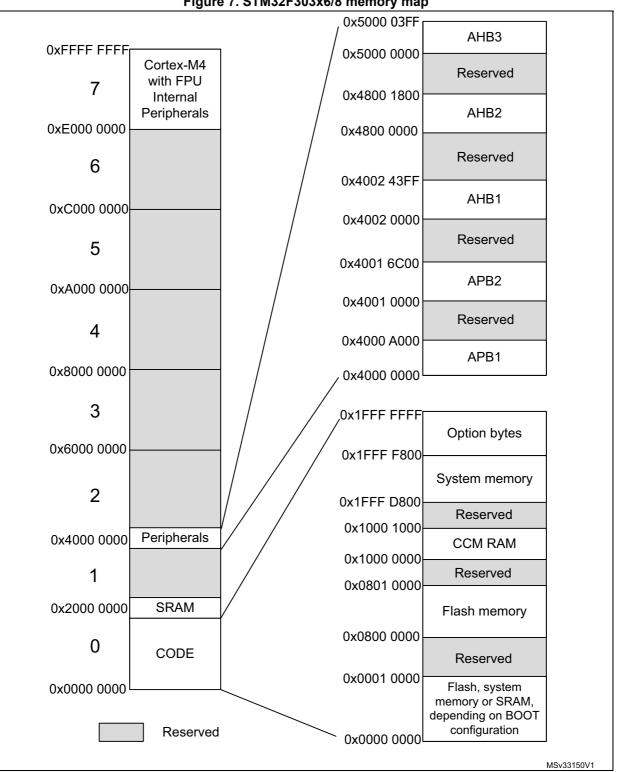


Figure 7. STM32F303x6/8 memory map

DocID025083 Rev 5

6.3 Operating conditions

6.3.1 General operating conditions

Table 20	General	operating	conditions
----------	---------	-----------	------------

Symbol	Parameter	Conditions	Min.	Max.	Unit	
f _{HCLK}	Internal AHB clock frequency	-	0	72		
f _{PCLK1}	Internal APB1 clock frequency	-	0	36	MHz	
f _{PCLK2}	Internal APB2 clock frequency	-	0	72		
V _{DD}	Standard operating voltage	-	2	3.6		
	Analog operating voltage (OPAMP and DAC not used)	Must have a potential equal to	2	3.6		
V _{DDA}	Analog operating voltage (OPAMP and DAC used)	or higher than V _{DD}	2.4	3.6	V	
V _{BAT}	Backup operating voltage	-	1.65	3.6	V	
		TC I/O	-0.3	V _{DD} +0.3		
		TT I/O	-0.3	3.6		
V _{IN}	I/O input voltage	TTa I/O	-0.3	V _{DDA} +0.3	V	
		FT and FTf I/O ⁽¹⁾	-0.3	5.5		
		BOOT0	0	5.5		
PD	Power dissipation at $T_A = 85$ °C for suffix 6 or $T_A = 105$ °C for suffix $7^{(2)}$	LQFP64	-	444	mW	
PD	Power dissipation at T_A = 85 °C for suffix 6 or T_A = 105 °C for suffix $7^{(3)}$	LQFP48	-	364	mW	
	Ambient temperature for 6 suffix	Maximum power dissipation	-40	85	° C	
Та	version	Low power dissipation ⁽⁴⁾	-40	105	°C	
IA	Ambient temperature for 7 suffix	Maximum power dissipation	-40	105	°C	
	version	Low power dissipation ⁽⁴⁾	-40	125		
TJ	Junction temperature range	6 suffix version	-40	105	°C	
IJ		7 suffix version	-40	125		

1. To sustain a voltage higher than V_{DD} +0.3 V, the internal pull-up/pull-down resistors must be disabled.

2. If T_A is lower, higher P_D values are allowed as long as T_J does not exceed T_{Jmax} (see Section 7.5: Thermal characteristics).

3. If T_A is lower, higher P_D values are allowed as long as T_J does not exceed T_{Jmax} (see Section 7.5: Thermal characteristics).

