



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                                  |
|----------------------------|-------------------------------------------------------------------------|
| Core Processor             | ARM® Cortex®-M4                                                         |
| Core Size                  | 32-Bit Single-Core                                                      |
| Speed                      | 72MHz                                                                   |
| Connectivity               | CANbus, I <sup>2</sup> C, IrDA, LINbus, SPI, UART/USART                 |
| Peripherals                | DMA, I <sup>2</sup> S, POR, PWM, WDT                                    |
| Number of I/O              | 51                                                                      |
| Program Memory Size        | 64KB (64K x 8)                                                          |
| Program Memory Type        | FLASH                                                                   |
| EEPROM Size                | -                                                                       |
| RAM Size                   | 16K x 8                                                                 |
| Voltage - Supply (Vcc/Vdd) | 2V ~ 3.6V                                                               |
| Data Converters            | A/D 15x12b; D/A 1x12b                                                   |
| Oscillator Type            | Internal                                                                |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                       |
| Mounting Type              | Surface Mount                                                           |
| Package / Case             | 64-LQFP                                                                 |
| Supplier Device Package    | 64-LQFP (10x10)                                                         |
| Purchase URL               | https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f303r8t6tr |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

# Contents

| 1 | Introc | luction   |                                                                 |
|---|--------|-----------|-----------------------------------------------------------------|
| 2 | Desci  | ription . |                                                                 |
| 3 | Funct  | tional o  | verview                                                         |
|   | 3.1    |           | Cortex <sup>®</sup> -M4 core with FPU with embedded Flash<br>AM |
|   | 3.2    | Memori    | es 13                                                           |
|   |        | 3.2.1     | Embedded Flash memory13                                         |
|   |        | 3.2.2     | Embedded SRAM                                                   |
|   |        | 3.2.3     | Boot modes                                                      |
|   | 3.3    | Cyclic r  | edundancy check calculation unit (CRC)                          |
|   | 3.4    | Power r   | management                                                      |
|   |        | 3.4.1     | Power supply schemes                                            |
|   |        | 3.4.2     | Power supply supervisor                                         |
|   |        | 3.4.3     | Voltage regulator                                               |
|   |        | 3.4.4     | Low-power modes                                                 |
|   | 3.5    | Intercor  | nnect matrix                                                    |
|   | 3.6    | Clocks    | and startup                                                     |
|   | 3.7    | Genera    | I-purpose inputs/outputs (GPIOs) 19                             |
|   | 3.8    | Direct n  | nemory access (DMA) 19                                          |
|   | 3.9    | Interrup  | ts and events                                                   |
|   |        | 3.9.1     | Nested vectored interrupt controller (NVIC)                     |
|   |        | 3.9.2     | Extended interrupt/event controller (EXTI)                      |
|   | 3.10   | Fast an   | alog-to-digital converter (ADC) 20                              |
|   |        | 3.10.1    | Temperature sensor                                              |
|   |        | 3.10.2    | Internal voltage reference (VREFINT)                            |
|   |        | 3.10.3    | V <sub>BAT</sub> battery voltage monitoring                     |
|   |        | 3.10.4    | OPAMP2 reference voltage (VOPAMP2)                              |
|   | 3.11   | Digital-t | o-analog converter (DAC) 21                                     |
|   | 3.12   | Operati   | onal amplifier (OPAMP) 21                                       |
|   | 3.13   | Ultra-fa  | st comparators (COMP) 22                                        |
|   | 3.14   | Timers    | and watchdogs 22                                                |



remains in reset mode when the monitored supply voltage is below a specified threshold, VPOR/PDR, without the need for an external reset circuit.

- The POR monitors only the V<sub>DD</sub> supply voltage. During the startup phase it is required that V<sub>DDA</sub> should arrive first and be greater than or equal to V<sub>DD</sub>.
- The PDR monitors both the V<sub>DD</sub> and V<sub>DDA</sub> supply voltages, however the V<sub>DDA</sub> power supply supervisor can be disabled (by programming a dedicated Option bit) to reduce the power consumption if the application design ensures that V<sub>DDA</sub> is higher than or equal to V<sub>DD</sub>.

The device features an embedded programmable voltage detector (PVD) that monitors the  $V_{DD}$  power supply and compares it to the VPVD threshold. An interrupt can be generated when  $V_{DD}$  drops below the  $V_{PVD}$  threshold and/or when  $V_{DD}$  is higher than the  $V_{PVD}$  threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.

#### 3.4.3 Voltage regulator

The regulator has three operation modes: main (MR), low-power (LPR), and power-down.

- The MR mode is used in the nominal regulation mode (Run)
- The LPR mode is used in Stop mode.
- The power-down mode is used in Standby mode: the regulator output is in high impedance, and the kernel circuitry is powered down thus inducing zero consumption.

The voltage regulator is always enabled after reset. It is disabled in Standby mode.

#### 3.4.4 Low-power modes

The STM32F303x6/8 supports three low-power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources:

#### Sleep mode

In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.

#### • Stop mode

Stop mode achieves the lowest power consumption while retaining the content of SRAM and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled. The voltage regulator can also be put either in normal or in low-power mode.

The device can be woken up from Stop mode by any of the EXTI line. The EXTI line source can be one of the 16 external lines, the PVD output, the RTC alarm, COMPx,  $I^2C$  or USARTx.

#### Standby mode

The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire 1.8 V domain is powered off. The PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering Standby mode, SRAM and register contents are lost except for registers in the Backup domain and Standby circuitry.

The device exits Standby mode when an external reset (NRST pin), an IWDG reset, a rising edge on the WKUP pin, or an RTC alarm occurs.

*Note:* The RTC, the IWDG, and the corresponding clock sources are not stopped by entering Stop or Standby mode.



high-speed APB domains is 72 MHz, while the maximum allowed frequency of the low-speed APB domain is 36 MHz.

TIM1 maximum frequency is 144 MHz.



independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the internal clock period. Up to 51 GPIOs can be connected to the 16 external interrupt lines.

# 3.10 Fast analog-to-digital converter (ADC)

Two 5 MSPS fast analog-to-digital converters, with selectable resolution between 12 and 6 bit, are embedded in the STM32F303x6/8 family devices. The ADCs have up to 21 external channels. Some of the external channels are shared between ADC1 and ADC2, performing conversions in single-shot or scan modes. The channels can be configured to be either single-ended input or differential input. In scan mode, automatic conversion is performed on a selected group of analog inputs.

The ADCs also have internal channels: temperature sensor connected to ADC1 channel 16,  $V_{BAT}/2$  connected to ADC1 channel 17, voltage reference  $V_{REFINT}$  connected to both ADC1 and ADC2 channel 18 and VOPAMP2 connected to ADC2 channel 17.

