



Welcome to E-XFL.COM

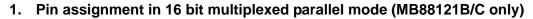
Embedded - Microcontrollers - Application Specific: Tailored Solutions for Precision and Performance

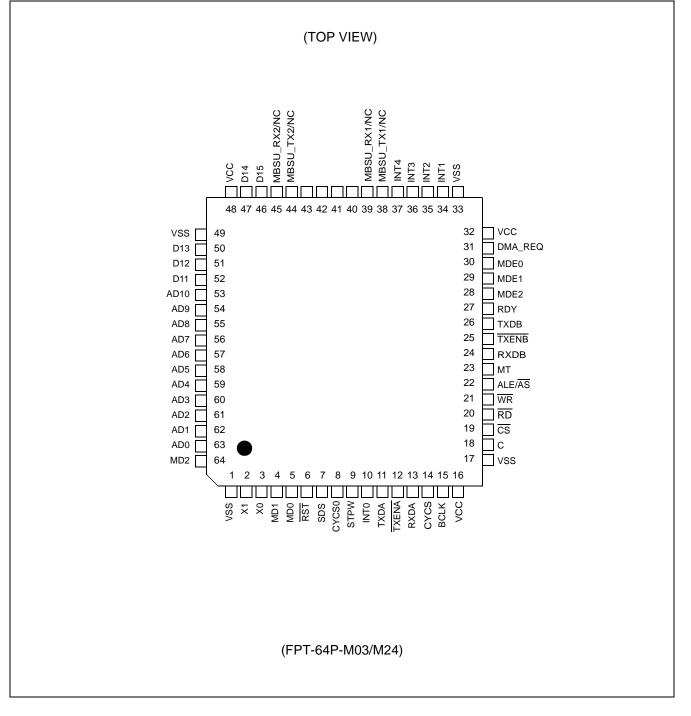
#### Embedded - Microcontrollers - Application Specific

represents a category of microcontrollers designed with unique features and capabilities tailored to specific application needs. Unlike general-purpose microcontrollers, application-specific microcontrollers are optimized for particular tasks, offering enhanced performance, efficiency, and functionality to meet the demands of specialized applications.

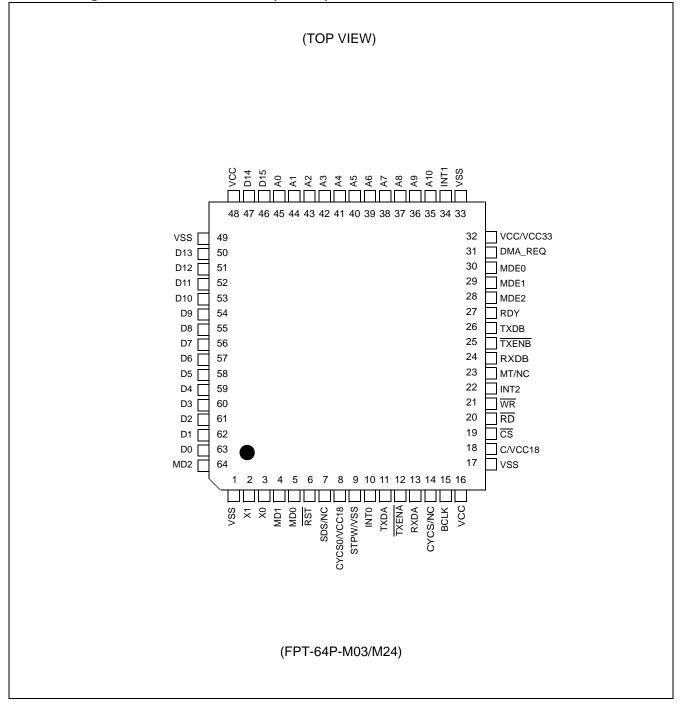
#### What Are <u>Embedded - Microcontrollers -</u> <u>Application Specific</u>?

Application enacific microcontrollars are angineered to


#### Details


| Detalls                 |                                                                             |
|-------------------------|-----------------------------------------------------------------------------|
| Product Status          | Obsolete                                                                    |
| Applications            | Automotive                                                                  |
| Core Processor          | External                                                                    |
| Program Memory Type     | External Program Memory                                                     |
| Controller Series       | -                                                                           |
| RAM Size                | 8K x 8                                                                      |
| Interface               | Parallel Host, SPI                                                          |
| Number of I/O           | -                                                                           |
| Voltage - Supply        | 3V ~ 5.5V                                                                   |
| Operating Temperature   | -40°C ~ 125°C (TA)                                                          |
| Mounting Type           | Surface Mount                                                               |
| Package / Case          | 64-LQFP                                                                     |
| Supplier Device Package | 64-LQFP (10x10)                                                             |
| Purchase URL            | https://www.e-xfl.com/product-detail/infineon-technologies/mb88121cpmc1-ge1 |
|                         |                                                                             |

Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

### ■ PIN ASSIGNMENTS





2. Pin assignment in 16 bit non-multiplexed parallel mode



### ■ PIN DESCRIPTION

| Pin No.          | Pin name    | Circuit type                             | Function                                                                                                                                                                                      |
|------------------|-------------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1, 17, 33,<br>49 | VSS         |                                          | These are power supply ground (0 V) input pins                                                                                                                                                |
| 16, 48           | VCC         |                                          | MB88121B/C: These are power supply (3.3 - 5.0 V) input pins.<br>MB88121(A): These are power supply (5.0 V) input pins                                                                         |
| 32               | VCC/VCC33   |                                          | MB88121B/C: This is a power supply (3.3 - 5.0 V) input pin.<br>MB88121(A): 3.3V supply voltage for the level converters.                                                                      |
| 18               | C/VCC18     | _                                        | MB88121B/C: This is the power supply stabilization capacitor pin. It should be connected to higher than or equal to 0.1 $\mu$ F ceramic capacitor.<br>MB88121(A): 1.8V core supply input pin. |
| 2                | X1          | 5                                        | Oscillation output pin.                                                                                                                                                                       |
| 3                | X0          | D                                        | Oscillation input pin. If external clock is used, it is connected here.                                                                                                                       |
| 4 - 5            | MD1 - MD0   | А                                        | Input pins for the mode selection.                                                                                                                                                            |
| 6                | RST         | А                                        | Reset input pin.                                                                                                                                                                              |
| 7                | SDS/NC      | В/-                                      | MB88121B/C: Debug pin: Start of dynamic segment, when func-<br>tion is disabled, this pin outputs 'L'-Level<br>MB88121(A): Do not connect!                                                    |
| 8                | CYCS0/VCC18 | В/-                                      | MB88121B/C: Debug pin: Cycle 0 start output, when function is<br>disabled, this pin outputs 'L'-Level<br>MB88121(A): 1.8V core supply input pin.                                              |
| 9                | STPWT/VSS   | C/-                                      | MB88121B/C: Stop Watch Trigger Input pin<br>MB88121(A): Power supply ground (0 V) input pin.                                                                                                  |
| 10               | INT0        | B Output pin for the Interrupt 0 output. |                                                                                                                                                                                               |
| 11               | TXDA        | В                                        | Output pin for the data transmitter output channel A.                                                                                                                                         |
| 12               | TXENA       | В                                        | Output pin for the transmission enable output channel A.                                                                                                                                      |
| 13               | RXDA        | А                                        | Input pin for the data receiver input channel A.                                                                                                                                              |
| 14               | CYCS/NC     | В/-                                      | MB88121B/C: Debug pin: Cycle start output, when function is dis-<br>abled, this pin outputs 'L'-Level<br>MB88121(A): Do not connect!                                                          |
| 15               | BCLK        | A                                        | Input pin for the Bus Clock input.<br>This function is enabled in all parallel modes.                                                                                                         |
|                  | -           | ]                                        | This pin is unused in SPI mode.                                                                                                                                                               |
| 19               | CS          | А                                        | Input pin for the chip select input.                                                                                                                                                          |
| 20               | RD          | А                                        | Input pin for the read enable input.<br>This function is enabled in all parallel modes.                                                                                                       |
|                  | -           |                                          | This pin is unused in SPI mode.                                                                                                                                                               |
| 21               | WR          | А                                        | Input pin for the write enable input.<br>This function is enabled in all parallel modes.                                                                                                      |
|                  | -           |                                          | This pin is unused in SPI mode.                                                                                                                                                               |
|                  |             |                                          |                                                                                                                                                                                               |

