

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	72MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	DMA, I ² S, POR, PWM, WDT
Number of I/O	51
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 15x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f303r8t6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Introduction

This datasheet provides the ordering information and the mechanical device characteristics of the STM32F303x6/8 microcontrollers.

This document should be read in conjunction with the STM32F303xx, STM32F358xx and STM32F328xx advanced ARM[®]-based 32-bit MCUs reference manual (RM00316) available from the STMicroelectronics website *www.st.com*.

For information on the Cortex[®]-M4 core with FPU, refer to:

- ARM[®] Cortex[®]-M4 Processor Technical Reference Manual available from the www.arm.com website.
- STM32F3xxx and STM32F4xxx Cortex[®]-M4 programming manual (PM0214) available from the <u>www.st.com</u> website.

3.16.3 Serial peripheral interface (SPI)

A SPI interface allows to communicate up to 18 Mbits/s in slave and master modes in fullduplex and simplex communication modes. The 3-bit prescaler gives 8 master mode frequencies and the frame size is configurable from 4 bits to 16 bits.

The features available in SPI1 are showed below in *Table 9*.

SPI features ⁽¹⁾	SPI1
Hardware CRC calculation	Х
Rx/Tx FIFO	Х
NSS pulse mode	Х
TI mode	Х

1. X = supported.

3.16.4 Controller area network (CAN)

The CAN is compliant with specifications 2.0A and B (active) with a bit rate up to 1 Mbit/s. It can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. It has three transmit mailboxes, two receive FIFOs with 3 stages and 14 scalable filter banks.

3.17 Infrared transmitter

The STM32F303x6/8 devices provide an infrared transmitter solution. The solution is based on internal connections between TIM16 and TIM17 as shown in the figure below.

TIM17 is used to provide the carrier frequency and TIM16 provides the main signal to be sent. The infrared output signal is available on PB9 or PA13.

To generate the infrared remote control signals, TIM16 channel 1 and TIM17 channel 1 must be properly configured to generate correct waveforms. All standard IR pulse modulation modes is obtained by programming the two timers of the output compare channels (see *Figure 3*).

Figure 3. Infrared transmitter

3.18 Touch sensing controller (TSC)

The STM32F303x6/8 devices provide a simple solution for adding capacitive sensing functionality to any application. These devices offer up to 18 capacitive sensing channels distributed over 6 analog I/Os group.

Capacitive sensing technology is able to detect the presence of a finger near an electrode which is protected from direct touch by a dielectric (glass, plastic,...). The capacitive variation introduced by the finger (or any conductive object) is measured using a proven implementation based on a surface charge transfer acquisition principle. It consists of charging the electrode capacitance and then transferring a part of the accumulated charges into a sampling capacitor until the voltage across this capacitor has reached a specific threshold. To limit the CPU bandwidth usage this acquisition is directly managed by the hardware touch sensing controller and only requires few external components to operate.

The touch sensing controller is fully supported by the STMTouch touch sensing firmware library which is free to use and allows touch sensing functionality to be implemented reliably in the end application.

Group	Capacitive sensing group name	Pin name
	TSC_G1_IO1	PA0
1	TSC_G1_IO2	PA1
I	TSC_G1_IO3	PA2
	TSC_G1_IO4	PA3
	TSC_G2_IO1	PA4
2	TSC_G2_IO2	PA5
	TSC_G2_IO3	PA6
	TSC_G2_IO4	PA7

Table 10. Capacitive sensing GPIOs available on STM32F303x6/8 devices

Group	Capacitive sensing group name	Pin name
	TSC_G3_IO1	PC5
3	TSC_G3_IO2	PB0
5	TSC_G3_IO3	PB1
	TSC_G3_IO4	PB2
	TSC_G4_IO1	PA9
4	TSC_G4_IO2	PA10
4	TSC_G4_IO3	PA13
	TSC_G4_IO4	PA14
	TSC_G5_IO1	PB3
5	TSC_G5_IO2	PB4
5	TSC_G5_IO3	PB6
	TSC_G5_IO4	PB7
	TSC_G6_IO1	PB11
6	TSC_G6_IO2	PB12
0	TSC_G6_IO3	PB13
	TSC_G6_IO4	PB14

Table 10. Capacitive sensing GPIOs available on STM32F303x6/8 devices (continued)

Table 11. Capacitive sensing GPIO available

Group	Capacitive sensing group name	Pin name
	TSC_G1_IO1	PA0
1	TSC_G1_IO2	PA1
I	TSC_G1_IO3	PA2
	TSC_G1_IO4	PA3
	TSC_G2_IO1	PA4
2	TSC_G2_IO2	PA5
2	TSC_G2_IO3	PA6
	TSC_G2_IO4	PA7
	TSC_G3_IO1	PC5
2	TSC_G3_IO2	PB0
5	TSC_G3_IO3	PB1
	TSC_G3_IO1	PC5