Additional logic functions embedded in the ADC interface allow:

- Simultaneous sample and hold
- Interleaved sample and hold
- Single-shunt phase current reading techniques.

Three analog watchdogs are available per ADC. The ADC can be served by the DMA controller.

The analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.

The events generated by the general-purpose timers (TIM2, TIM3, TIM6, TIM15) and the advanced-control timer (TIM1) can be internally connected to the ADC start trigger and injection trigger, respectively, to allow the application to synchronize A/D conversion and timers.

# 3.10.1 Temperature sensor

The temperature sensor (TS) generates a voltage  $V_{\mbox{SENSE}}$  that varies linearly with temperature.

The temperature sensor is internally connected to the ADC1\_IN16 input channel which is used to convert the sensor output voltage into a digital value.

The sensor provides good linearity but it has to be calibrated to obtain good overall accuracy of the temperature measurement. As the offset of the temperature sensor varies from chip to chip due to process variation, the uncalibrated internal temperature sensor is suitable for applications that detect temperature changes only.

To improve the accuracy of the temperature sensor measurement, each device is individually factory-calibrated by ST. The temperature sensor factory calibration data are stored by ST in the system memory area, accessible in read-only mode.

# 3.10.2 Internal voltage reference (VREFINT)

The internal voltage reference (VREFINT) provides a stable (bandgap) voltage output for the ADC and Comparators. VREFINT is internally connected to the ADC1\_IN18 and ADC2\_IN18



# 3.14.4 Independent watchdog

The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 40 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free running timer for application timeout management. It is hardware or software configurable through the option bytes. The counter can be frozen in debug mode.

## 3.14.5 Window watchdog

The window watchdog is based on a 7-bit downcounter that can be set as free running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode.

## 3.14.6 SysTick timer

This timer is dedicated to real-time operating systems, but could also be used as a standard down counter. It features:

- A 24-bit down counter
- Autoreload capability
- Maskable system interrupt generation when the counter reaches 0.
- Programmable clock source

# 3.15 Real-time clock (RTC) and backup registers

The RTC and the 5 backup registers are supplied through a switch that takes power from either the  $V_{DD}$  supply when present or the VBAT pin. The backup registers are five 32-bit registers used to store 20 bytes of user application data when  $V_{DD}$  power is not present.

They are not reset by a system or power reset, or when the device wakes up from Standby mode.

The RTC is an independent BCD timer/counter. It supports the following features:

- Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date, month, year, in BCD (binary-coded decimal) format.
- Reference clock detection: a more precise second source clock (50 or 60 Hz) can be used to enhance the calendar precision.
- Automatic correction for 28, 29 (leap year), 30, and 31 days of the month.
- Two programmable alarms with wake up from Stop and Standby mode capability.
- On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to synchronize it with a master clock.
- Digital calibration circuit with 1 ppm resolution, to compensate for quartz crystal inaccuracy.
- Two anti-tamper detection pins with programmable filter. The MCU can be woken up from Stop and Standby modes on tamper event detection.
- Timestamp feature which can be used to save the calendar content. This function can be triggered by an event on the timestamp pin, or by a tamper event. The MCU can be

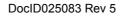


| Table 14. STM32F303x6/8 pin | definitions (continued) |
|-----------------------------|-------------------------|
|-----------------------------|-------------------------|

| Pi         | n Numb     | er         |                                    |                           |     | Pin                                                                            | functions                                                                     |
|------------|------------|------------|------------------------------------|---------------------------|-----|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| LQFP<br>32 | LQFP<br>48 | LQFP<br>64 | Pin name (function<br>after reset) | Pin type<br>I/O structure |     | Alternate<br>functions                                                         | Additional functions                                                          |
| 3          | 6          | 6          | PF1/OSC_OUT                        | I/O                       | FT  | -                                                                              | OSC_OUT                                                                       |
| 4          | 7          | 7          | NRST                               | I/O                       | RST |                                                                                | put / internal reset output<br>active low)                                    |
| -          | -          | 8          | PC0                                | I/O                       | TTa | EVENTOUT, TIM1_CH1                                                             | ADC12_IN6                                                                     |
| -          | -          | 9          | PC1                                | I/O                       | ТТа | EVENTOUT, TIM1_CH2                                                             | ADC12_IN7                                                                     |
| -          | -          | 10         | PC2                                | I/O                       | TTa | EVENTOUT, TIM1_CH3                                                             | ADC12_IN8                                                                     |
| -          | -          | 11         | PC3                                | I/O                       | TTa | EVENTOUT, TIM1_CH4,<br>TIM1_BKIN2                                              | ADC12_IN9                                                                     |
| -          | 8          | 12         | VSSA/VREF-                         | S                         | -   | Analog ground/N                                                                | legative reference voltage                                                    |
| 5          | 9          | 13         | VDDA/VREF+                         | S                         | -   | Analog power supp                                                              | bly/Positive reference voltage                                                |
| 6          | 10         | 14         | PA0                                | I/O                       | ТТа | TIM2_CH1/<br>TIM2_ETR,<br>TSC_G1_IO1,<br>USART2_CTS,<br>EVENTOUT               | ADC1_IN1 <sup>(2)</sup> ,<br>RTC_TAMP2/WKUP1                                  |
| 7          | 11         | 15         | PA1                                | I/O                       | ТТа | TIM2_CH2,<br>TSC_G1_IO2,<br>USART2_RTS_DE,<br>TIM15_CH1N,<br>EVENTOUT          | ADC1_IN2 <sup>(2)</sup> , RTC_REFIN                                           |
| 8          | 12         | 16         | PA2                                | I/O                       | TTa | TIM2_CH3,<br>TSC_G1_IO3,<br>USART2_TX,<br>COMP2_OUT,<br>TIM15_CH1,<br>EVENTOUT | ADC1_IN3 <sup>(2)</sup> , COMP2_INM                                           |
| 9          | 13         | 17         | PA3                                | I/O                       | ТТа | TIM2_CH4,<br>TSC_G1_IO4,<br>USART2_RX,<br>TIM15_CH2,<br>EVENTOUT               | ADC1_IN4 <sup>(2)</sup>                                                       |
| -          | -          | 18         | VSS                                | S                         | -   | -                                                                              | -                                                                             |
| -          | -          | 19         | VDD                                | S                         | -   | -                                                                              | -                                                                             |
| 10         | 14         | 20         | PA4 <sup>(3)</sup>                 | I/O                       | ТТа | TIM3_CH2,<br>TSC_G2_IO1,<br>SPI1_NSS,<br>USART2_CK,<br>EVENTOUT                | ADC2_IN1 <sup>(2)</sup> , DAC1_OUT1,<br>COMP2_INM4, COMP4_INM4,<br>COMP6_INM4 |
| 11         | 15         | 21         | PA5 <sup>(3)</sup>                 | I/O                       | ТТа | TIM2_CH1/<br>TIM2_ETR,<br>TSC_G2_IO2,<br>SPI1_SCK, EVENTOUT                    | ADC2_IN2 <sup>(2)</sup> , DAC1_OUT2,<br>OPAMP2_VINM                           |