## ■ PIN FUNCTIONS VS. MODES

| Pin No. | 16bit mux mode<br>(MB88121B/C only) | 16bit non mux mode               | SPI mode<br>(MB88121B/C only) |  |  |  |
|---------|-------------------------------------|----------------------------------|-------------------------------|--|--|--|
| 1       | VSS                                 |                                  |                               |  |  |  |
| 2       | X1                                  |                                  |                               |  |  |  |
| 3       | X0                                  |                                  |                               |  |  |  |
| 4       | MD1                                 |                                  |                               |  |  |  |
| 5       |                                     | MD0                              |                               |  |  |  |
| 6       |                                     | RST                              |                               |  |  |  |
| 7       | MB                                  | 88121B/C: SDS; MB88121(A)        | :NC                           |  |  |  |
| 8       | MB8812                              | 21B/C: CYCS0 ; MB88121(A)        | VCC18                         |  |  |  |
| 9       | MB88                                | 121B/C: STPWT; MB88121(A         | ): VSS                        |  |  |  |
| 10      |                                     | INT0                             |                               |  |  |  |
| 11      |                                     | TXDA                             |                               |  |  |  |
| 12      |                                     | TXENA                            |                               |  |  |  |
| 13      |                                     | RXDA                             |                               |  |  |  |
| 14      | MB8                                 | MB88121B/C: CYCS; MB88121(A): NC |                               |  |  |  |
| 15      | BCLK -                              |                                  |                               |  |  |  |
| 16      | VCC                                 |                                  |                               |  |  |  |
| 17      | VSS                                 |                                  |                               |  |  |  |
| 18      | MB88121B/C: C; MB88121(A): VCC18    |                                  |                               |  |  |  |
| 19      | CS                                  |                                  |                               |  |  |  |
| 20      | R                                   | RD -                             |                               |  |  |  |
| 21      | W                                   | /R                               | -                             |  |  |  |
| 22      | ALE/AS                              | INT2                             | -                             |  |  |  |
| 23      | ME                                  | 888121B/C: MT; MB88121(A):       | NC                            |  |  |  |
| 24      |                                     | RXDB                             |                               |  |  |  |
| 25      |                                     | TXENB                            |                               |  |  |  |
| 26      |                                     | TXDB                             | 1                             |  |  |  |
| 27      | RI                                  | Y                                | -                             |  |  |  |
| 28      | MDE2                                |                                  |                               |  |  |  |
| 29      | MDE1                                |                                  |                               |  |  |  |
| 30      |                                     | MDE0                             | 1                             |  |  |  |
| 31      | DMA_                                | _REQ                             | -                             |  |  |  |
| 32      | MB88                                | 121B/C: VCC; MB88121(A): \       | /CC33                         |  |  |  |
| 33      |                                     | VSS                              |                               |  |  |  |

## ■ Used Clock for X0/X1

Input frequency of X0 and X1 is described Table below.

|                |                | MD[2:0]                                        |                          |  |
|----------------|----------------|------------------------------------------------|--------------------------|--|
|                | 100            | 101                                            | 110                      |  |
| Oscillator     | 4MHz/5MHz/8MHz | -                                              | 4MHz/5MHz/8MHz           |  |
| External Clock | -              | 4MHz/5MHz/8MHz/<br>10MHz/16MHz/20MHz/<br>80MHz | 4MHz/5MHz/8MHz/<br>10MHz |  |

### 11. Pin level at interrupt pins

In case that the interrupt pin is enabled following level is output

| Level | Description                                    |
|-------|------------------------------------------------|
| 0     | default value, no interrupt request is pending |
| 1     | Interrupt request is pending                   |

The output changes to Low-Level when the corresponding flag in the E-Reay register is cleared.

For timer0 and timer1 interrupt pin(s) the High level is output only a dedicated time and set back to Low-Level.

See E-Ray User Manual for details. It is recommended to use egde detection at host side for these pins.

#### 12. Data Accessing of MB88121 series

The MB88121 series includes a parallel bus Interface using 16-bit data width. However the internal Communication Controller requires a 32-bit data access. Therefore always access the MB88121 using 32-bit data access. The Bus Interface expect two 16-bit data transfer from the Host MCU.

The order of the transfer is important, otherwise data can be lost.

First 16-bit write cycle must be the lower, the second 16-bit write cycle the higher 16-bit address of the 32-bit address. As soon as data is written to the higher 16-bit Address, the Communication Controller is writing the 32-bit value to the address.

Example:

Write access to Input buffer: First 32-bit register WRDS1: (Address: 0x400 - 0x403)

Value of WRDS1 register: 0x0000 0000

First 16-bit write cycle via Bus interface to address 0x400-401: Value: 1234

Value of WRDS1 register: 0x0000 0000

Second 16 bit write cycle via Bus Interface to address 0x402 - 0x403: Value 5678

32-bit data written to WRDS1 address.