4. In low power dissipation state, T_A can be extended to this range as long as T_J does not exceed T_{Jmax} (see Section 7.5: *Thermal characteristics*).

6.3.2 Operating conditions at power-up / power-down

The parameters given in *Table 21* are derived from tests performed under the ambient temperature condition summarized in *Table 20*.

Symbol	Parameter	Conditions	Min.	Max.	Unit
+	V _{DD} rise time rate		0	8	
t _{VDD}	V _{DD} fall time rate	-	20	8	µs/V
+	V _{DDA} rise time rate		0	∞	μ5/ ν
^t VDDA	V _{DDA} fall time rate	-	20	∞	

Table 21. Operating conditions at power-up / power-down

6.3.3 Characteristics of the embedded reset and power-control block

The parameters given in *Table 22* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 20*.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
V _{POR/PDR} ⁽¹⁾	Power on/power down reset threshold	Falling edge	1.8 ⁽²⁾	1.88	1.96	V
		Rising edge	1.84	1.92	2.0	V
V _{PDRhyst} ⁽¹⁾	PDR hysteresis	-	-	40	-	mV
t _{RSTTEMPO} ⁽³⁾	POR reset temporization	-	1.5	2.5	4.5	ms

1. The PDR detector monitors V_{DD} and also V_{DDA} (if kept enabled in the option bytes). The POR detector monitors only V_{DD} .

2. The product behavior is guaranteed by design down to the minimum $V_{\mbox{POR/PDR}}$ value.

3. Guaranteed by design, not tested in production.

Calibration value name	Description	Memory address
V _{REFINT_CAL}	Raw data acquired at temperature of 30 °C V _{DDA} = 3.3 V	0x1FFF F7BA - 0x1FFF F7BB

Table 25. Internal reference voltage calibration values

6.3.5 Supply current characteristics

The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code.

The current consumption is measured as described in *Figure 11: Scheme of the current-consumption measurement.*

All Run-mode current consumption measurements given in this section are performed with a reduced code that gives a consumption equivalent to CoreMark code.

Note: The total current consumption is the sum of IDD and IDDA.

Typical and maximum current consumption

The MCU is placed under the following conditions:

- All I/O pins are in input mode with a static value at V_{DD} or V_{SS} (no load)
- All peripherals are disabled except when explicitly mentioned
- The Flash memory access time is adjusted to the f_{HCLK} frequency (0 wait state from 0 to 24 MHz, 1 wait state from 24 to 48 MHz and 2 wait states from 48 to 72 MHz)
- Prefetch in ON (reminder: this bit must be set before clock setting and bus prescaling)
- When the peripherals are enabled $f_{PCLK2} = f_{HCLK}$ and $f_{PCLK1} = f_{HCLK/2}$
- When f_{HCLK} > 8 MHz, the PLL is ON and the PLL input is equal to HSI/2 (4 MHz) or HSE (8 MHz) in bypass mode.

The parameters given in *Table 26* to *Table 30* are derived from tests performed under ambient temperature and supply voltage conditions summarized in *Table 20*.

For the output pins, any external pull-down or external load must also be considered to estimate the current consumption.

Additional I/O current consumption is due to I/Os configured as inputs if an intermediate voltage level is externally applied. This current consumption is caused by the input Schmitt trigger circuits used to discriminate the input value. Unless this specific configuration is required by the application, this supply current consumption can be avoided by configuring these I/Os in analog mode. This is notably the case of ADC input pins which should be configured as analog inputs.

Caution: Any floating input pin can also settle to an intermediate voltage level or switch inadvertently, as a result of external electromagnetic noise. To avoid current consumption related to floating pins, they must either be configured in analog mode, or forced internally to a definite digital value. This can be done either by using pull-up/down resistors or by configuring the pins in output mode.