| ŝ |
|---|
| Ľ |
| 2 |
| 2 |
| ω |
| ¥ |
|   |
| õ |
| ω |
| × |
| õ |
| X |
| œ |
|   |


|        | Table 15. Alternate functions |                   |                                      |                               |            |           |               |               |                                      |                                 |                    |                     |          |            |        |      |          |
|--------|-------------------------------|-------------------|--------------------------------------|-------------------------------|------------|-----------|---------------|---------------|--------------------------------------|---------------------------------|--------------------|---------------------|----------|------------|--------|------|----------|
|        |                               | AF0               | AF1                                  | AF2                           | AF3        | AF4       | AF5           | AF6           | AF7                                  | AF8                             | AF9                | AF10                | AF11     | AF12       | AF13   | AF14 | AF15     |
| Por    | t                             | SYS_AF            | TIM2/TIM15/<br>TIM16/TIM17/<br>EVENT | TIM1/TIM3/<br>TIM15/<br>TIM16 | TSC        | I2C1/TIM1 | SPI1/Infrared | TIM1/Infrared | USART1/USA<br>RT2/USART3/<br>GPCOMP6 | GPCOMP2/<br>GPCOMP4/<br>GPCOMP6 | CAN/TIM1/<br>TIM15 | TIM2/TIM3<br>/TIM17 | TIM1     | TIM1       | OPAMP2 | -    | EVENT    |
|        | PA0                           | -                 | TIM2_CH1/TI<br>M2_ETR                | -                             | TSC_G1_IO1 | -         | -             | -             | USART2_CTS                           | -                               | -                  | -                   | -        | -          | -      | -    | EVENTOUT |
|        | PA1                           | -                 | TIM2_CH2                             | -                             | TSC_G1_IO2 | -         | -             | -             | USART2_RTS<br>_DE                    | -                               | TIM15_CH1N         | -                   | -        | -          | -      | -    | EVENTOUT |
|        | PA2                           | -                 | TIM2_CH3                             | -                             | TSC_G1_IO3 | -         | -             | -             | USART2_TX                            | COMP2_OUT                       | TIM15_CH1          | -                   | -        | -          | -      | -    | EVENTOUT |
|        | PA3                           | -                 | TIM2_CH4                             | -                             | TSC_G1_IO4 | -         | -             | -             | USART2_RX                            | -                               | TIM15_CH2          | -                   | -        | -          | -      | -    | EVENTOUT |
|        | PA4                           | -                 | -                                    | TIM3_CH2                      | TSC_G2_IO1 | -         | SPI1_NSS      | -             | USART2_CK                            | -                               | -                  | -                   | -        | -          | -      | -    | EVENTOUT |
|        | PA5                           | -                 | TIM2_CH1/TI<br>M2_ETR                | -                             | TSC_G2_IO2 | -         | SPI1_SCK      | -             | -                                    | -                               | -                  | -                   | -        | -          | -      | -    | EVENTOUT |
|        | PA6                           | -                 | TIM16_CH1                            | TIM3_CH1                      | TSC_G2_IO3 | -         | SPI1_MISO     | TIM1_BKIN     | -                                    | -                               | -                  | -                   | -        | -          | -      | -    | EVENTOUT |
| Port A | PA7                           | -                 | TIM17_CH1                            | TIM3_CH2                      | TSC_G2_IO4 | -         | SPI1_MOSI     | TIM1_CH1N     | -                                    | -                               | -                  | -                   | -        | -          | -      | -    | EVENTOUT |
|        | PA8                           | мсо               | -                                    | -                             | -          | -         | -             | TIM1_CH1      | USART1_CK                            | -                               | -                  | -                   | -        | -          |        | v    | EVENTOUT |
|        | PA9                           | -                 | -                                    | -                             | TSC_G4_IO1 | -         | -             | TIM1_CH2      | USART1_TX                            | -                               | TIM15_BKIN         | TIM2_CH3            | -        | -          |        | -    | EVENTOUT |
|        | PA10                          | -                 | TIM17_BKIN                           | -                             | TSC_G4_IO2 | -         | -             | TIM1_CH3      | USART1_RX                            | COMP6_OUT                       | -                  | TIM2_CH4            | -        | -          |        | -    | EVENTOUT |
|        | PA11                          | -                 | -                                    | -                             | -          | -         | -             | TIM1_CH1N     | USART1_CTS                           | -                               | CAN_RX             | -                   | TIM1_CH4 | TIM1_BKIN2 |        | -    | EVENTOUT |
|        | PA12                          | -                 | TIM16_CH1                            | -                             | -          | -         | -             | TIM1_CH2N     | USART1_RTS<br>_DE                    | COMP2_OUT                       | CAN_TX             | -                   | TIM1_ETR | -          |        | -    | EVENTOUT |
|        | PA13                          | JTMS/SWDAT        | TIM16_CH1N                           | -                             | TSC_G4_IO3 | -         | IR_OUT        | -             | USART3_CTS                           | -                               | -                  | -                   | -        | -          | -      | -    | EVENTOUT |
|        | PA14                          | JTCK/SWCLK        | -                                    | -                             | TSC_G4_IO4 | I2C1_SDA  | -             | TIM1_BKIN     | USART2_TX                            | -                               | -                  | -                   | -        | -          | -      | -    | EVENTOUT |
|        | PA15                          | JTDI              | TIM2_CH1/<br>TIM2_ETR                | -                             | TSC_SYNC   | I2C1_SCL  | SPI1_NSS      | -             | USART2_RX                            | -                               | TIM1_BKIN          | -                   | -        | -          |        | -    | EVENTOUT |
|        | PB0                           | -                 | -                                    | TIM3_CH3                      | TSC_G3_IO2 | -         | -             | TIM1_CH2N     | -                                    | -                               | -                  | -                   | -        | -          | -      | -    | EVENTOUT |
|        | PB1                           | -                 | -                                    | TIM3_CH4                      | TSC_G3_IO3 | -         | -             | TIM1_CH3N     | -                                    | COMP4_OUT                       | -                  | -                   | -        | -          |        | -    | EVENTOUT |
|        | PB2                           | -                 | -                                    | -                             | TSC_G3_IO4 | -         | -             | -             | -                                    | -                               | -                  | -                   | -        | -          |        | -    | EVENTOUT |
|        | PB3                           | JTDO/TRACE<br>SWO | TIM2_CH2                             | -                             | TSC_G5_IO1 | -         | SPI1_SCK      | -             | USART2_TX                            | -                               | -                  | TIM3_ETR            | -        |            |        | -    | EVENTOUT |
| Port B | PB4                           | NJTRST            | TIM16_CH1                            | TIM3_CH1                      | TSC_G5_IO2 | -         | SPI1_MISO     | -             | USART2_RX                            | -                               | -                  | TIM17_BK<br>IN      | -        | -          |        | -    | EVENTOUT |
|        | PB5                           | -                 | TIM16_BKIN                           | TIM3_CH2                      | -          | I2C1_SMBA | SPI1_MOSI     | -             | USART2_CK                            | -                               | -                  | TIM17_CH<br>1       | -        | -          |        | -    | EVENTOUT |
|        | PB6                           | -                 | TIM16_CH1N                           | -                             | TSC_G5_IO3 | I2C1_SCL  | -             | -             | USART1_TX                            | -                               | -                  | -                   | -        |            |        | -    | EVENTOUT |
|        | PB7                           | -                 | TIM17_CH1N                           | -                             | TSC_G5_IO4 | I2C1_SDA  | -             | -             | USART1_RX                            | -                               | -                  | TIM3_CH4            | -        | -          |        | -    | EVENTOUT |
|        | PB8                           | -                 | TIM16_CH1                            | -                             | TSC_SYNC   | I2C1_SCL  | -             | -             | USART3_RX                            | -                               | CAN_RX             | -                   | -        | TIM1_BKIN  |        | -    | EVENTOUT |
| 1      | PB9                           | -                 | TIM17_CH1                            | -                             | -          | I2C1_SDA  | -             | IR_OUT        | USART3_TX                            | COMP2_OUT                       | CAN_TX             | -                   | -        | -          |        | -    | EVENTOUT |