Value of WRDS1 register: 0x1234 5678

### ■ I/O MAP

| Address            | Symbol        | Name                                          | Reset                                                                                   | Access   |  |  |  |  |
|--------------------|---------------|-----------------------------------------------|-----------------------------------------------------------------------------------------|----------|--|--|--|--|
| Customer Registers |               |                                               |                                                                                         |          |  |  |  |  |
| 0x0000             | VER           | Version Information Register                  | MB88121: 0410 7905<br>MB88121A: 0420 7906<br>MB88121B: 0430 79FF<br>MB88121C: 0440 79FF | r        |  |  |  |  |
| 0x0004             | CCNT          | Clock Control Register                        | 0000 0000                                                                               | r/w      |  |  |  |  |
| 0x0008             | CUS2          | reserved<br>Customer 2 Register (DBGS & DMAS) | MB88121: 0000 0000<br>MB88121A/B/C:0000 0000                                            | r<br>r/w |  |  |  |  |
| 0x000C             | -<br>INT      | reserved<br>Interrupt Register                | MB88121(A): 0000 0000<br>MB88121B/C: 0000 0000                                          | r<br>r/w |  |  |  |  |
|                    |               | Special Registers                             |                                                                                         |          |  |  |  |  |
| 0x0010             | -             | reserved (1) (don't write)                    | MB88121: 0000 0000<br>MB88121A/B/C: 0000 0300                                           | r        |  |  |  |  |
| 0x0014             | -             | reserved (1) (don't write)                    | 0000 0000                                                                               | r        |  |  |  |  |
| 0x0018             | -             | reserved (1)                                  | 0000 0000                                                                               | r        |  |  |  |  |
| 0x001C             | LCK           | Lock Register                                 | 0000 0000                                                                               | r/w      |  |  |  |  |
|                    |               | Interrupt Registers                           |                                                                                         |          |  |  |  |  |
| 0x0020             | EIR           | Error Interrupt Register                      | 0000 0000                                                                               | r/w      |  |  |  |  |
| 0x0024             | SIR           | Status Interrupt Register                     | 0000 0000                                                                               | r/w      |  |  |  |  |
| 0x0028             | EILS          | Error Interrupt Line Select                   | 0000 0000                                                                               | r/w      |  |  |  |  |
| 0x002C             | SILS          | Status Interrupt Line Select                  | MB88121: 0303 7FFF<br>MB88121A/B/C: 0303 FFFF                                           | r/w      |  |  |  |  |
| 0x0030             | EIES          | Error Interrupt Enable Set                    | 0000 0000                                                                               | r/w      |  |  |  |  |
| 0x0034             | EIER          | Error Interrupt Enable Reset                  | 0000 0000                                                                               | r/w      |  |  |  |  |
| 0x0038             | SIES          | Status Interrupt Enable Set                   | 0000 0000                                                                               | r/w      |  |  |  |  |
| 0x003C             | SIER          | Status Interrupt Enable Reset                 | 0000 0000                                                                               | r/w      |  |  |  |  |
| 0x0040             | ILE           | Interrupt Line Enable                         | 0000 0000                                                                               | r/w      |  |  |  |  |
| 0x0044             | T0C           | Timer 0 Configuration                         | 0000 0000                                                                               | r/w      |  |  |  |  |
| 0x0048             | T1C           | Timer 1 Configuration                         | 0002 0000                                                                               | r/w      |  |  |  |  |
| 0x004C             | STPW<br>STPW1 | Stop Watch Register<br>Stop Watch Register 1  | MB88121/A: 0000 0000<br>MB88121B/C: 0000 0000                                           | r/w      |  |  |  |  |
| 0x0050             | -<br>STPW2    | <i>reserved</i><br>Stop Watch Register 2      | MB88121/A: 0000 0000<br>MB88121B/C: 0000 0000                                           | r        |  |  |  |  |
| 0x0054 -<br>0x007C | -             | reserved (11)                                 | 0000 0000                                                                               | r        |  |  |  |  |

(Continued)

| Address            | Symbol | Name                          | Reset                                         | Access |
|--------------------|--------|-------------------------------|-----------------------------------------------|--------|
|                    |        | CC Control Registers          |                                               |        |
| 0x0080             | SUCC   | SUC Configuration Register 1  | MB88121: 0C40 0000<br>MB88121A/B/C: 0C40 1000 | r/w    |
| 0x0084             | SUCC2  | SUC Configuration Register 2  | MB88121: 0100 05A4<br>MB88121A/B/C: 0100 0504 | r/w    |
| 0x0088             | SUCC3  | SUC Configuration Register 3  | 0000 0011                                     | r/w    |
| 0x008C             | NEMC   | NEM Configuration Register    | 0000 0000                                     | r/w    |
| 0x0090             | PRTC1  | PRT Configuration Register 1  | MB88121: 084C 0005<br>MB88121A/B/C: 084C 0633 | r/w    |
| 0x0094             | PRTC2  | PRT Configuration Register 2  | MB88121: 0F2D 0E0E<br>MB88121A/B/C:0F2D 0A0E  | r/w    |
| 0x0098             | MHDC   | MHD Configuration Register    | MB88121: 0001 0000<br>MB88121A/B/C: 0000 0000 | r/w    |
| 0x009C             | -      | reserved (1)                  | 0000 0000                                     | r      |
| 0x00A0             | GTUC1  | GTU Configuration Register 1  | MB88121: 0000 02D0<br>MB88121A/B/C: 0000 0280 | r/w    |
| 0x00A4             | GTUC2  | GTU Configuration Register 2  | MB88121: 0002 000C<br>MB88121A/B/C: 0002 000A | r/w    |
| 0x00A8             | GTUC3  | GTU Configuration Register 3  | MB88121: 0001 0000<br>MB88121A/B/C: 0202 0000 | r/w    |
| 0x00AC             | GTUC4  | GTU Configuration Register 4  | MB88121: 000A 0009<br>MB88121A/B/C: 0008 0007 | r/w    |
| 0x00B0             | GTUC5  | GTU Configuration Register 5  | MB88121: 0A01 0000<br>MB88121A/B/C: 0E00 0000 | r/w    |
| 0x00B4             | GTUC6  | GTU Configuration Register 6  | 0002 0000                                     | r/w    |
| 0x00B8             | GTUC7  | GTU Configuration Register 7  | MB88121: 0002 0005<br>MB88121A/B/C: 0002 0004 | r/w    |
| 0x00BC             | GTUC8  | GTU Configuration Register 8  | 0000 0002                                     | r/w    |
| 0x00C0             | GTUC9  | GTU Configuration Register 9  | MB88121: 0001 0101<br>MB88121A/B/C: 0000 0101 | r/w    |
| 0x00C4             | GTUC10 | GTU Configuration Register 10 | MB88121: 0002 0001<br>MB88121A/B/C: 0002 0005 | r/w    |
| 0x00C8             | GTUC11 | GTU Configuration Register 11 | 0000 0000                                     | r/w    |
| 0x00CC -<br>0x00FC | -      | reserved (13)                 | 0000 0000                                     | r      |

