

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	H8/300H
Core Size	16-Bit
Speed	16MHz
Connectivity	I²C, SCI
Peripherals	PWM, WDT
Number of I/O	29
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	-20°C ~ 75°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LFQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/hd64f3664fyv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

General Precautions on Handling of Product

- 1. Treatment of NC Pins
- Note: Do not connect anything to the NC pins.

The NC (not connected) pins are either not connected to any of the internal circuitry or are used as test pins or to reduce noise. If something is connected to the NC pins, the operation of the LSI is not guaranteed.

- 2. Treatment of Unused Input Pins
- Note: Fix all unused input pins to high or low level. Generally, the input pins of CMOS products are high-impedance input pins. If unused pins are in their open states, intermediate levels are induced by noise in the vicinity, a passthrough current flows internally, and a malfunction may occur.
- 3. Processing before Initialization
- Note: When power is first supplied, the product's state is undefined. The states of internal circuits are undefined until full power is supplied throughout the chip and a low level is input on the reset pin. During the period where the states are undefined, the register settings and the output state of each pin are also undefined. Design your system so that it does not malfunction because of processing while it is in this undefined state. For those products which have a reset function, reset the LSI immediately after the power supply has been turned on.
- 4. Prohibition of Access to Undefined or Reserved Addresses
- Note: Access to undefined or reserved addresses is prohibited. The undefined or reserved addresses may be used to expand functions, or test registers may have been be allocated to these addresses. Do not access these registers; the system's operation is not guaranteed if they are accessed.

Section	on 13	Watchdog Timer	
13.1	Features	5	
13.2	Register	Descriptions	
	13.2.1	Timer Control/Status Register WD (TCSRWD)	
	13.2.2	Timer Counter WD (TCWD)	
	13.2.3	Timer Mode Register WD (TMWD)	
13.3	Operatio	- Dn	
Saati	on 14	Sarial Communication Interface 2 (SCI2)	107
Secu	on 14	Serial Communication Interface 5 (SCI5)	
14.1	Features	S	
14.2	Input/O	utput Pins	
14.3	Register	Descriptions	
	14.3.1	Receive Shift Register (RSR)	
	14.3.2	Receive Data Register (RDR)	
	14.3.3	Transmit Shift Register (TSR)	
	14.3.4	Transmit Data Register (TDR)	
	14.3.5	Serial Mode Register (SMR)	
	14.3.6	Serial Control Register 3 (SCR3)	
	14.3.7	Serial Status Register (SSR)	
	14.3.8	Bit Rate Register (BRR)	
14.4	Operatio	on in Asynchronous Mode	
	14.4.1	Clock	
	14.4.2	SCI3 Initialization	
	14.4.3	Data Transmission	
	14.4.4	Serial Data Reception	
14.5	Operatio	on in Clocked Synchronous Mode	
	14.5.1	Clock	
	14.5.2	SCI3 Initialization	
	14.5.3	Serial Data Transmission	
	14.5.4	Serial Data Reception (Clocked Synchronous Mode)	
	14.5.5	Simultaneous Serial Data Transmission and Reception	
14.6	Multipro	ocessor Communication Function	
	14.6.1	Multiprocessor Serial Data Transmission	
	14.6.2	Multiprocessor Serial Data Reception	
14.7	Interrup	ts	
14.8	Usage N	lotes	
	14.8.1	Break Detection and Processing	
	14.8.2	Mark State and Break Sending	
	14.8.3	Receive Error Flags and Transmit Operations	
		(Clocked Synchronous Mode Only)	

RENESAS

2.4 Instruction Set

2.4.1 Table of Instructions Classified by Function

The H8/300H CPU has 62 instructions. Tables 2.2 to 2.9 summarize the instructions in each functional category. The notation used in tables 2.2 to 2.9 is defined below.

Symbol	Description
Rd	General register (destination)*
Rs	General register (source)*
Rn	General register*
ERn	General register (32-bit register or address register)
(EAd)	Destination operand
(EAs)	Source operand
CCR	Condition-code register
Ν	N (negative) flag in CCR
Z	Z (zero) flag in CCR
V	V (overflow) flag in CCR
С	C (carry) flag in CCR
PC	Program counter
SP	Stack pointer
#IMM	Immediate data
disp	Displacement
+	Addition
-	Subtraction
×	Multiplication
÷	Division
^	Logical AND
\vee	Logical OR
\oplus	Logical XOR
\rightarrow	Move
٦	NOT (logical complement)
:3/:8/:16/:24	3-, 8-, 16-, or 24-bit length

 Table 2.1
 Operation Notation

Note: * General registers include 8-bit registers (R0H to R7H, R0L to R7L), 16-bit registers (R0 to R7, E0 to E7), and 32-bit registers/address register (ER0 to ER7).