DocID025083 Rev 5

5

39/115

|      | Table 16. STM32F303x6/8 peripheral register boundary addresses |                 |                       |  |  |  |  |  |  |  |
|------|----------------------------------------------------------------|-----------------|-----------------------|--|--|--|--|--|--|--|
| Bus  | Boundary address                                               | Size<br>(bytes) | Peripheral            |  |  |  |  |  |  |  |
| AHB3 | 0x5000 0000 - 0x5000 03FF                                      | 1 K             | ADC1 - ADC2           |  |  |  |  |  |  |  |
| -    | 0x4800 1800 - 0x4FFF FFFF                                      | ~132 M          | Reserved              |  |  |  |  |  |  |  |
| AHB2 | 0x4800 1400 - 0x4800 17FF                                      | 1 K             | GPIOF                 |  |  |  |  |  |  |  |
| -    | 0x4800 1000 - 0x4800 13FF                                      | 1 K             | Reserved              |  |  |  |  |  |  |  |
|      | 0x4800 0C00 - 0x4800 0FFF                                      | 1 K             | GPIOD                 |  |  |  |  |  |  |  |
|      | 0x4800 0800 - 0x4800 0BFF                                      | 1 K             | GPIOC                 |  |  |  |  |  |  |  |
| AHB2 | 0x4800 0400 - 0x4800 07FF                                      | 1 K             | GPIOB                 |  |  |  |  |  |  |  |
|      | 0x4800 0000 - 0x4800 03FF                                      | 1 K             | GPIOA                 |  |  |  |  |  |  |  |
| -    | 0x4002 4400 - 0x47FF FFFF                                      | ~128 M          | Reserved              |  |  |  |  |  |  |  |
|      | 0x4002 4000 - 0x4002 43FF                                      | 1 K             | TSC                   |  |  |  |  |  |  |  |
|      | 0x4002 3400 - 0x4002 3FFF                                      | 3 K             | Reserved              |  |  |  |  |  |  |  |
|      | 0x4002 3000 - 0x4002 33FF                                      | 1 K             | CRC                   |  |  |  |  |  |  |  |
|      | 0x4002 2400 - 0x4002 2FFF                                      | 3 K             | Reserved              |  |  |  |  |  |  |  |
| AHB1 | 0x4002 2000 - 0x4002 23FF                                      | 1 K             | Flash interface       |  |  |  |  |  |  |  |
|      | 0x4002 1400 - 0x4002 1FFF                                      | 3 K             | Reserved              |  |  |  |  |  |  |  |
|      | 0x4002 1000 - 0x4002 13FF                                      | 1 K             | RCC                   |  |  |  |  |  |  |  |
|      | 0x4002 0400 - 0x4002 0FFF                                      | 3 K             | Reserved              |  |  |  |  |  |  |  |
|      | 0x4002 0000 - 0x4002 03FF                                      | 1 K             | DMA1                  |  |  |  |  |  |  |  |
| -    | 0x4001 8000 - 0x4001 FFFF                                      | 32 K            | Reserved              |  |  |  |  |  |  |  |
|      | 0x4001 4C00 - 0x4001 73FF                                      | 12 K            | Reserved              |  |  |  |  |  |  |  |
|      | 0x4001 4800 - 0x4001 4BFF                                      | 1 K             | TIM17                 |  |  |  |  |  |  |  |
|      | 0x4001 4400 - 0x4001 47FF                                      | 1 K             | TIM16                 |  |  |  |  |  |  |  |
|      | 0x4001 4000 - 0x4001 43FF                                      | 1 K             | TIM15                 |  |  |  |  |  |  |  |
|      | 0x4001 3C00 - 0x4001 3FFF                                      | 1 K             | Reserved              |  |  |  |  |  |  |  |
| 4002 | 0x4001 3800 - 0x4001 3BFF                                      | 1 K             | USART1                |  |  |  |  |  |  |  |
| APB2 | 0x4001 3400 - 0x4001 37FF                                      | 1 K             | Reserved              |  |  |  |  |  |  |  |
|      | 0x4001 3000 - 0x4001 33FF                                      | 1 K             | SPI1                  |  |  |  |  |  |  |  |
|      | 0x4001 2C00 - 0x4001 2FFF                                      | 1 K             | TIM1                  |  |  |  |  |  |  |  |
|      | 0x4001 0800 - 0x4001 2BFF                                      | 9 K             | Reserved              |  |  |  |  |  |  |  |
|      | 0x4001 0400 - 0x4001 07FF                                      | 1 K             | EXTI                  |  |  |  |  |  |  |  |
|      | 0x4001 0000 - 0x4001 03FF                                      | 1 K             | SYSCFG + COMP + OPAMP |  |  |  |  |  |  |  |
| -    | 0x4000 9C00 - 0x4000 FFFF                                      | 25 K            | Reserved              |  |  |  |  |  |  |  |
|      |                                                                |                 |                       |  |  |  |  |  |  |  |