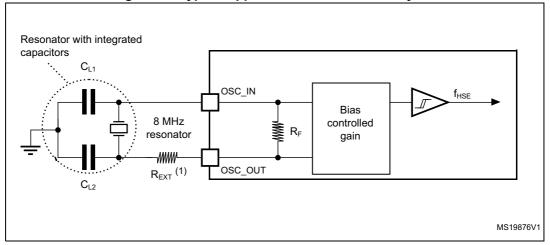
I/O dynamic current consumption

In addition to the internal peripheral current consumption (see *Table 35: Peripheral current consumption*), the I/Os used by an application also contribute to the current consumption. When an I/O pin switches, it uses the current from the MCU supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load (internal or external) connected to the pin:

$$I_{SW} = V_{DD} \times f_{SW} \times C$$

where:

 I_{SW} is the current sunk by a switching I/O to charge/discharge the capacitive load V_{DD} is the MCU supply voltage


f_{SW} is the I/O switching frequency

C is the total capacitance seen by the I/O pin: C = C_{INT} + C_{EXT+CS}

For C_{L1} and C_{L2}, it is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see *Figure 15*). C_{L1} and C_{L2} are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2}. PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing C_{L1} and C_{L2}.

Note: For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website <u>www.st.com</u>.

1. R_{EXT} value depends on the crystal characteristics.

Low-speed external clock generated from a crystal/ceramic resonator

The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in *Table 41*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

6.3.16 Timer characteristics

The parameters given in *Table 56* are guaranteed by design.

Refer to Section 6.3.14: I/O port characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output).

Table 56. TIMx ⁽¹⁾⁽²⁾ characteristics							
Symbol	Parameter	Conditions	Min.	Max.	Unit		
	Timer resolution time	-	1	-	t _{TIMxCL} к		
t _{res(TIM)}		f _{TIMxCLK} = 72 MHz	13.9	-	ns		
		f _{TIM1CLK} = 144 MHz	6.95	-	ns		
f	Timer external clock frequency on CH1 to CH4	-	0	f _{TIMxCLK} /2	MHz		
f _{EXT}		f _{TIMxCLK} = 72 MHz	0	36	MHz		
Pos-u i	Timer resolution	TIMx (except TIM2)	-	16	bit		
Res _{TIM}		TIM2	-	32	DIL		
	16-bit counter clock period	-	1	65536	t _{TIMxCL} к		
^t COUNTER		f _{TIMxCLK} = 72 MHz	0.0139	910	μs		
		f _{TIM1CLK} = 144 MHz	0.0069	455	μs		
t _{MAX_COUN}	Maximum possible count	-	-	65536 × 65536	t _{TIMxCL} к		
	with 32-bit counter	f _{TIMxCLK} = 72 MHz	-	59.65	S		
		f _{TIM1CLK} = 144 MHz	-	29.825	S		