(Continued)

| Address            | Symbol | Name                          | Reset     | Access |
|--------------------|--------|-------------------------------|-----------|--------|
|                    |        | Input Buffer                  |           |        |
| 0x0400 -<br>0x04FC | WRDSn  | Write Data Section [164]      | 0000 0000 | r/w    |
| 0x0500             | WRHS1  | Write Header Section 1        | 0000 0000 | r/w    |
| 0x0504             | WRHS2  | Write Header Section 2        | 0000 0000 | r/w    |
| 0x0508             | WRHS3  | Write Header Section 3        | 0000 0000 | r/w    |
| 0x050C             | -      | reserved (1)                  | 0000 0000 | r/w    |
| 0x0510             | IBCM   | Input Buffer Command Mask     | 0000 0000 | r/w    |
| 0x0514             | IBCR   | Input Buffer Command Request  | 0000 0000 | r/w    |
| 0x0518 -<br>0x05FC | -      | reserved (58)                 | 0000 0000 | r      |
|                    |        | Output Buffer                 |           |        |
| 0x0600 -<br>0x06FC | RDDSn  | Read Data Section [164]       | 0000 0000 | r      |
| 0x0700             | RDHS1  | Read Header Section 1         | 0000 0000 | r      |
| 0x0704             | RDHS2  | Read Header Section 2         | 0000 0000 | r      |
| 0x0708             | RDHS3  | Read Header Section 3         | 0000 0000 | r      |
| 0x070C             | MBS    | Message Buffer Status         | 0000 0000 | r      |
| 0x0710             | OBCM   | Output Buffer Command Mask    | 0000 0000 | r/w    |
| 0x0714             | OBCR   | Output Buffer Command Request | 0000 0000 | r/w    |
| 0x0718 -<br>0x07FC | -      | reserved (58)                 | 0000 0000 | r      |

• Explanation on read/write

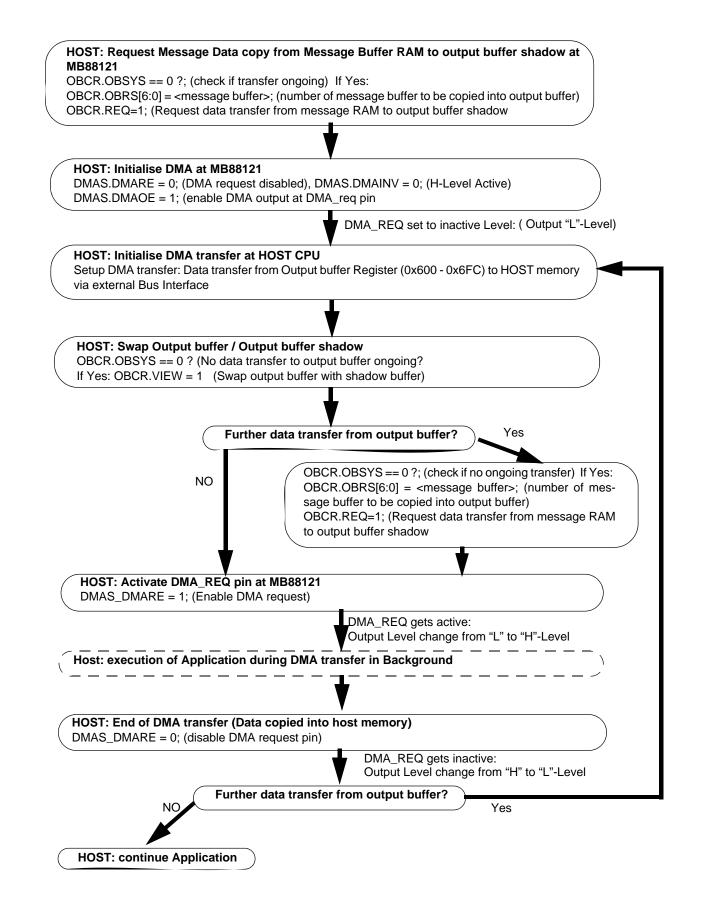
r/w: Readable and Writable

r: Read only

w: Write only

Note : Any write access to reserved addresses in I/O map may result in unexpected behaviour. A read access to reserved address results in reading "X".