Table 14. STM32F303x6/8 pir	definitions (continued)
-----------------------------	-------------------------

Pi	n Numb	er				Pin functions			
LQFP 32	LQFP 48	LQFP 64	Pin name (function after reset)	Pin type	I/O structure	Alternate functions	Additional functions		
3	6	6	PF1 / OSC_OUT	I/O	FT	-	OSC_OUT		
4	7	7	NRST	I/O	RST	Device reset in (put / internal reset output active low)		
-	-	8	PC0	I/O	ТТа	EVENTOUT, TIM1_CH1	ADC12_IN6		
-	-	9	PC1	I/O	ТТа	EVENTOUT, TIM1_CH2	ADC12_IN7		
-	-	10	PC2	I/O	ТТа	EVENTOUT, TIM1_CH3	ADC12_IN8		
-	-	11	PC3	I/O	TTa	EVENTOUT, TIM1_CH4, TIM1_BKIN2	ADC12_IN9		
-	8	12	VSSA/VREF-	S	-	Analog ground/	Negative reference voltage		
5	9	13	VDDA/VREF+	S	-	Analog power supp	Analog power supply/Positive reference voltage		
6	10	14	PA0	I/O	ТТа	TIM2_CH1/ TIM2_ETR, TSC_G1_IO1, USART2_CTS, EVENTOUT	ADC1_IN1 ⁽²⁾ , RTC_TAMP2/WKUP1		
7	11	15	PA1	I/O	TTa	TIM2_CH2, TSC_G1_IO2, USART2_RTS_DE, TIM15_CH1N, EVENTOUT	ADC1_IN2 ⁽²⁾ , RTC_REFIN		
8	12	16	PA2	I/O	TTa	TIM2_CH3, TSC_G1_IO3, USART2_TX, COMP2_OUT, TIM15_CH1, EVENTOUT	ADC1_IN3 ⁽²⁾ , COMP2_INM		
9	13	17	PA3	I/O	ТТа	TIM2_CH4, TSC_G1_IO4, USART2_RX, TIM15_CH2, EVENTOUT	ADC1_IN4 ⁽²⁾		
-	-	18	VSS	S	-	-	-		
-	-	19	VDD	S	-	-	-		
10	14	20	PA4 ⁽³⁾	I/O	ТТа	TIM3_CH2, TSC_G2_IO1, SPI1_NSS, USART2_CK, EVENTOUT	ADC2_IN1 ⁽²⁾ , DAC1_OUT1, COMP2_INM4, COMP4_INM4, COMP6_INM4		
11	15	21	PA5 ⁽³⁾	I/O	ТТа	TIM2_CH1/ TIM2_ETR, TSC_G2_IO2, SPI1_SCK, EVENTOUT	ADC2_IN2 ⁽²⁾ , DAC1_OUT2, OPAMP2_VINM		