Table 56. TIMx⁽¹⁾⁽²⁾ characteristics

1. TIMx is used as a general term to refer to the TIM1, TIM2, TIM3, TIM15, TIM16 and TIM17 timers.

2. Guaranteed by design, not tested in production.

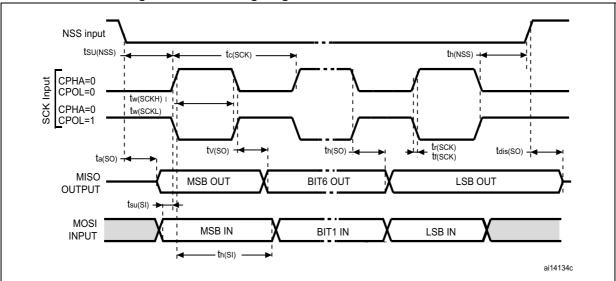


Figure 24. SPI timing diagram - slave mode and CPHA = 0

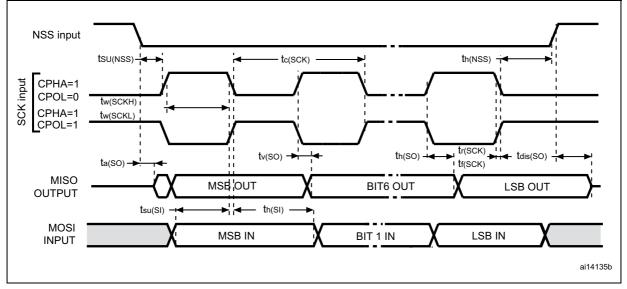


Figure 25. SPI timing diagram - slave mode and CPHA = 1⁽¹⁾

1. Measurement points are done at 0.5V_{DD} and with external C_L = 30 pF.

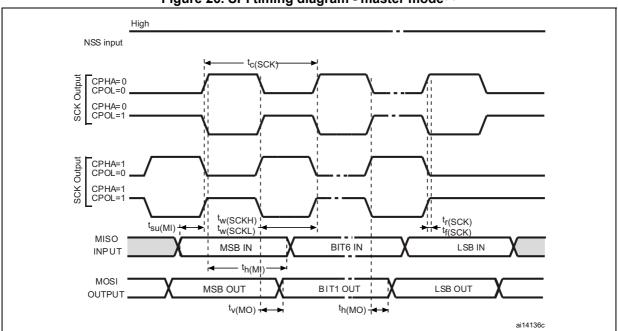


Figure 26. SPI timing diagram - master mode⁽¹⁾

1. Measurement points are done at $0.5V_{DD}$ and with external C_L = 30 pF.

CAN (controller area network) interface

Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (CAN_TX and CAN_RX).

6.3.18 ADC characteristics

Unless otherwise specified, the parameters given in *Table 61* to *Table 64* are guaranteed by design, with conditions summarized in *Table 20*.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
V _{DDA}	Analog supply voltage for ADC	-	2	-	3.6	V
		Single ended mode, 5 MSPS,	-	1011.3	1172.0	
		Single ended mode, 1 MSPS	-	214.7	322.3	
	ADC current consumption (<i>Figure 27</i>)	Single ended mode, 200 KSPS	-	54.7	81.1	
IDDA		Differential mode,5 MSPS,	-	1061.5	1243.6	μA
		Differential mode, 1 MSPS	-	246.6	337.6	
		Differential mode, 200 KSPS	-	56.4	83.0	

 Table 61. ADC characteristics

Symbol	Parameter	(Conditions	-	Min ⁽⁴⁾	Max ⁽⁴⁾	Unit
			Single ended	Fast channel 5.1 Ms	-	±3	
EL	Integral		Single ended	Slow channel 4.8 Ms	-	±3.5	
	linearity error		Differential	Fast channel 5.1 Ms	-	±2	
			Differential	Slow channel 4.8 Ms	-	±2.5	
			Single ended	Fast channel 5.1 Ms	10.4	-	bits
ENOB (5) Effective number of bits		ADC clock freq. \leq 72 MHz, Sampling freq. \leq 5 Msps	Single ended	Slow channel 4.8 Ms	10.4	-	
		$2.0 \text{ V} \le \text{V}_{\text{DDA}} \le 3.6 \text{ V}$	Differential	Fast channel 5.1 Ms	10.8	-	
				Slow channel 4.8 Ms	10.8	-	
Signal-t SINAD noise ar	Signal-to-		Single ended	Fast channel 5.1 Ms	64	-	dB
	noise and distortion ratio	oise and istortion		Slow channel 4.8 Ms	63	-	
(5)			Differential	Fast channel 5.1 Ms	67	-	
				Slow channel 4.8 Ms	67	-	
			Single ended	Fast channel 5.1 Ms	64	-	dB
SNR ⁽⁵⁾	Signal-to-		Single ended	Slow channel 4.8 Ms	64	-	
SINK	noise ratio	ADC clock freq. ≤ 72 MHz, Differentia	Differential	Fast channel 5.1 Ms	67	-	
			Dillerential	Slow channel 4.8 Ms	67	-	
THD ⁽⁵⁾		Sampling freq \leq 5 Msps, 2.0 V \leq V _{DDA} \leq 3.6 V	Single ended	Fast channel 5.1 Ms	-	-75	
	Total harmonic		Single ended	Slow channel 4.8 Ms	-	-75	
יייטחו	distortion		Differential	Fast channel 5.1 Ms	-	-79	
			Dinerential	Slow channel 4.8 Ms	-	-78	