| Bit           | Name                                       | Function                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                              |                                            |
|---------------|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------------------|--------------------------------------------|
| bit31 - bit14 | RSV: Reserved                              | These bits are reserved. "0" is read. Write "0".                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                              |                                            |
| bit13 - bit12 | SRST[1:0]                                  | These bits initialize Communication Controller. When "00", "01",<br>"10", "11" are written to these bits continuously, Communication<br>Controller is initialized.<br>First : write "00" to SRST[1:0]<br>Second: Write "01" to SRST[1:0]<br>Third : Write "10" to SRST[1:0]<br>Forth : Write "11" to SRST[1:0] <- Initialize<br>If the condition isn't full, Communication Controller isn't initialized.<br>These bits are invalid for MB88121, MB88121A and MB88121B. |              |                              |                                            |
| bit10 - bit 9 | RSV Reserved                               | This bit is rese                                                                                                                                                                                                                                                                                                                                                                                                                                                       | erved. Alway | vs write "0".                |                                            |
| bit8 - bit7   | SDIV[1:0]:<br>Division for system<br>clock | These bits control the division for system clock. This function is supported in MB88121A, MB88121B and MB88121C. These bits are reserved in MB88121. In MB88121, "0" is read and write "0".                                                                                                                                                                                                                                                                            |              |                              |                                            |
|               |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SDIV[1]      | SDIV[0]                      | Function                                   |
|               |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0            | 0                            | System clock is divided by 1               |
|               |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0            | 1                            | System clock is divided by 2               |
|               |                                            | 1 0 System clock is divided by 4                                                                                                                                                                                                                                                                                                                                                                                                                                       |              | System clock is divided by 4 |                                            |
|               |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1            | 1                            | System clock is divided by 8               |
|               |                                            | < <note>&gt;<br/>When FlexRa<br/>changed.</note>                                                                                                                                                                                                                                                                                                                                                                                                                       | y controller | can receive                  | e or transmit data, these bits must not be |
| bit6          | RSV: Reserved                              | This bit is reserved. Always write "0".                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                              |                                            |


| Bit  | Name                          | Function                                                                                                                                                                                                                                          |
|------|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| bit0 | PON:<br>PLL Oscillator Enable | This bit controls PLL oscillator.<br>"0": Stop PLL oscillator<br>"1": PLL oscillator enable<br>In MB88121 and MB88121A, the functionality of the PLL is not guaranteed.<br>< <note>&gt;<br/>This bit must be changed when SSEL bit is "0".</note> |

### ■ Customer 2 Register

The Customer2 Register (CUS2) is a 32-bit register, at address 0x0008. The upper 16 bit (B16..31) are called Debug support Register (DBGS). The lower 16 bit (Bit 0..15) are called DMA support register (DMAS) Always access the customer 2 register 32-bit wise

 Address
 31
 16
 15
 0

 0x0008
 DBGS
 DMAS
 0



### 2. Wait states caused by the RDY pin

The maximum low width of RDY is as follows.

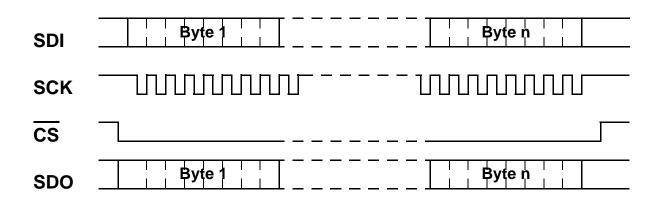
1) BCLK=32MHz, RAM clock=80MHz

| MODE  | Low width of RDY during read operation | Low width of RDY during writing operation |
|-------|----------------------------------------|-------------------------------------------|
| FR460 | Maximum 5BCLK                          | Maximum 5BCLK                             |
| 16FX  | Maximum 5BCLK + Low width of BCLK      | Maximum 5BCLK + Low width of BCLK         |

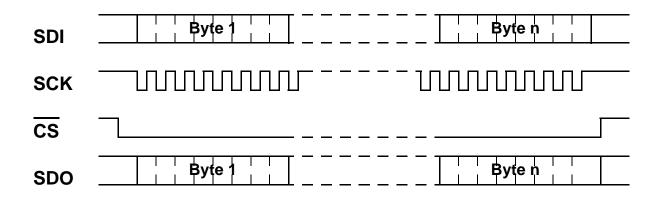
2) BCLK=32MHz, RAM clock=40MHz

| MODE  | Low width of RDY during read operation | Low width of RDY during writing operation |
|-------|----------------------------------------|-------------------------------------------|
| FR460 | Maximum 7BCLK                          | Maximum 7BCLK                             |
| 16FX  | Maximum 7BCLK + Low width of BCLK      | Maximum 7BCLK + Low width of BCLK         |