Instruction	Size	Function
EEPMOV.B	_	if R4L \neq 0 then Repeat @ER5+ \rightarrow @ER6+, R4L-1 \rightarrow R4L Until R4L = 0 else next;
EEPMOV.W	_	if R4 \neq 0 then Repeat @ER5+ \rightarrow @ER6+, R4-1 \rightarrow R4 Until R4 = 0 else next;
		Transfers a data block. Starting from the address set in ER5, transfers data for the number of bytes set in R4L or R4 to the address location set in ER6.
		Execution of the next instruction begins as soon as the transfer is completed.

Table 2.9 Block Data Transfer Instructions

(5) Absolute Address—@aa:8, @aa:16, @aa:24

The instruction code contains the absolute address of a memory operand. The absolute address may be 8 bits long (@aa:8), 16 bits long (@aa:16), 24 bits long (@aa:24)

For an 8-bit absolute address, the upper 16 bits are all assumed to be 1 (H'FFFF). For a 16-bit absolute address the upper 8 bits are a sign extension. A 24-bit absolute address can access the entire address space.

The access ranges of absolute addresses for the group of this LSI are those shown in table 2.11, because the upper 8 bits are ignored.

Absolute Address	Access Range
8 bits (@aa:8)	H'FF00 to H'FFFF
16 bits (@aa:16)	H'0000 to H'FFFF
24 bits (@aa:24)	H'0000 to H'FFFF

Table 2.11 Absolute Address Access Ranges

(6) Immediate—#xx:8, #xx:16, or #xx:32

The instruction contains 8-bit (#xx:8), 16-bit (#xx:16), or 32-bit (#xx:32) immediate data as an operand.

The ADDS, SUBS, INC, and DEC instructions contain immediate data implicitly. Some bit manipulation instructions contain 3-bit immediate data in the instruction code, specifying a bit number. The TRAPA instruction contains 2-bit immediate data in its instruction code, specifying a vector address.

(7) Program-Counter Relative—@(d:8, PC) or @(d:16, PC)

This mode is used in the BSR instruction. An 8-bit or 16-bit displacement contained in the instruction is sign-extended and added to the 24-bit PC contents to generate a branch address. The PC value to which the displacement is added is the address of the first byte of the next instruction, so the possible branching range is -126 to +128 bytes (-63 to +64 words) or -32766 to +32768 bytes (-16383 to +16384 words) from the branch instruction. The resulting value should be an even number.

2.6 Basic Bus Cycle

CPU operation is synchronized by a system clock (ϕ) or a subclock (ϕ_{sub}). The period from a rising edge of ϕ or ϕ_{sub} to the next rising edge is called one state. A bus cycle consists of two states or three states. The cycle differs depending on whether access is to on-chip memory or to on-chip peripheral modules.

2.6.1 Access to On-Chip Memory (RAM, ROM)

Access to on-chip memory takes place in two states. The data bus width is 16 bits, allowing access in byte or word size. Figure 2.9 shows the on-chip memory access cycle.