40/115

DocID025083 Rev 5

	Table 15. Alternate functions (continued)																
		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
Por	t	SYS_AF	TIM2/TIM15/ TIM16/TIM17/ EVENT	TIM1/TIM3/ TIM15/ TIM16	TSC	I2C1/TIM1	SPI1/Infrared	TIM1/Infrared	USART1/USA RT2/USART3/ GPCOMP6	GPCOMP2/ GPCOMP4/ GPCOMP6	CAN/TIM1/ TIM15	TIM2/TIM3 /TIM17	TIM1	TIM1	OPAMP2	-	EVENT
	PB10	-	TIM2_CH3	-	TSC_SYNC	-	-	-	USART3_TX	-	-	-	-	-		-	EVENTOUT
	PB11	-	TIM2_CH4	-	TSC_G6_IO1	-	-	-	USART3_RX	-	-	-	-	-		-	EVENTOUT
	PB12	-	-	-	TSC_G6_IO2	-	-	TIM1_BKIN	USART3_CK	-	-	-		-		-	EVENTOUT
Port B	PB13	-	-	-	TSC_G6_IO3	-	-	TIM1_CH1N	USART3_CTS	-	-	-	-	-		-	EVENTOUT
	PB14	-	TIM15_CH1	-	TSC_G6_IO4	-	-	TIM1_CH2N	USART3_RTS _DE	-	-	-	-	-		-	EVENTOUT
	PB15	-	TIM15_CH2	TIM15_CH1 N	-	TIM1_CH3N	-	-	-	-	-	-	-	-		-	EVENTOUT
	PC0	-	EVENTOUT	TIM1_CH1	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	PC2	-	EVENTOUT	TIM1_CH3	-	-	-	-	-	-	-	-	-	-	-	-	-
	PC3	-	EVENTOUT	TIM1_CH4	-	-	-	TIM1_BKIN2	-	-	-	-	-	-	-	-	-
	PC4	-	EVENTOUT	TIM1_ETR	-	-	-	-	USART1_TX	-	-	-	-	-	-	-	-
	PC5	-	EVENTOUT	TIM15_BKIN	TSC_G3_IO1	-	-	-	USART1_RX	-	-	-	-	-	-	-	-
	PC6	-	EVENTOUT	TIM3_CH1		-	-	-	COMP6_OUT	-	-	-	-	-	-	-	-
	PC7	-	EVENTOUT	TIM3_CH2		-	-	-	-	-	-	-	-	-	-	-	-
Port C	PC8	-	EVENTOUT	TIM3_CH3		-	-	-	-	-	-	-	-	-	-	-	-
	PC9	-	EVENTOUT	TIM3_CH4		-	-	-	-	-	-	-	-	-	-	-	-
	PC10	-	EVENTOUT	-	-	-	-	-	USART3_TX	-	-	-	-	-	-	-	-
	PC11	-	EVENTOUT	-		-	-	-	USART3_RX	-	-	-	-	-	-	-	-
	PC12	-	EVENTOUT	-		-	-	-	USART3_CK	-	-	-	-	-	-	-	-
	PC13	-	-	-	-	TIM1_CH1N	-	-	-	-	-	-	-	-	-	-	-
	PC14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	PC15	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Port D	PD2	-	EVENTOUT	TIM3_ETR	-	-	-	-	-	-	-	-	-	-	-	-	-
	PF0	-	-	-	-	-	-	TIM1_CH3N	-	-	-	-	-	-	-	-	-
Port F	PF1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Pinout and pin descriptions

6.3 Operating conditions

6.3.1 General operating conditions

Table 20.	General	operating	conditions
-----------	---------	-----------	------------

Symbol	Parameter	Conditions	Min.	Max.	Unit	
f _{HCLK}	Internal AHB clock frequency	-	0	72		
f _{PCLK1}	Internal APB1 clock frequency	-	0	36	MHz	
f _{PCLK2}	Internal APB2 clock frequency	-	0	72		
V _{DD}	Standard operating voltage	-	2	3.6		
V	Analog operating voltage (OPAMP and DAC not used)	Must have a potential equal to	2	3.6		
⊻ DDA	Analog operating voltage (OPAMP and DAC used)	or higher than V _{DD}	2.4	3.6	V	
V _{BAT}	Backup operating voltage	-	1.65	3.6	V	
		TC I/O	-0.3	V _{DD} +0.3		
V _{IN}	I/O input voltage	TT I/O	-0.3	3.6		
		TTa I/O	-0.3	V _{DDA} +0.3	V	
		FT and FTf I/O ⁽¹⁾	-0.3	5.5	v	
		BOOT0	0	5.5		
PD	Power dissipation at $T_A = 85$ °C for suffix 6 or $T_A = 105$ °C for suffix 7 ⁽²⁾	LQFP64	-	444	mW	
PD	Power dissipation at T_A = 85 °C for suffix 6 or T_A = 105 °C for suffix $7^{(3)}$	LQFP48	-	364	mW	
	Ambient temperature for 6 suffix	Maximum power dissipation	-40	85	°C	
Тл	version	Low power dissipation ⁽⁴⁾	-40	105		
	Ambient temperature for 7 suffix	Maximum power dissipation	-40	105	°C	
	version	Low power dissipation ⁽⁴⁾	-40	125	ĴĊ	
т,	lunction temperature range	6 suffix version	-40	105	°۲	
IJ		7 suffix version	-40	125	Ĵ	

1. To sustain a voltage higher than V_{DD} +0.3 V, the internal pull-up/pull-down resistors must be disabled.

2. If T_A is lower, higher P_D values are allowed as long as T_J does not exceed T_{Jmax} (see Section 7.5: Thermal characteristics).

3. If T_A is lower, higher P_D values are allowed as long as T_J does not exceed T_{Jmax} (see Section 7.5: Thermal characteristics).

4. In low power dissipation state, T_A can be extended to this range as long as T_J does not exceed T_{Jmax} (see Section 7.5: *Thermal characteristics*).