### 3. The read timing for the register

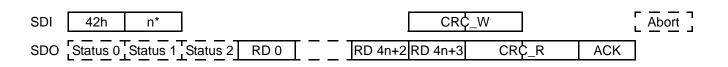

The FlexRay Controller registers have a width of 32bit. A 32bit temporary read register is available to save read data. In the case of reading in 16bit multiplexted parallel bus mode, data of the register selected by the address data latched by the AS pin or ALE pin is written to the temporary register by the first read access, and the data of temporary register is output to the D[15:11] pins and AD[10:0] pins as follows.

FR460 mode: Data of the 16bit upper temporary register is output to the D[15:11] pins and AD[10:0] in case of the first read access, and data of the 16bit lower temporary register is output to the D[15:11] pins and AD[10:0] pins in case of the second read access.


16FX mode: Data of the 16bit lower temporary register is output to the D[15:11] pins and AD[10:0] in case of the first read access, and data of the 16bit upper temporary register is output to the D[15:11] pins and AD[10:0] pins in case of the second read access.

Read operation in FR460 mode

MDS[1:0] = 10: Active-low clock, sampling on odd (falling) edge




MDS[1:0] = 11: Active-low clock, sampling on even (rising) edge



MDS[2] = 0: MSB firstMDS[2] = 1: LSB firstMSBLSBMSBLSB

# **RBI:** Read Output Buffer, Initialize OBP, Command Byte = 42h



\*: n = word count - 1; 0 ≤n ≤63

Clear OBP and read data starting at address 600h (OBP = Output Buffer Pointer). After successful check of CRC\_W, ACK=FFh is sent. Otherwise, ACK=00h is sent. If ACK=FFh was sent, OBP is incremented by n+1 if  $\overline{CS}$  has a rising edge immediately after ACK. If there is no rising  $\overline{CS}$  edge immediately after ACK, OBP is not incremented. The SPI master can transmit an extra byte (Abort) after it has received the ACK. In this case, MB88121 will detect clock edges when it expects a rising  $\overline{CS}$  edge and will not increment OBP.

| 4*(n+1) bytes         |
|-----------------------|
| 6 + 4*(n+1) bytes     |
| 150% / (n+1)          |
| 100% * (1 - 3/(2n+5)) |
|                       |

# **RBC: Read Output Buffer, Continue, Command Byte = 60h**



\*: n = word count - 1; 0 ≤n ≤63

Read data starting at address 600h+4\*OBP (OBP = Output Buffer Pointer). After successful check of <u>CRC\_W</u>, ACK=FFh is sent. Otherwise, ACK=00h is sent. If ACK=FFh was sent, OBP is incremented by n+1 if CS has a rising edge immediately after ACK. If there is no rising CS edge immediately after ACK, OBP is not incremented. The SPI master can transmit an extra byte (Abort) after it has received the ACK. In this case, MB88121 will detect clock edges when it expects a rising CS edge and will not increment OBP.

| Payload:        | 4*(n+1) bytes         |
|-----------------|-----------------------|
| Command length: | 6 + 4*(n+1) bytes     |
| Overhead:       | 150% / (n+1)          |
| Efficiency:     | 100% * (1 - 3/(2n+5)) |

# **RBIWBI:** Combination of **RBI** and **WBI**, Command Byte = 50h



\*: n = word count - 1; 0 ≤n ≤63

Clear IBP and write data starting at address 400h (IBP = Input Buffer Pointer). Clear OBP and read data starting at address 600h (OBP = Output Buffer Pointer). After successful check of CRC\_W, ACK=FFh is sent. Otherwise, ACK=00h is sent. If ACK=FFh was sent, IBP and OBP are incremented by n+1 if CS has a rising edge immediately after ACK. If there is no rising CS edge immediately after ACK, IBP and OBP are not incremented. The SPI master can transmit an extra byte (Abort) after it has received the ACK. In this case, MB88121 will detect clock edges when it expects a rising CS edge and will not increment IBP and OBP.

| Payload:        | 8*(n+1) bytes         |
|-----------------|-----------------------|
| Command length: | 6 + 4*(n+1) bytes     |
| Overhead:       | 75% / (n+1) - 50%     |
| Efficiency:     | 200% * (1 - 3/(2n+5)) |