Figure 2.9 On-Chip Memory Access Cycle

		Vector			
Relative Module	Exception Sources	Number	Vector Address	Priority	
RES pin	Reset	0	H'0000 to H'0001	High	
Watchdog timer				_ ▲	
—	Reserved for system use	1 to 6	H'0002 to H'000D		
External interrupt pin	NMI	7	H'000E to H'000F	_	
CPU	Trap instruction (#0)	8	H'0010 to H'0011	-	
	(#1)	9	H'0012 to H'0013	-	
	(#2)	10	H'0014 to H'0015	_	
	(#3)	11	H'0016 to H'0017	_	
Address break	Break conditions satisfied	12	H'0018 to H'0019	-	
CPU	Direct transition by executing the SLEEP instruction	13	H'001A to H'001B	-	
External interrupt	IRQ0	14	H'001C to H'001D	_	
pin	IRQ1	15	H'001E to H'001F	-	
	IRQ2	16	H'0020 to H'0021	_	
	IRQ3	17	H'0022 to H'0023	-	
	WKP	18	H'0024 to H'0025	-	
Timer A	Overflow	19	H'0026 to H'0027	-	
	Reserved for system use	20	H'0028 to H'0029	-	
Timer W	Input capture A/compare match A	21	H'002A to H'002B	-	
	Input capture B/compare match B				
	Input capture C/compare match C				
	Input capture D/compare match D				
	Timer W overflow				
Timer V	Timer V compare match A	22	H'002C to H'002D	_	
	Timer V compare match B				
	Timer V overflow				
SCI3	SCI3 receive data full	23	H'002E to H'002F		
	SCI3 transmit data empty				
	SCI3 transmit end				
	SCI3 receive error				
IIC	Data transfer end	24	H'0030 to H'0031		
	Address inequality				
	Stop conditions detected			▼	
A/D converter	A/D conversion end	25	H'0032 to H'0033	Low	

Table 3.1 Exception Sources and Vector Address

4.1.2 Address Break Status Register (ABRKSR)

ABRKSR consists of the address break interrupt flag and the address break interrupt enable bit.

Bit	Bit Name	Initial Value	R/W	Description
7	ABIF	0	R/W	Address Break Interrupt Flag
				[Setting condition]
				When the condition set in ABRKCR is satisfied
				[Clearing condition]
				When 0 is written after ABIF=1 is read
6	ABIE	0	R/W	Address Break Interrupt Enable
				When this bit is 1, an address break interrupt request is enabled.
5 to 0	_	All 1	_	Reserved
				These bits are always read as 1.

4.1.3 Break Address Registers (BARH, BARL)

BARH and BARL are 16-bit read/write registers that set the address for generating an address break interrupt. When setting the address break condition to the instruction execution cycle, set the first byte address of the instruction. The initial value of this register is H'FFFF.

4.1.4 Break Data Registers (BDRH, BDRL)

BDRH and BDRL are 16-bit read/write registers that set the data for generating an address break interrupt. BDRH is compared with the upper 8-bit data bus. BDRL is compared with the lower 8-bit data bus. When memory or registers are accessed by byte, the upper 8-bit data bus is used for even and odd addresses in the data transmission. Therefore, comparison data must be set in BDRH for byte access. For word access, the data bus used depends on the address. See section 4.1.1, Address Break Control Register (ABRKCR), for details. The initial value of this register is undefined.

5.2.2 Pin Connection when Not Using Subclock

When the subclock is not used, connect pin X_1 to V_{cL} or V_{ss} and leave pin X_2 open, as shown in figure 5.10.

Figure 5.10 Pin Connection when not Using Subclock

5.3 Prescalers

5.3.1 Prescaler S

Prescaler S is a 13-bit counter using the system clock (ϕ) as its input clock. It is incremented once per clock period. Prescaler S is initialized to H'0000 by a reset, and starts counting on exit from the reset state. In standby mode, subactive mode, and subsleep mode, the system clock pulse generator stops. Prescaler S also stops and is initialized to H'0000. The CPU cannot read or write prescaler S. The output from prescaler S is shared by the on-chip peripheral modules. The divider ratio can be set separately for each on-chip peripheral function. In active mode and sleep mode, the clock input to prescaler S is determined by the division factor designated by MA2 to MA0 in SYSCR2.

5.3.2 Prescaler W

Prescaler W is a 5-bit counter using a 32.768 kHz signal divided by 4 ($\phi_w/4$) as its input clock. The divided output is used for clock time base operation of timer A. Prescaler W is initialized to H'00 by a reset, and starts counting on exit from the reset state. Even in standby mode, subactive mode, or subsleep mode, prescaler W continues functioning so long as clock signals are supplied to pins X_1 and X_2 . Prescaler W can be reset by setting 1s in bits TMA3 and TMA2 of timer mode register A (TMA).

6.2 Mode Transitions and States of LSI

Figure 6.1 shows the possible transitions among these operating modes. A transition is made from the program execution state to the program halt state of the program by executing a SLEEP instruction. Interrupts allow for returning from the program halt state to the program execution state of the program. A direct transition between active mode and subactive mode, which are both program execution states, can be made without halting the program. The operating frequency can also be changed in the same modes by making a transition directly from active mode to active mode, and from subactive mode to subactive mode. RES input enables transitions from a mode to the reset state. Table 6.2 shows the transition conditions of each mode after the SLEEP instruction is executed and a mode to return by an interrupt. Table 6.3 shows the internal states of the LSI in each mode.