Symbol	Parameter	Conditions	Min. ⁽¹⁾	Тур.	Max. ⁽¹⁾	Unit
Vevee	DVD three heald 0	Rising edge	2.1	2.18	2.26	
V PVD0		Falling edge	2	2.08	2.16	
V _{PVD1}	DVD threshold 1	Rising edge	2.19	2.28	2.37	
		Falling edge	2.09	2.18	2.27	
M	D)/D throohold 2	Rising edge	2.28	2.38	2.48	
VPVD2	PVD threshold 2	Falling edge	2.18	2.28	2.38	
V _{PVD3}	PVD threshold 3	Rising edge	2.38	2.48	2.58	
		Falling edge	2.28	2.38	2.48	V
V _{PVD4}	PVD threshold 4	Rising edge	2.47	2.58	2.69	v
		Falling edge	2.37	2.48	2.59	
M		Rising edge	2.57	2.68	2.79	
VPVD5		Falling edge	2.47	2.58	2.69	
M	D)/D throshold 6	Rising edge	2.66	2.78	2.9	
VPVD6	PVD threshold 6	Falling edge	2.56	2.68	2.8	
M	DVD threshold 7	Rising edge	2.76	2.88	3	
VPVD7		Falling edge	2.66	2.78	2.9	
V _{PVDhyst} ⁽²⁾	PVD hysteresis	-	-	100	-	mV
IDD(PVD)	PVD current consumption	-	-	0.15	0.26	μA

 Table 23. Programmable voltage detector characteristics

1. Data based on characterization results only, not tested in production.

2. Guaranteed by design, not tested in production.

6.3.4 Embedded reference voltage

The parameters given in *Table 24* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 20*.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit				
V _{REFINT}	Internal reference voltage	–40 °C < T _A < +105 °C	1.20	1.23	1.25	V				
T _{S_vrefint}	ADC sampling time when reading the internal reference voltage	-	2.2	-	-	μs				
V _{RERINT}	Internal reference voltage spread over the temperature range	V _{DD} = 31.8 V ±10 mV	-	-	10 ⁽¹⁾	mV				
T _{Coeff}	Temperature coefficient	-	-	-	100 ⁽¹⁾	ppm/°C				

Table 24. Embedded internal reference voltage

1. Guaranteed by design, not tested in production.

		er Conditions		V _{DDA} = 2.4 V				V _{DDA} = 3.6 V						
Symbol	Parameter		f _{HCLK}	Typ	Ма	ах. @ Т _А	(2)	Tun	Max. @ T _A ⁽²⁾			Unit		
						тур.	25 °C	85 °C	105 °C	тур.	25 °C	85 °C	105 °C	
Supply		72 MHz	224	252 ⁽³⁾	265	269 ⁽³⁾	245	272 ⁽³⁾	288	295 ⁽³⁾				
			64 MHz	196	225	237	241	214	243	257	263			
	Supply current in Bun/Sleep	48 MHz	147	174	183	186	159	186	196	201				
		ply HSE nt in bypass Sleep de,	32 MHz	100	126	133	135	109	133	142	145			
			24 MHz	79	102	107	108	85	108	113	116			
1	mode,		8 MHz	3	5	5	6	4	6	6	7			
'DDA	code		1 MHz	3	5	5	6	3	5	6	6	μΛ		
	from Flash		64 MHz	259	288	304	309	285	315	332	338			
	or RAM		48 MHz	208	239	251	254	230	258	271	277			
	HSI clock	HSI clock	32 MHz	162	190	198	202	179	206	216	219			
			24 MHz	140	168	175	178	155	181	188	191			
			8 MHz	62	85	88	89	71	94	96	98			

Table 27. Typical and maximum current consumption from the V_{DDA} supply

1. Current consumption from the V_{DDA} supply is independent of whether the peripherals are on or off. Furthermore when the PLL is off, I_{DDA} is independent from the frequency.

2. Data based on characterization results, not tested in production.

3. Data based characterization results and tested in production with code executing from RAM.

				Тур. (@V _{DD}	(V _{DD} =\	/ _{DDA})		Max. ⁽¹⁾			
Symbol	Parameter	eter Conditions	2.0 V	2.4 V	2.7 V	3.0 V	3.3 V	3.6 V	T _A = 25 °C	T _A = 85 °C	T _A = 105 ° C	Unit
I _{DD}	Supply current in Stop mode	Regulator in run mode, all oscillators OFF	17.5 1	17.6 8	17.8 4	18.1 7	18.5 7	19.3 9	30.6	232.5	612.2	
		Regulator in low-power mode, all oscillators OFF	6.44	6.51	6.60	6.73	6.96	7.20	20.0	246.4	585.0	μA
	Supply	LSI ON and IWDG ON	0.73	0.89	1.02	1.14	1.28	1.44	-	-	-	
	current in Standby mode	LSI OFF and IWDG OFF	0.55	0.66	0.75	0.85	0.93	1.01	4.9	7.0	7.9	