Table 64. ADC accuracy ⁽¹⁾⁽²⁾⁽³⁾ (continued)

1. ADC DC accuracy values are measured after internal calibration.

 ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative current. Any positive injection current within the limits specified for I_{INJ(PIN)} and ΣI_{INJ(PIN)} in Section 6.3.14 does not affect the ADC accuracy.

3. Better performance may be achieved in restricted V_{DDA} , frequency and temperature ranges.

4. Data based on characterization results, not tested in production.

5. Value measured with a -0.5 dB full scale 50 kHz sine wave input signal.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
VOH	High saturation voltage ⁽²⁾	R _{load} = min, Input at V _{DDA} .	V _{DDA} -100	-		
VOH _{SAT}	ngi oddiadon tolago	R _{load} = 20K, Input at V _{DDA} .	V _{DDA} -20	-		mV
VOL _{SAT}	Low saturation voltage	R _{load} = min, input at 0 V	-	-	100	IIIV
VOLSAT		R _{load} = 20K, input at 0 V.	-	-	20	
φm	Phase margin	-	-	62	-	0
t _{offtrim}	Offset trim time: during calibration, minimum time needed between two steps to have 1 mV accuracy	-	-	-	2	ms
twakeup	Wake up time from OFF state.	$\begin{array}{l} C_{LOAD} \leq \!\! 50 \mbox{ pf}, \\ R_{LOAD} \geq 4 k\Omega, \\ Follower \\ configuration \end{array}$	-	2.8	5	μs
t _{S_OPAM_VOUT}	ADC sampling time when reading the 0	DPAMP output	400	-	-	ns
	Non inverting gain value	-	-	2	-	-
PGA gain			-	4	-	-
FGA yain			-	8	-	-
			-	16	-	-
	R2/R1 internal resistance values in PGA mode ⁽³⁾	Gain=2	-	5.4/5.4	-	
D		Gain=4	-	16.2/5.4	-	kΩ
R _{network}		Gain=8	-	37.8/5.4	-	
		Gain=16	-	40.5/2.7	-	
PGA gain error	PGA gain error	-	-1%	-	1%	-
I _{bias}	OPAMP input bias current	-	-	-	±0.2 ⁽⁴⁾	μA
		PGA Gain = 2, C_{load} = 50pF, R_{load} = 4 K Ω	-	4	-	
PGA BW	PGA bandwidth for different non	PGA Gain = 4, C_{load} = 50pF, R_{load} = 4 K Ω	-	2	-	MHz
	inverting gain	PGA Gain = 8, C_{load} = 50pF, R_{load} = 4 K Ω	-	1	-	
		PGA Gain = 16, C_{load} = 50pF, R_{load} = 4 K Ω	-	0.5	-	

Table 68. Operational amplifier ch	naracteristics ⁽¹⁾ (continued)
------------------------------------	---

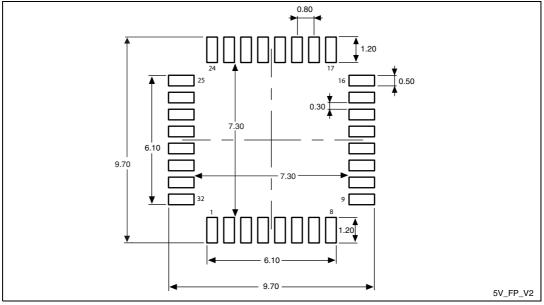
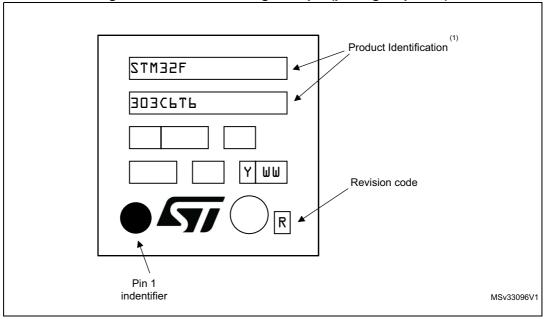