# **RBCWBI:** Combination of RBC and WBI, Command Byte = 72h

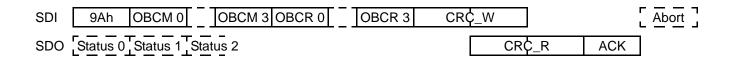


\*: n = word count - 1; 0 ≤n ≤63

Clear IBP and write data starting at address 400h (IBP = Input Buffer Pointer). Read data starting at address 600h+4\*OBP (OBP = Output Buffer Pointer). After successful check of CRC\_W, ACK=FFh is sent. Otherwise, ACK=00h is sent. If ACK=FFh was sent, IBP and OBP are incremented by n+1 if CS has a rising edge immediately after ACK. If there is no rising CS edge immediately after ACK, IBP and OBP are not incremented. The SPI master can transmit an extra byte (Abort) after it has received the ACK. In this case, MB88121 will detect clock edges when it expects a rising CS edge and will not increment IBP and OBP.

| Payload:        | 8*(n+1) bytes         |
|-----------------|-----------------------|
| Command length: | 6 + 4*(n+1) bytes     |
| Overhead:       | 75% / (n+1) - 50%     |
| Efficiency:     | 200% * (1 - 3/(2n+5)) |

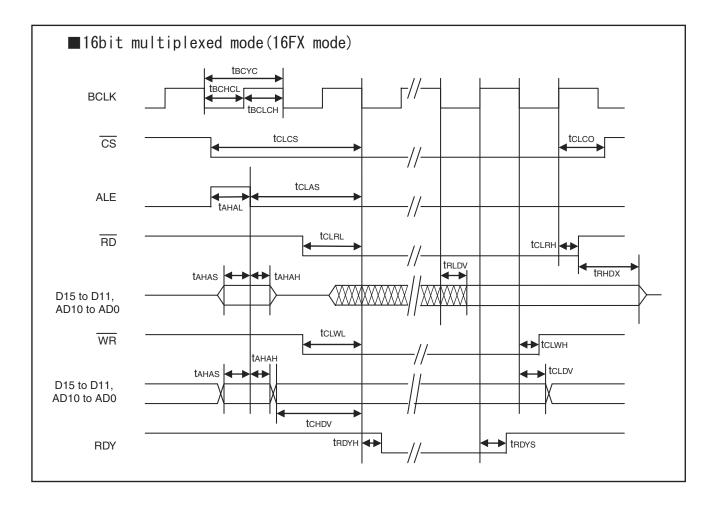
# WRIBC: Write Input Buffer Command, Command Byte = 90h




Write IBCM[3:0] to IBCM register. After successful check of CRC\_W, ACK=FFh is sent. Otherwise, ACK=00h is sent. If ACK=FFh was sent, IBCR[3:0] is written to IBCR register if CS has a rising edge immediately after ACK. If there is no rising  $\overline{CS}$  edge immediately after ACK, the IBCR register is not written. The SPI master can transmit an extra byte (Abort) after it has received the ACK. In this case, MB88121 will detect clock edges when it expects a rising  $\overline{CS}$  edge and will not write the IBCR register.

It is no problem that IBCM register may be written even in the case of a communication problem: IBCM is only a configuration register, it does not trigger an action. On the other hand, writing the IBCR register triggers an action. For this reason, IBCR is written only after it has been confirmed that there has been no communication problem.

| Payload:        | 8 bytes  |
|-----------------|----------|
| Command length: | 13 bytes |
| Overhead:       | 62.5%    |
| Efficiency:     | 61.5%    |


# WROBC: Write Output Buffer Command, Command Byte = 9Ah



Write OBCM[3:0] to OBCM register. After successful check of CRC\_W, ACK=FFh is sent. Otherwise, ACK=00h is sent. If ACK=FFh was sent, OBCR[3:0] is written to OBCR register if CS has a rising edge immediately after ACK. If there is no rising CS edge immediately after ACK, the OBCR register is not written. The SPI master can transmit an extra byte (Abort) after it has received the ACK. In this case, MB88121 will detect clock edges when it expects a rising CS edge and will not write the OBCR register.

It is no problem that OBCM register may be written even in the case of a communication problem: OBCM is only a configuration register, it does not trigger an action. On the other hand, writing the OBCR register triggers an action. For this reason, OBCR is written only after it has been confirmed that there has been no communication problem.

| Payload:        | 8 bytes  |
|-----------------|----------|
| Command length: | 13 bytes |
| Overhead:       | 62.5%    |
| Efficiency:     | 61.5%    |



All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of Fujitsu semiconductor device; Fujitsu does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information. Fujitsu assumes no liability for any damages whatsoever arising out of the use of the information.

Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of Fujitsu or any third party or does Fujitsu warrant non-infringement of any third-party's intellectual property right or other right by using such information. Fujitsu assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).

Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.

For further information please contact: FUJITSU SEMICONDUCTOR EUROPE GmbH Pittlerstrasse 47, D-63225 Langen, Germany Tel: +49-6103-690-0 Fax: +49-6103-690-122

http://www.fujitsu.com/emea/services/microelectronics/

mail: flexray\_info@fme.fujitsu.com

F0610

© FUJITSU SEMICONDUCTOR EUROPE GmbH Printed in Germany