Figure 6.1 Mode Transition Diagram

RENESAS

Section 10 Timer A

Timer A is an 8-bit timer with interval timing and real-time clock time-base functions. The clock time-base function is available when a 32.768kHz crystal oscillator is connected. Figure 10.1 shows a block diagram of timer A.

10.1 Features

- Timer A can be used as an interval timer or a clock time base.
- An interrupt is requested when the counter overflows.
- Any of eight clock signals can be output from pin TMOW: 32.768 kHz divided by 32, 16, 8, or 4 (1 kHz, 2 kHz, 4 kHz, 8 kHz), or the system clock divided by 32, 16, 8, or 4.

Interval Timer:

Choice of eight internal clock sources (φ/8192, φ/4096, φ/2048, φ/512, φ/256, φ/128, φ/32, φ8)

Clock Time Base:

• Choice of four overflow periods (1 s, 0.5 s, 0.25 s, 31.25 ms) when timer A is used as a clock time base (using a 32.768 kHz crystal oscillator).

Figure 15.14 Sample Flowchart for Master Receive Mode

17.4.6 Slave Addressing

The EEPROM device receives a 7-bit slave address and a 1-bit R/\overline{W} code following the generation of the start conditions. The EEPROM enables the chip for a read or a write operation with this operation.

The slave address consists of a former 4-bit device code and latter 3-bit slave address as shown in table 17.2. The device code is used to distinguish device type and this LSI uses "1010" fixed code in the same manner as in a general-purpose EEPROM. The slave address code selects one device out of all devices with device code 1010 (8 devices in maximum) which are connected to the I^2C bus. This means that the device is selected if the inputted slave address code received in the order of A2, A1, A0 is equal to the corresponding slave address reference register (ESAR).

The slave address code is stored in the address H'FF09 in the EEPROM. It is transferred to ESAR from the slave address register in the memory array during 10 ms after the reset is released. An access to the EEPROM is not allowed during transfer.

The initial value of the slave address code written in the EEPROM is H'00. It can be written in the range of H'00 to H'07. Be sure to write the data by the byte write method.

The next one bit of the slave address is the R/\overline{W} code. 0 is for a write and 1 is for a read.

The EEPROM turns to a standby state if the device code is not "1010" or slave address code doesn't coincide.

Bit	Bit name	Initial Value	Setting Value	Remarks
7	Device code D3		1	
6	Device code D2	_	0	
5	Device code D1		1	
4	Device code D0		0	
3	Slave address code A2	0	A2	The initial value can be changed
2	Slave address code A1	0	A1	The initial value can be changed
1	Slave address code A0	0	A0	The initial value can be changed

Table 17.2 Slave Addresses

Register Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module Name
PDR7	_	P76	P75	P74	_	_	_	_	I/O port
PDR8	P87	P86	P85	P84	P83	P82	P81	P80	•
PDRB	PB7	PB6	PB5	PB4	PB3	PB2	PB1	PB0	
PMR1	IRQ3	IRQ2	IRQ1	IRQ0	_	_	TXD	TMOW	-
PMR5	_	_	WKP5	WKP4	WKP3	WKP2	WKP1	WKP0	
PCR1	PCR17	PCR16	PCR15	PCR14	_	PCR12	PCR11	PCR10	-
PCR2	_	_	_	_	_	PCR22	PCR21	PCR20	-
PCR5	PCR57* ²	PCR56* ²	PCR55	PCR54	PCR53	PCR52	PCR51	PCR50	-
PCR7	_	PCR76	PCR75	PCR74	_	_	_	_	
PCR8	PCR87	PCR86	PCR85	PCR84	PCR83	PCR82	PCR81	PCR80	
SYSCR1	SSBY	STS2	STS1	STS0	NESEL	_	_	_	Power-down
SYSCR2	SMSEL	LSON	DTON	MA2	MA1	MA0	SA1	SA0	
IEGR1	NMIEG	_	_	_	IEG3	IEG2	IEG1	IEG0	Interrupts
IEGR2	_	_	WPEG5	WPEG4	WPEG3	WPEG2	WPEG1	WPEG0	-
IENR1	IENDT	IENTA	IENWP	_	IEN3	IEN2	IEN1	IEN0	
IRR1	IRRDT	IRRTA	_	_	IRRI3	IRRI2	IRRI1	IRRI0	
IWPR	_	_	IWPF5	IWPF4	IWPF3	IWPF2	IWPF1	IWPF0	-
MSTCR1	_	MSTIIC	MSTS3	MSTAD	MSTWD	MSTTW	MSTTV	MSTTA	Power-down
TSCR	_	_	_	_	_	_	IICRST	IICX	IIC