Table 28. Typical and maximum V_{DD} consumption in Stop and Standby modes

1. Data based on characterization results, not tested in production unless otherwise specified.

Figure 12. Typical V_{BAT} current consumption (LSE and RTC ON/LSEDRV[1:0] = '00')

Typical current consumption

The MCU is placed under the following conditions:

- V_{DD} = V_{DDA} = 3.3 V
- All I/O pins available on each package are in analog input configuration
- The Flash access time is adjusted to f_{HCLK} frequency (0 wait states from 0 to 24 MHz, 1 wait state from 24 to 48 MHz and 2 wait states from 48 MHz to 72 MHz), and Flash prefetch is ON
- When the peripherals are enabled, $f_{APB1} = f_{AHB/2}$, $f_{APB2} = f_{AHB}$
- PLL is used for frequencies greater than 8 MHz
- AHB prescaler of 2, 4, 8,16 and 64 is used for the frequencies 4 MHz, 2 MHz, 1 MHz, 500 kHz and 125 kHz respectively.

Symbol				Ту	<i>и</i> р.		
Symbol	Parameter	Conditions	fhclk	Peripherals enabled	Peripherals disabled	Unit	
			72 MHz	28.5	6.3		
			64 MHz	25.6	5.7		
			48 MHz	19.5	4.40		
			32 MHz	13.3	3.13		
			24 MHz	10.2	2.49		
	Supply current in		16 MHz	7.1	1.85	m۸	
	V _{DD} supply		8 MHz	3.63	0.99	- IIIA	
		Running from HSE crystal clock 8 MHz, code executing from	4 MHz	2.38	0.88		
			2 MHz	1.61	0.80	-	
			1 MHz	1.23	0.76		
			500 kHz	1.04	0.74		
			125 kHz	0.85	0.72		
I _{DD}			72 MHz	239.0	236.7		
			64 MHz	209.4	207.8		
			48 MHz	154.0	152.9		
			32 MHz	103.7	103.2		
			24 MHz	80.1	79.8		
(1) (2)	Supply current in		16 MHz	56.7	56.6		
'DDA`´´`	V _{DDA} supply		8 MHz	1.14	1.14	μΑ	
			4 MHz	1.14	1.14	-	
			2 MHz	1.14	1.14		
			1 MHz	1.14	1.14	-	
			500 kHz	1.14	1.14		
			125 kHz	1.14	1.14]	

Table 33.	Typical current	consumption in	n Sleep mode,	code running fro	om Flash or RAM
		•••••••••••••••••••••••••••••••••••••••		••••••••••••••••••••••••••••••••••••••	,

1. VDDA supervisor is OFF.

2. When peripherals are enabled, the power consumption of the analog part of peripherals such as ADC, DAC, Comparators, OpAmp etc. is not included. Refer to the tables of characteristics in the subsequent sections.

I/O system current consumption

The current consumption of the I/O system has two components: static and dynamic.

I/O static current consumption

All the I/Os used as inputs with pull-up generate current consumption when the pin is externally held low. The value of this current consumption can be simply computed by using the pull-up/pull-down resistors values given in *Table 52: I/O static characteristics*.

DocID025083 Rev 5

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
f _{HSE_ext}	User external clock source frequency ⁽¹⁾		1	8	32	MHz
V _{HSEH}	OSC_IN input pin high-level voltage		0.7V _{DD}	-	V _{DD}	V
V _{HSEL}	OSC_IN input pin low-level voltage	-	V_{SS}	-	$0.3V_{\text{DD}}$	v
t _{w(HSEH)} t _{w(HSEL)}	OSC_IN high or low time ⁽¹⁾		15	-	-	ne
t _{r(HSE)} t _{f(HSE)}	OSC_IN rise or fall time ⁽¹⁾		-	_	20	115

Table 38. High-speed ex	ternal user clock	characteristics
-------------------------	-------------------	-----------------

1. Guaranteed by design, not tested in production.

Low-speed external user clock generated from an external source

In bypass mode the LSE oscillator is switched off and the input pin is a standard GPIO. The external clock signal has to respect the I/O characteristics in *Section 6.3.14*. However, the recommended clock input waveform is shown in *Figure 14*