| Bus  | Boundary address Size (bytes) Periphera |        |                                                                                |
|------|-----------------------------------------|--------|--------------------------------------------------------------------------------|
|      | 0x4000 9800 - 0x4000 9BFF               | 1 K    | DAC2                                                                           |
|      | 0x4000 7800 - 0x4000 97FF               | 8 K    | Reserved                                                                       |
|      | 0x4000 7400 - 0x4000 77FF               | 1 K    | DAC1                                                                           |
|      | 0x4000 7000 - 0x4000 73FF               | 1 K    | PWR                                                                            |
|      | 0x4000 6800 - 0x4000 6FFF               | 2 K    | Reserved                                                                       |
|      | 0x4000 6400 - 0x4000 67FF               | 1 K    | bxCAN                                                                          |
|      | 0x4000 5800 - 0x4000 63FF               | 3 K    | Reserved                                                                       |
|      | 0x4000 5400 - 0x4000 57FF               | 1 K    | I2C1                                                                           |
|      | 0x4000 4C00 - 0x4000 53FF               | 2 K    | Reserved                                                                       |
|      | 0x4000 4800 - 0x4000 4BFF               | 1 K    | USART3                                                                         |
| APB1 | 0x4000 4400 - 0x4000 47FF               | 1 K    | USART2                                                                         |
|      | 0x4000 3400 - 0x4000 43FF               | 2 K    | Reserved                                                                       |
|      | 0x4000 3000 - 0x4000 33FF               | 1 K    | IWDG                                                                           |
|      | 0x4000 2C00 - 0x4000 2FFF               | 1 K    | WWDG                                                                           |
|      | 0x4000 2800 - 0x4000 2BFF               | 1 K    | RTC                                                                            |
|      | 0x4000 1800 - 0x4000 27FF               | 4 K    | Reserved                                                                       |
|      | 0x4000 1400 - 0x4000 17FF               | 1 K    | TIM7                                                                           |
|      | 0x4000 1000 - 0x4000 13FF               | 1 K    | TIM6                                                                           |
|      | 0x4000 0800 - 0x4000 0FFF               | 2 K    | Reserved                                                                       |
|      | 0x4000 0400 - 0x4000 07FF               | 1 K    | TIM3                                                                           |
|      | 0x4000 0000 - 0x4000 03FF               | 1 K    | TIM2                                                                           |
| -    | 0x2000 3000 - 3FFF FFFF                 | ~512 M | Reserved                                                                       |
| -    | 0x2000 0000 - 0x2000 2FFF               | 12 K   | SRAM                                                                           |
| -    | 0x1FFF F800 - 0x1FFF FFFF               | 2 K    | Option bytes                                                                   |
| -    | 0x1FFF D800 - 0x1FFF F7FF               | 8 K    | System memory                                                                  |
| -    | 0x1000 2000 - 0x1FFF D7FF               | ~256 M | Reserved                                                                       |
| -    | 0x1000 0000 - 0x1000 0FFF               | 4 K    | CCM RAM                                                                        |
| -    | 0x0804 0000 - 0x0FFF FFFF               | ~128 M | Reserved                                                                       |
| -    | 0x0800 0000 - 0x0800 FFFF               | 64 K   | Main Flash memory                                                              |
| -    | 0x0004 0000 - 0x07FF FFFF               | ~128 M | Reserved                                                                       |
| -    | 0x0000 000 - 0x0000 FFFF                | 64 K   | Main Flash memory, system<br>memory or SRAM depending<br>on BOOT configuration |

| Table 16. STM32F303x6/8 | peripheral register boundar  | v addresses (continued)          |
|-------------------------|------------------------------|----------------------------------|
|                         | periprierar regioter beariaa | <i>y</i> addi 00000 (0011111004) |



# 6.1.7 Measurement of the current consumption



#### Figure 11. Scheme of the current-consumption measurement



| Calibration value name  | Description                                                              | Memory address            |
|-------------------------|--------------------------------------------------------------------------|---------------------------|
| V <sub>REFINT_CAL</sub> | Raw data acquired at<br>temperature of 30 °C<br>V <sub>DDA</sub> = 3.3 V | 0x1FFF F7BA - 0x1FFF F7BB |

#### Table 25. Internal reference voltage calibration values

# 6.3.5 Supply current characteristics

The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code.

The current consumption is measured as described in *Figure 11: Scheme of the current-consumption measurement.* 

All Run-mode current consumption measurements given in this section are performed with a reduced code that gives a consumption equivalent to CoreMark code.

Note: The total current consumption is the sum of IDD and IDDA.

#### Typical and maximum current consumption

The MCU is placed under the following conditions:

- All I/O pins are in input mode with a static value at V<sub>DD</sub> or V<sub>SS</sub> (no load)
- All peripherals are disabled except when explicitly mentioned
- The Flash memory access time is adjusted to the f<sub>HCLK</sub> frequency (0 wait state from 0 to 24 MHz, 1 wait state from 24 to 48 MHz and 2 wait states from 48 to 72 MHz)
- Prefetch in ON (reminder: this bit must be set before clock setting and bus prescaling)
- When the peripherals are enabled  $f_{PCLK2} = f_{HCLK}$  and  $f_{PCLK1} = f_{HCLK/2}$
- When f<sub>HCLK</sub> > 8 MHz, the PLL is ON and the PLL input is equal to HSI/2 (4 MHz) or HSE (8 MHz) in bypass mode.

The parameters given in *Table 26* to *Table 30* are derived from tests performed under ambient temperature and supply voltage conditions summarized in *Table 20*.