Notes: 1. WDT: Watchdog timer

2. This bit is not included in H8/3664N.

• EEPROM

Register Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module Name
EKR	EKR7	EKR6	EKR5	EKR4	EKR3	EKR2	EKR1	EKR0	EEPROM

Table 20.4 I²C Bus Interface Timing

 $V_{\rm cc}$ = 3.0 V to 5.5 V, V_{ss} = 0.0 V, $T_{\rm a}$ = –20 to +75°C, unless otherwise specified.

		Test		Values			Reference
Item	Symbol	Condition	Min	Тур	Max	Unit	Figure
SCL input cycle time	t _{sc∟}		12t _{cyc} + 600	_	_	ns	Figure 20.4
SCL input high width	t _{sclh}		3t _{cyc} + 300		_	ns	
SCL input low width	t _{scll}		5t _{cyc} + 300	_	_	ns	-
Input fall time of SCL and SDA	t _{sr}		_	_	300	ns	-
SCL and SDA input spike pulse removal time	t _{sP}		_	_	1t _{cyc}	ns	-
SDA input bus-free time	t _{BUF}		5t _{cyc}	_	_	ns	-
Start condition input hold time	t _{stah}		3t _{cyc}	_	_	ns	-
Retransmission start condition input setup time	t _{stas}		3t _{cyc}	_	_	ns	
Setup time for stop condition input	t _{stos}		3t _{cyc}	_	_	ns	-
Data-input setup time	t _{sdas}		1t _{cyc} +20	_	_	ns	-
Data-input hold time	t _{sdah}		0	_	_	ns	-
Capacitive load of SCL and SDA	C _b		0	_	400	pF	
SCL and SDA output fall time	t _{sf}	V _{cc} = 4.0 V to 5.5 V	_	_	250	ns	-
			_	_	300	-	

20.3.4 A/D Converter Characteristics

Table 20.14 A/D Converter Characteristics

 $V_{cc} = 2.7$ V to 5.5 V, $V_{ss} = 0.0$ V, $T_a = -20^{\circ}$ C to +75°C, unless otherwise specified.

		Applicable	Test		Valu	es		Reference
ltem	Symbol	Pins	Condition	Min	Тур	Max	Unit	Figure
Analog power supply voltage	AV_{cc}	AV_{cc}		3.0	V_{cc}	5.5	V	* ¹
Analog input voltage	AV_{IN}	AN0 to AN7		V _{ss} – 0.3	_	$AV_{cc} + 0.3$	V	
Analog power supply current	AI_{OPE}	AV_{cc}	$AV_{cc} = 5.0 V$	_	—	2.0	mA	
			r _{osc} = 16 MHz					
	AI	AV _{cc}			50	_	μA	*2
								Reference value
	AI_{STOP2}	AV_{cc}		_	—	5.0	μA	*3
Analog input capacitance	\mathbf{C}_{AIN}	AN0 to AN7		_	_	30.0	pF	
Allowable signal	R _{AIN}	AN0 to			—	5.0	kΩ	
source impedance		AN7						
Resolution (data length)				10	10	10	bit	
Conversion time (single mode)			$AV_{cc} = 3.0 V$ to 5.5 V	134	_	_	$\mathbf{t}_{_{\mathrm{cyc}}}$	
Nonlinearity error			-	_	—	±7.5	LSB	-
Offset error			-	_	—	±7.5	LSB	-
Full-scale error			-	_	_	±7.5	LSB	-
Quantization error			-	_	—	±0.5	LSB	-
Absolute accuracy			-	_	_	±8.0	LSB	-
Conversion time (single mode)			AV _{cc} = 4.0 V to 5.5 V	70	_	_	t _{cyc}	
Nonlinearity error			-	—	—	±7.5	LSB	-
Offset error			-	_	—	±7.5	LSB	-
Full-scale error			-	_	_	±7.5	LSB	-
Quantization error			-	_	_	±0.5	LSB	-
Absolute accuracy			-	_	—	±8.0	LSB	_