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
f _{LSE_ext}	User External clock source frequency ⁽¹⁾		-	32.768	1000	kHz
V _{LSEH}	OSC32_IN input pin high-level voltage		0.7V _{DD}	-	V _{DD}	V
V _{LSEL}	OSC32_IN input pin low-level voltage	-	V _{SS}	-	0.3V _{DD}	v
t _{w(LSEH)} t _{w(LSEL)}	OSC32_IN high or low time ⁽¹⁾		450	-	-	ne
t _{r(LSE)}	OSC32_IN rise or fall time ⁽¹⁾		-	-	50	113

Table 39. Low-speed external user clock characteristics

1. Guaranteed by design, not tested in production.

Table 47. EMS characteristics

Symbol	Parameter	Conditions	Level/ Class
V _{FESD}	Voltage limits to be applied on any I/O pin to induce a functional disturbance	V_{DD} = 3.3 V, LQFP100, T _A = +25°C, f _{HCLK} = 72 MHz conforms to IEC 61000-4-2	2B
V _{EFTB}	Fast transient voltage burst limits to be applied through 100 pF on V_{DD} and V_{SS} pins to induce a functional disturbance	V_{DD} = 3.3 V, LQFP100, T _A = +25°C, f _{HCLK} = 72 MHz conforms to IEC 61000-4-4	4A

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Software recommendations

The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical Data corruption (control registers...)

Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note *"Software techniques for improving microcontrollers EMC performance"* AN1015).

Electromagnetic Interference (EMI)

The electromagnetic field emitted by the device are monitored while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with IEC 61967-2 standard which specifies the test board and the pin loading.

OSPEEDRy [1:0] value ⁽¹⁾	Symbol	Parameter	Conditions	Min.	Max.	Unit	
	f _{max(IO)out}	Maximum frequency ⁽²⁾	C_{L} = 50 pF, V_{DD} = 2 V to 3.6 V	-	12 ⁽³⁾	MHz	
x0	t _{f(IO)out}	Output high to low-level fall time	C = 50 pE V = 2 V to 3 6 V	-	125 ⁽³⁾	ne	
	t _{r(IO)out}	Output low to high-level rise time	ο _L = 30 μ, v _{DD} = 2 v to 3.0 v	-	125 ⁽³⁾	113	
	f _{max(IO)out}	Maximum frequency ⁽²⁾	$\begin{array}{c c} \text{frequency}^{(2)} & \text{C}_{\text{L}} = 50 \text{ pF}, \text{ V}_{\text{DD}} = 2 \text{ V to } 3.6 \text{ V} \\ \hline \text{gh to low-level} & \text{Q}_{\text{D}} = 50 \text{ pF}, \text{ V}_{\text{DD}} = 2 \text{ V to } 3.6 \text{ V} \\ \hline \end{array}$		410 ⁽³⁾	MHz	
01	t _{f(IO)out}	Output high to low-level fall time			25 (3)		
	t _{r(IO)out}	Output low to high-level rise time	C _L = 50 μr, v _{DD} = 2 v to 3.0 v	-	25 (3)	ns	
			C_{L} = 30 pF, V_{DD} = 2.7 V to 3.6 V	-	50 ⁽³⁾	MHz	
_	f _{max(IO)out}	Maximum frequency ⁽²⁾	C_{L} = 50 pF, V_{DD} = 2.7 V to 3.6 V	-	30 ⁽³⁾	MHz	
			C_{L} = 50 pF, V_{DD} = 2 V to 2.7 V	-	20 ⁽³⁾	MHz	
			C_L = 30 pF, V_{DD} = 2.7 V to 3.6 V	-	5 ⁽³⁾		
11	t _{f(IO)out}	Output high to low-level fall time	C_{L} = 50 pF, V_{DD} = 2.7 V to 3.6 V	-	8 ⁽³⁾		
			C_{L} = 50 pF, V_{DD} = 2 V to 2.7 V	-	12 ⁽³⁾]	
			C_{L} = 30 pF, V_{DD} = 2.7 V to 3.6 V	-	5 ⁽³⁾	115	
	t _{r(IO)out}	Output low to high-level	C_{L} = 50 pF, V_{DD} = 2.7 V to 3.6 V	-	8 ⁽³⁾		
			C_{L} = 50 pF, V_{DD} = 2 V to 2.7 V	-	12 ⁽³⁾		
	f _{max(IO)out}	Maximum frequency ⁽²⁾		-	2 ⁽⁴⁾	MHz	
FM+ configuration ⁽⁴⁾	t _{f(IO)out}	Output high to low-level fall time	C _L = 50 pF, V _{DD} = 2 V to 3.6 V	-	12 ⁽⁴⁾	20	
Computation	t _{r(IO)out}	Output low to high-level rise time		-	34 ⁽⁴⁾	115	
-	t _{EXTIpw}	Pulse width of external signals detected by the EXTI controller	-	10 ⁽³⁾	-	ns	

Table 54. I/O AC characteristics⁽¹⁾

1. The I/O speed is configured using the OSPEEDRx[1:0] bits. Refer to the RM0364 reference manual for a description of GPIO Port configuration register.