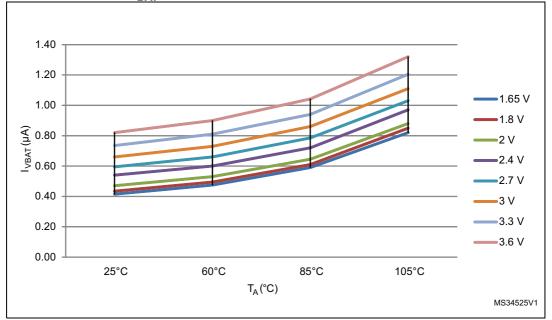



Figure 12. Typical V<sub>BAT</sub> current consumption (LSE and RTC ON/LSEDRV[1:0] = '00')

## **Typical current consumption**

The MCU is placed under the following conditions:

- V<sub>DD</sub> = V<sub>DDA</sub> = 3.3 V
- All I/O pins available on each package are in analog input configuration
- The Flash access time is adjusted to f<sub>HCLK</sub> frequency (0 wait states from 0 to 24 MHz, 1 wait state from 24 to 48 MHz and 2 wait states from 48 MHz to 72 MHz), and Flash prefetch is ON
- When the peripherals are enabled,  $f_{APB1} = f_{AHB/2}$ ,  $f_{APB2} = f_{AHB}$
- PLL is used for frequencies greater than 8 MHz
- AHB prescaler of 2, 4, 8,16 and 64 is used for the frequencies 4 MHz, 2 MHz, 1 MHz, 500 kHz and 125 kHz respectively.



#### **Electrical characteristics**

|                                     |                                          | Conditions                            |                   | Ту                     | /p.                     |                             |
|-------------------------------------|------------------------------------------|---------------------------------------|-------------------|------------------------|-------------------------|-----------------------------|
| Symbol                              | Parameter                                |                                       | f <sub>HCLK</sub> | Peripherals<br>enabled | Peripherals<br>disabled | Unit                        |
|                                     |                                          |                                       | 72 MHz            | 70.6                   | 25.2                    |                             |
|                                     |                                          |                                       | 64 MHz            | 60.3                   | 22.6                    |                             |
|                                     |                                          |                                       | 48 MHz            | 46.0                   | 17.3                    |                             |
|                                     |                                          |                                       | 32 MHz            | 31.3                   | 12.0                    |                             |
|                                     |                                          |                                       | 24 MHz            | 25.0                   | 9.3                     |                             |
|                                     | Supply current in Run mode from          |                                       | 16 MHz            | 16.2                   | 6.5                     |                             |
| I <sub>DD</sub>                     | V <sub>DD</sub> supply                   |                                       | 8 MHz             | 8.4                    | 3.55                    | mA                          |
|                                     |                                          |                                       | 4 MHz             | 4.75                   | 2.21                    | -                           |
|                                     |                                          |                                       | 2 MHz             | 2.81                   | 1.52                    |                             |
|                                     |                                          |                                       | 1 MHz             | 1.82                   | 1.17                    |                             |
|                                     |                                          | Running from HSE crystal clock 8 MHz, | 500 kHz           | 1.34                   | 0.94                    |                             |
|                                     |                                          |                                       | 125 kHz           | 0.93                   | 0.82                    |                             |
|                                     |                                          | code executing from                   | 72 MHz            | 240.0                  | 234.0                   | -<br>-<br>-<br>-<br>-<br>μΑ |
|                                     |                                          | Flash                                 | 64 MHz            | 209.9                  | 208.6                   |                             |
|                                     |                                          |                                       | 48 MHz            | 154.5                  | 153.5                   |                             |
|                                     |                                          |                                       | 32 MHz            | 104.1                  | 103.6                   |                             |
|                                     |                                          |                                       | 24 MHz            | 80.2                   | 80.0                    |                             |
| . (1)(2)                            | Supply current in                        |                                       | 16 MHz            | 56.8                   | 56.6                    |                             |
| I <sub>DDA</sub> <sup>(1) (2)</sup> | Run mode from<br>V <sub>DDA</sub> supply |                                       | 8 MHz             | 1.14                   | 1.14                    |                             |
|                                     |                                          |                                       | 4 MHz             | 1.14                   | 1.14                    |                             |
|                                     |                                          |                                       | 2 MHz             | 1.14                   | 1.14                    |                             |
|                                     |                                          |                                       | 1 MHz             | 1.14                   | 1.14                    |                             |
|                                     |                                          |                                       | 500 kHz           | 1.14                   | 1.14                    |                             |
|                                     |                                          |                                       | 125 kHz           | 1.14                   | 1.14                    |                             |

# Table 32. Typical current consumption in Run mode, code with data processingrunning from Flash memory

1.  $V_{DDA}$  supervisor is OFF.

2. When peripherals are enabled, the power consumption of the analog part of peripherals such as ADC, DAC, Comparators, OpAmp etc. is not included. Refer to the tables of characteristics in the subsequent sections.

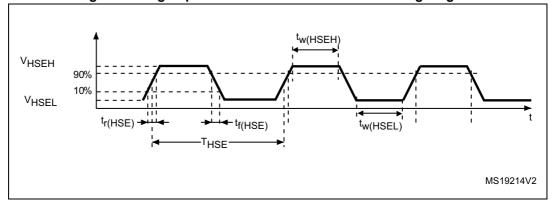


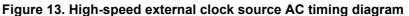
#### **On-chip peripheral current consumption**

The MCU is placed under the following conditions:

- All I/O pins are in analog input configuration
- All peripherals are disabled unless otherwise mentioned
- The given value is calculated by measuring the current consumption:
  - With all peripherals clocked off
  - With only one peripheral clocked on
- Ambient operating temperature at 25°C and  $V_{DD} = V_{DDA} = 3.3 V$

#### Table 35. Peripheral current consumption


| D. i have                  | Typical consumption <sup>(1)</sup> |        |
|----------------------------|------------------------------------|--------|
| Peripheral                 | I <sub>DD</sub>                    | Unit   |
| BusMatrix <sup>(2)</sup>   | 11.1                               | µA/MHz |
| DMA1                       | 8.0                                | -      |
| CRC                        | 2.1                                | -      |
| GPIOA                      | 8.7                                | -      |
| GPIOB                      | 8.4                                | -      |
| GPIOC                      | 8.4                                | -      |
| GPIOD                      | 2.6                                | -      |
| GPIOF                      | 1.7                                | -      |
| TSC                        | 4.7                                | -      |
| ADC1&2                     | 17.4                               | -      |
| APB2-Bridge <sup>(3)</sup> | 3.3                                | -      |
| SYSCFG                     | 4.2                                | -      |
| TIM1                       | 32.3                               | -      |
| USART1                     | 20.3                               | -      |
| TIM15                      | 13.8                               | -      |
| TIM16                      | 9.7                                | -      |
| TIM17                      | 10.3                               | -      |
| APB1-Bridge <sup>(3)</sup> | 5.3                                | -      |
| TIM2                       | 43.4                               | -      |
| TIM3                       | 34.0                               | -      |
| TIM6                       | 9.7                                | -      |
| TIM7                       | 10.3                               | -      |
| WWDG                       | 6.9                                | -      |
| USART2                     | 18.8                               | -      |
| USART3                     | 19.1                               | -      |
| I2C1                       | 13.3                               | -      |