Table 72. EQT F 52 mechanical data (continued)								
Symbol		Millimeters			Inches ⁽¹⁾			
Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.		
b	0.300	0.370	0.450	0.0118	0.0146	0.0177		
С	0.090	-	0.200	0.0035	-	0.0079		
D	8.800	9.000	9.200	0.3465	0.3543	0.3622		
D1	6.800	7.000	7.200	0.2677	0.2756	0.2835		
D3	-	5.600	-	-	0.2205	-		
E	8.800	9.000	9.200	0.3465	0.3543	0.3622		
E1	6.800	7.000	7.200	0.2677	0.2756	0.2835		
E3	-	5.600	-	-	0.2205	-		
е	-	0.800	-	-	0.0315	-		
L	0.450	0.600	0.750	0.0177	0.0236	0.0295		
L1	-	1.000	-	-	0.0394	-		
k	0.0°	3.5°	7.0°	0.0°	3.5°	7.0°		
CCC	-	-	0.100	-	-	0.0039		

Table 72. LQFP32 mechanical data (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.

1. Drawing is not to scale.


2. Dimensions are expressed in millimeters.

Device marking for LQFP48

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Figure 38. LQFP48 marking example (package top view)

 Parts marked as "ES","E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

7.5 Thermal characteristics

The maximum chip-junction temperature, T_J max, in degrees Celsius, may be calculated using the following equation:

 $T_J \max = T_A \max + (P_D \max x \Theta_{JA})$

Where:

- T_A max is the maximum ambient temperature in °C,
- Θ_{JA} is the package junction-to-ambient thermal resistance, in ° C/W,
- P_D max is the sum of P_{INT} max and P_{I/O} max (P_D max = P_{INT} max + P_{I/O} max),
- P_{INT} max is the product of I_{DD} and V_{DD}, expressed in Watts. This is the maximum chip internal power.

P_{I/O} max represents the maximum power dissipation on output pins where:

 $\mathsf{P}_{\mathsf{I/O}} \max = \Sigma \; (\mathsf{V}_{\mathsf{OL}} \times \mathsf{I}_{\mathsf{OL}}) + \Sigma ((\mathsf{V}_{\mathsf{DD}} - \mathsf{V}_{\mathsf{OH}}) \times \mathsf{I}_{\mathsf{OH}}),$

taking into account the actual V_{OL} / I_{OL} and V_{OH} / I_{OH} of the I/Os at low and high level in the application.

Sy	ymbol	Parameter	Value	Unit
	Θ_{JA}	Thermal resistance junction-ambient LQFP64 - 10 × 10 mm / 0.5 mm pitch	45°C/W	°C/W
	Θ_{JA}	Thermal resistance junction-ambient LQFP32 - 7 × 7 mm / 0.8 mm pitch	60°C/W	°C/W

Table 75. Package thermal characteristics

7.5.1 Reference document

JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org.

7.5.2 Selecting the product temperature range

When ordering the microcontroller, the temperature range is specified in the ordering information scheme shown in *Table 76: Ordering information scheme*.

Each temperature range suffix corresponds to a specific guaranteed ambient temperature at maximum dissipation and, to a specific maximum junction temperature.

As applications do not commonly use the STM32F303x6/8 at maximum dissipation, it is useful to calculate the exact power consumption and junction temperature to determine which temperature range will be best suited to the application.

The following examples show how to calculate the temperature range needed for a given application.

Example: high-performance application

Assuming the following application conditions:

Maximum ambient temperature T_{Amax} = 82 °C (measured according to JESD51-2), I_{DDmax} = 50 mA, V_{DD} = 3.5 V, maximum 20 I/Os used at the same time in output at low