2. The maximum frequency is defined in *Figure 22*.

3. Guaranteed by design, not tested in production.

4. The I/O speed configuration is bypassed in FM+ I/O mode. Refer to the STM32F30x and STM32F301xx reference manual RM0364 for a description of FM+ I/O mode configuration.

Symbol	Parameter	Min.	Max.	Unit
t _{AF}	Maximum pulse width of spikes that are suppressed by the analog filter.	50 ⁽²⁾	260 ⁽³⁾	ns

Table 59. I²C analog filter characteristics⁽¹⁾

1. Guaranteed by design, not tested in production.

2. Spikes with width below $t_{AF}(min.)$ are filtered.

3. Spikes with width above $t_{AF}(max.)$ are not filtered.

SPI characteristics

Unless otherwise specified, the parameters given in *Table 55* for SPI are derived from tests performed under ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage conditions summarized in *Table 20: General operating conditions*.

Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO for SPI).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		Master mode 2.7 <v<sub>DD<3.6</v<sub>			24	
		Master mode 2 <v<sub>DD<3.6</v<sub>			18	
f _{SCK}	SPI clock frequency	Slave mode 2 <v<sub>DD<3.6</v<sub>	_	_	24	MHz
1/t _{c(SCK)}	y	Slave mode transmitter/full duplex			18 ⁽²⁾	
		2 <v<sub>DD<3.6</v<sub>				
DuCy(scк)	Duty cycle of SPI clock frequency	Slave mode	30	50	70	%
t _{su(NSS)}	NSS setup time	Slave mode, SPI presc = 2	4*Tpclk	-	-	
t _{h(NSS)}	NSS hold time	Slave mode, SPI presc = 2	2*Tpclk	-	-	
t _{w(SCKH)} t _{w(SCKL)}	SCK high and low time	Master mode	Tpclk-2	Tpclk	Tpclk+2	
t _{su(MI)}	Data input actur time	Master mode	0	-	-	
t _{su(SI)}	Data input setup time	Slave mode	3	-	-	
t _{h(MI)}	Data input hold time	Master mode	5	-	-	
t _{h(SI)}		Slave mode	1	-	-	ns
t _{a(SO)}	Data output access time	Slave mode	10	-	40	
t _{dis(SO)}	Data output disable time	Slave mode	10	-	17	
+		Slave mode 2.7 <v<sub>DD<3.6V</v<sub>	-	12	20	
۷(SO)	Data output valid time	Slave mode 2 <v<sub>DD<3.6V</v<sub>	-	12	27.5	
t _{v(MO)}		Master mode	-	1.5	5	
t _{h(SO)}	Data output hold time	Slave mode	7.5	-	-	
t _{h(MO)}		Master mode	0	-	-	

Table 60. SPI characteristics⁽¹⁾

1. Data based on characterization results, not tested in production.

 Maximum frequency in Slave transmitter mode is determined by the sum of tv(SO) and tsu(MI) which has to fit into SCK low or high phase preceding the SCK sampling edge. This value can be achieved when the SPI communicates with a master having tsu(MI) = 0 while Duty(SCK) = 50%.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
t _{CONV}	Total conversion time (including sampling time)	f _{ADC} = 72 MHz Resolution = 12 bits	0.19 - 8.52		μs	
		Resolution = 12 bits	14 to 614 (t _S for sampling + 12.5 for successive approximation)			1/f _{ADC}
CMIR	Common Mode Input signal	ADC differential mode	(V _{SSA} +V _{REF} +)/2 -0.18	(V _{SSA} + V _{REF} +)/2	(V _{SSA} + V _{REF} +)/2 + 0.18	V

Table 61. ADC characteristics (continued)

Figure 27. ADC typical current consumption in single-ended and differential modes

Table 62. Maximum ADC R_{AIN}⁽¹⁾

	Sampling	Sampling	R _{AIN} max. (kΩ)			
Resolution	cycle @ time [ns] @ 72 MHz 72 MHz		Fast channels ⁽²⁾	Slow channels	Other channels ⁽³⁾	
	1.5	20.83	0.018	NA	NA	
	2.5	34.72	0.150	NA	0.022	
	4.5	62.50	0.470	0.220	0.180	
12 hits	7.5	104.17	0.820	0.560	0.470	
12 013	19.5	270.83	2.70	1.80	1.50	
	61.5	854.17	8.20	6.80	4.70	
	181.5	2520.83	22.0	18.0	15.0	
	601.5	8354.17	82.0	68.0	47.0	

Figure 29. Typical connection diagram using the ADC

1. Refer to Table 61 for the values of RAIN.

 $C_{parasitic}$ represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 7 pF). A high $C_{parasitic}$ value will downgrade conversion accuracy. To remedy this, f_{ADC} should be reduced. 2.