| Symbol                                       | Parameter Conditions                                   |  | Min.        | Тур. | Max.               | Unit |
|----------------------------------------------|--------------------------------------------------------|--|-------------|------|--------------------|------|
| f <sub>HSE_ext</sub>                         | User external clock source<br>frequency <sup>(1)</sup> |  | 1           | 8    | 32                 | MHz  |
| V <sub>HSEH</sub>                            | OSC_IN input pin high-level voltage                    |  | $0.7V_{DD}$ | -    | $V_{DD}$           | V    |
| V <sub>HSEL</sub>                            | OSC_IN input pin low-level voltage                     |  | $V_{SS}$    | -    | $0.3V_{\text{DD}}$ | v    |
| t <sub>w(HSEH)</sub><br>t <sub>w(HSEL)</sub> | OSC_IN high or low time <sup>(1)</sup>                 |  | 15          | -    | -                  | ne   |
| t <sub>r(HSE)</sub><br>t <sub>f(HSE)</sub>   | OSC_IN rise or fall time <sup>(1)</sup>                |  | -           | -    | 20                 | ns   |

| Table 38. High-speed external us | er clock characteristics |
|----------------------------------|--------------------------|
|----------------------------------|--------------------------|

1. Guaranteed by design, not tested in production.





#### Low-speed external user clock generated from an external source

In bypass mode the LSE oscillator is switched off and the input pin is a standard GPIO. The external clock signal has to respect the I/O characteristics in *Section 6.3.14*. However, the recommended clock input waveform is shown in *Figure 14* 

| Symbol                                       | Parameter                                              | Conditions | Min.               | Тур.   | Max.               | Unit |
|----------------------------------------------|--------------------------------------------------------|------------|--------------------|--------|--------------------|------|
| f <sub>LSE_ext</sub>                         | User External clock source<br>frequency <sup>(1)</sup> |            | -                  | 32.768 | 1000               | kHz  |
| V <sub>LSEH</sub>                            | OSC32_IN input pin high-level voltage                  |            | 0.7V <sub>DD</sub> | -      | V <sub>DD</sub>    | V    |
| V <sub>LSEL</sub>                            | OSC32_IN input pin low-level voltage                   | -          | V <sub>SS</sub>    | -      | 0.3V <sub>DD</sub> | v    |
| t <sub>w(LSEH)</sub><br>t <sub>w(LSEL)</sub> | OSC32_IN high or low time <sup>(1)</sup>               |            | 450                | -      | -                  | ns   |
| t <sub>r(LSE)</sub><br>t <sub>f(LSE)</sub>   | OSC32_IN rise or fall time <sup>(1)</sup>              |            | -                  | -      | 50                 | 0    |

Table 39. Low-speed external user clock characteristics

1. Guaranteed by design, not tested in production.



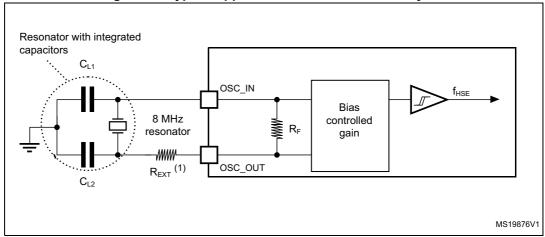



Figure 16. Typical application with a 32.768 kHz crystal

*Note:* An external resistor is not required between OSC32\_IN and OSC32\_OUT and it is forbidden to add one.

## 6.3.8 Internal clock source characteristics

The parameters given in *Table 42* are derived from tests performed under ambient temperature and supply voltage conditions summarized in *Table 20*.

#### High-speed internal (HSI) RC oscillator

| Cumhal                |                                                           | oscillator character           |                     |      | Max                | 11   |
|-----------------------|-----------------------------------------------------------|--------------------------------|---------------------|------|--------------------|------|
| Symbol                | Parameter                                                 | Conditions                     | Min.                | Тур. | Max.               | Unit |
| f <sub>HSI</sub>      | Frequency                                                 | -                              | -                   | 8    | -                  | MHz  |
| TRIM                  | HSI user trimming step                                    | -                              | -                   | -    | 1 <sup>(2)</sup>   | %    |
| DuCy <sub>(HSI)</sub> | Duty cycle                                                | -                              | 45 <sup>(2)</sup>   | -    | 55 <sup>(2)</sup>  | %    |
|                       |                                                           | T <sub>A</sub> = -40 to 105 °C | -2.8 <sup>(3)</sup> | -    | 3.8 <sup>(3)</sup> |      |
|                       | Accuracy of the HSI<br>oscillator (factory<br>calibrated) | T <sub>A</sub> = -10 to 85 °C  | -1.9 <sup>(3)</sup> | -    | 2.3 <sup>(3)</sup> | %    |
|                       |                                                           | T <sub>A</sub> = 0 to 85 °C    | -1.9 <sup>(3)</sup> | -    | 2 <sup>(3)</sup>   |      |
| ACC <sub>HSI</sub>    |                                                           | T <sub>A</sub> = 0 to 70 °C    | -1.3 <sup>(3)</sup> | -    | 2 <sup>(3)</sup>   | 70   |
|                       |                                                           | T <sub>A</sub> = 0 to 55 °C    | -1 <sup>(3)</sup>   | -    | 2 <sup>(3)</sup>   |      |
|                       |                                                           | $T_A = 25 \ ^{\circ}C^{(4)}$   | -1                  | -    | 1                  |      |
| t <sub>su(HSI)</sub>  | HSI oscillator startup time                               | -                              | 1 <sup>(2)</sup>    | -    | 2 <sup>(2)</sup>   | μs   |
| I <sub>DDA(HSI)</sub> | HSI oscillator power<br>consumption                       | -                              | -                   | 80   | 100 <sup>(2)</sup> | μA   |

#### Table 42. HSI oscillator characteristics<sup>(1)</sup>

1.  $V_{DDA}$  = 3.3 V,  $T_A$  = -40 to 105 °C unless otherwise specified.

2. Guaranteed by design, not tested in production.

3. Data based on characterization results, not tested in production.

4. Factory calibrated, parts not soldered



| Symbol                                         | Parameter       | Conditions                                                         | Monitored<br>frequency band | Max vs. [f <sub>HSE</sub> /f <sub>HCLK</sub> ]<br>8/72 MHz | Unit |
|------------------------------------------------|-----------------|--------------------------------------------------------------------|-----------------------------|------------------------------------------------------------|------|
|                                                |                 | ₩ 26₩T 25°C                                                        | 0.1 to 30 MHz               | 5                                                          |      |
| ç                                              | Dook lovel      | V <sub>DD</sub> = 3.6 V, T <sub>A</sub> =25 °C,<br>LQFP100 package | 30 to 130 MHz               | 9                                                          | dBµV |
| S <sub>EMI</sub> Peak level compliant with IEC | 130 MHz to 1GHz | 31                                                                 |                             |                                                            |      |
|                                                | 61967-2         | SAE EMI Level                                                      | 4                           | -                                                          |      |

Table 48. EMI characteristics

# 6.3.12 Electrical sensitivity characteristics

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed to determine its performance in terms of electrical sensitivity.

#### Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts  $\times$  (n+1) supply pins). This test conforms to the JESD22-A114/C101 standard.

| Symbol                    | Ratings                                               | Conditions                                               | Class | Maximum<br>value <sup>(1)</sup> | Unit |
|---------------------------|-------------------------------------------------------|----------------------------------------------------------|-------|---------------------------------|------|
| V <sub>ESD(HBM</sub><br>) | Electrostatic discharge voltage (human body model)    | $T_A = +25 \text{ °C},$<br>conforming to JESD22-<br>A114 | 2     | 2000                            | V    |
| V <sub>ESD(CD</sub><br>M) | Electrostatic discharge voltage (charge device model) | $T_A = +25 \text{ °C},$<br>conforming to JESD22-<br>C101 | Π     | 250                             | v    |

 Table 49. ESD absolute maximum ratings

1. Data based on characterization results, not tested in production.

#### Static latch-up

Two complementary static tests are required on six parts to assess the latch-up performance:

- A supply overvoltage is applied to each power supply pin
- A current injection is applied to each input, output and configurable I/O pin

These tests are compliant with EIA/JESD 78A IC latch-up standard.

#### Table 50. Electrical sensitivities

| Symbol | Parameter             | Conditions                            | Class      |
|--------|-----------------------|---------------------------------------|------------|
| LU     | Static latch-up class | $T_A = +105$ °C conforming to JESD78A | II level A |



| Table 57. IWDG min./max. timeout period at 40 kHz (LSI) (** |              |                                      |                                      |  |  |
|-------------------------------------------------------------|--------------|--------------------------------------|--------------------------------------|--|--|
| Prescaler divider                                           | PR[2:0] bits | Min. timeout (ms) RL[11:0]=<br>0x000 | Max. timeout (ms) RL[11:0]=<br>0xFFF |  |  |
| /4                                                          | 0            | 0.1                                  | 409.6                                |  |  |
| /8                                                          | 1            | 0.2                                  | 819.2                                |  |  |
| /16                                                         | 2            | 0.4                                  | 1638.4                               |  |  |
| /32                                                         | 3            | 0.8                                  | 3276.8                               |  |  |
| /64                                                         | 4            | 1.6                                  | 6553.6                               |  |  |
| /128                                                        | 5            | 3.2                                  | 13107.2                              |  |  |
| /256                                                        | 7            | 6.4                                  | 26214.4                              |  |  |

Table 57. IWDG min./max. timeout period at 40 kHz (LSI) <sup>(1)</sup>

1. These timings are given for a 40 kHz clock but the microcontroller's internal RC frequency can vary from 30 to 60 kHz. Moreover, given an exact RC oscillator frequency, the exact timings still depend on the phasing of the APB interface clock versus the LSI clock so that there is always a full RC period of uncertainty.

| Table 58. WWDG | min./max. timeout value at 72 MH | z (PCLK) <sup>(1)</sup> |
|----------------|----------------------------------|-------------------------|
|----------------|----------------------------------|-------------------------|

| Prescaler | WDGTB | Min. timeout value | Max. timeout value |
|-----------|-------|--------------------|--------------------|
| 1         | 0     | 0.05687            | 3.6409             |
| 2         | 1     | 0.1137             | 7.2817             |
| 4         | 2     | 0.2275             | 14.564             |
| 8         | 3     | 0.4551             | 29.127             |

1. Guaranteed by design, not tested in production.

# 6.3.17 Communication interfaces

## I<sup>2</sup>C interface characteristics

The  $I^2C$  interface meets the timings requirements of the  $I^2C$ -bus specification and user manual rev. 03 for:

- Standard-mode (Sm): with a bit rate up to 100 Kbit/s
- Fast-mode (Fm): with a bit rate up to 400 Kbit/s
- Fast-mode Plus (Fm+): with a bit rate up to 1 Mbit/s.

The I<sup>2</sup>C timings requirements are guaranteed by design when the I<sup>2</sup>C peripheral is properly configured (refer to Reference manual).

The SDA and SCL I/O requirements are met with the following restrictions: the SDA and SCL I/O pins are not "true" open-drain. When configured as open-drain, the PMOS connected between the I/O pin and VDD is disabled, but is still present. Only FTf I/O pins support Fm+ low-level output current maximum requirement. Refer to Section 6.3.14: I/O port characteristics for the I<sup>2</sup>C I/O characteristics.

All I<sup>2</sup>C SDA and SCL I/Os embed an analog filter. Refer to the table below for the analog filter characteristics:



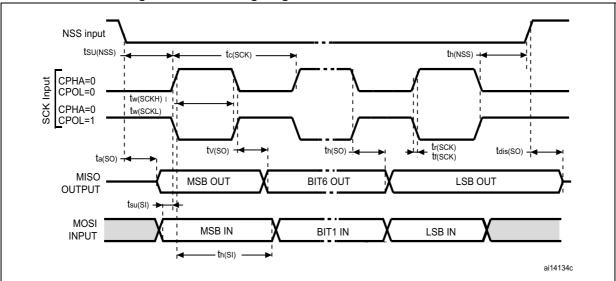



Figure 24. SPI timing diagram - slave mode and CPHA = 0

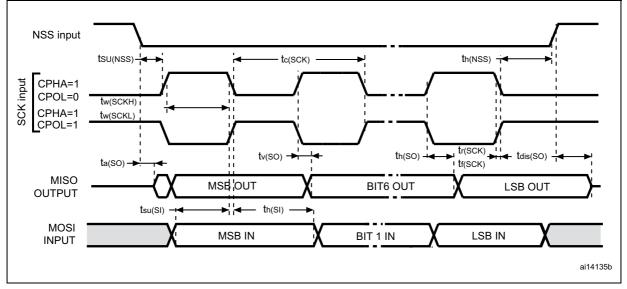



Figure 25. SPI timing diagram - slave mode and CPHA = 1<sup>(1)</sup>

1. Measurement points are done at 0.5V\_{DD} and with external C\_L = 30 pF.



#### IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics – All rights reserved