General PCB design guidelines

Power supply decoupling should be performed as shown in *Figure 10: Power-supply* scheme. The 10 nF capacitor should be ceramic (good quality) and it should be placed as close as possible to the chip.

6.3.19 **DAC electrical specifications**

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
V _{DDA}	Analog supply voltage	-	2.4	-	3.6	V
R _{LOAD} ⁽¹⁾	Resistive load	DAC output buffer ON (to V_{SSA})	5	-	-	kΩ
R _{LOAD} ⁽¹⁾	Resistive load	DAC output buffer ON (to V _{DDA})	25	-	-	kΩ
R _O ⁽¹⁾	Output impedance	DAC output buffer OFF	-	-	15	kΩ
C _{LOAD} ⁽¹⁾	Capacitive load	DAC output buffer ON	-	-	50	pF
V _{DAC,OUT} (Voltage on DAC_OUT	Corresponds to 12-bit input code (0x0E0) to (0xF1C) at V _{DDA} = 3.6 V and (0x155) and (0xEAB) at V _{DDA} = 2.4 V		-	V _{DDA} – 0.2	V
			-	0.5	-	mV
			-	-	V _{DDA} – 1LSB	V
I _{DDA} ⁽³⁾	DAC DC current	With no load, middle code (0x800) on the input	-	-	380	μΑ
	mode ⁽²⁾	With no load, worst code (0xF1C) on the input.	-	-	480	μA

Table 66. DAC characteristics

	• •		•	,		
Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
		 @ 1KHz, Output loaded with 4 KΩ 	-	109	-	
en	Voltage noise density	@ 10KHz, Output loaded with 4 KΩ	-	43	-	$\frac{nV}{\sqrt{Hz}}$

Table 68. O	perational	amplifier	characteristics ⁽¹⁾	(continued))
-------------	------------	-----------	--------------------------------	-------------	---

1. Guaranteed by design, not tested in production.

2. The saturation voltage can also be limited by the ${\rm I}_{\rm load}$

 R2 is the internal resistance between OPAMP output and OPAMP inverting input. R1 is the internal resistance between OPAMP inverting input and ground. The PGA gain =1+R2/R1

4. Mostly TTa I/O leakage, when used in analog mode.

Figure 32. OPAMP Voltage Noise versus Frequency

Symbol	Millimeters			Inches ⁽¹⁾				
Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.		
b	0.300	0.370	0.450	0.0118	0.0146	0.0177		
с	0.090	-	0.200	0.0035	-	0.0079		
D	8.800	9.000	9.200	0.3465	0.3543	0.3622		
D1	6.800	7.000	7.200	0.2677	0.2756	0.2835		
D3	-	5.600	-	-	0.2205	-		
E	8.800	9.000	9.200	0.3465	0.3543	0.3622		
E1	6.800	7.000	7.200	0.2677	0.2756	0.2835		
E3	-	5.600	-	-	0.2205	-		
e	-	0.800	-	-	0.0315	-		
L	0.450	0.600	0.750	0.0177	0.0236	0.0295		
L1	-	1.000	-	-	0.0394	-		
k	0.0°	3.5°	7.0°	0.0°	3.5°	7.0°		
ССС	-	-	0.100	-	-	0.0039		

Table 72. LQFP32 mechanical data (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.

1. Drawing is not to scale.

2. Dimensions are expressed in millimeters.

7.4 LQFP64 package information

LQFP64 is a 64-pin, 10 x 10 mm low-profile quad flat package.

Figure 39. LQFP64 package outline

1. Drawing is not to scale.

Table 74. LQFP64 package mechanical data
--

Symbol		millimeters		inches ⁽¹⁾		
Symbol	Min	Тур	Мах	Min	Тур	Мах
A	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
с	0.090	-	0.200	0.0035	-	0.0079
D	11.800	12.000	-	-	0.4724	-
D1	9.800	10.000	-	-	0.3937	-
E	-	12.000	-	-	0.4724	-
E1	-	10.000	-	-	0.3937	-
е	-	0.500	-	-	0.0197	-