Table A.1Instruction Set

1. Data transfer instructions

Mnemonic		Addressing Mode and Instruction Length (bytes))				No. of States ^{*1}					
		Operand Size	XX#	#xx #xx Rn Rn @ ERn @ ERn/ @ end (d, ERn) 0 @ (d, PC) 0 @ aa		Operation	1	Con H	Normal	Advanced										
MOV	MOV.B #xx:8, Rd	В	2									#xx:8 → Rd8		—	\$	\$	0	—	2	2
	MOV.B Rs, Rd	В		2								$Rs8 \rightarrow Rd8$		—	\$	\$	0	—	2	2
	MOV.B @ERs, Rd	В			2							$@ERs\toRd8$	—	—	\$	$\hat{\downarrow}$	0	—	4	1
	MOV.B @(d:16, ERs), Rd	В				4						@(d:16, ERs) → Rd8	-	—	\$	\$	0	-	6	
	MOV.B @(d:24, ERs), Rd	В				8						$@(d{:}24,ERs)\toRd8$	_	—	\uparrow	\uparrow	0	—	1	0
	MOV.B @ERs+, Rd	В					2					$@$ ERs \rightarrow Rd8 ERs32+1 \rightarrow ERs32	-	-	\$	\$	0	-	6	6
	MOV.B @aa:8, Rd	В						2				@aa:8 \rightarrow Rd8 @aa:16 \rightarrow Rd8		-	\$	¢	0	—	4	1
	MOV.B @aa:16, Rd	В						4						—	\$	\$	0	—	6	3
	MOV.B @aa:24, Rd	В						6				@aa:24 \rightarrow Rd8	—	—	\$	\$	0	—	8	3
	MOV.B Rs, @ERd	В			2							$Rs8 \rightarrow @ERd$	-	-	\$	¢	0	—	4	1
	MOV.B Rs, @(d:16, ERd)	В				4						$Rs8 \rightarrow @(d:16, ERd)$	—	—	\$	€	0	—	6	6
	MOV.B Rs, @(d:24, ERd)	В				8						$Rs8 \to @(d:24, ERd)$	—	—	\$	$\hat{\downarrow}$	0	—	1	0
	MOV.B Rs, @-ERd	В					2					$\begin{array}{l} ERd32-1 \rightarrow ERd32 \\ Rs8 \rightarrow @ERd \end{array}$	—	-	\$	\$	0	—	6	6
	MOV.B Rs, @aa:8	В						2				Rs8 \rightarrow @aa:8		-	\$	€	0	—	4	1
	MOV.B Rs, @aa:16	В						4				$Rs8 \rightarrow @aa:16$	-	-	\$	¢	0	—	6	6
	MOV.B Rs, @aa:24	В						6				$Rs8 \rightarrow @aa:24$	-	-	\$	¢	0	—	8	3
	MOV.W #xx:16, Rd	W	4									#xx:16 → Rd16	-	-	\$	¢	0	—	4	1
	MOV.W Rs, Rd	W		2								$Rs16 \rightarrow Rd16$	-	—	\$	¢	0	—	2	2
	MOV.W @ERs, Rd	W			2							$@ERs \rightarrow Rd16$	—	—	\$	\$	0	-	4	1
	MOV.W @(d:16, ERs), Rd	W				4						@(d:16, ERs) → Rd16	-	-	\$	€	0	—	6	6
	MOV.W @(d:24, ERs), Rd	W				8						@(d:24, ERs) → Rd16	-	-	\$	¢	0	—	10	
	MOV.W @ERs+, Rd	w					2					$\begin{array}{c} @ ERs \to Rd16 \\ \\ ERs32+2 \to @ ERd32 \end{array}$	—	-	\$	\$	0	—	6	
	MOV.W @aa:16, Rd	W						4				@aa:16 \rightarrow Rd16	-	—	\$	\$	0	-	6	
	MOV.W @aa:24, Rd	W						6				@aa:24 \rightarrow Rd16	—	—	\$	€	0	—	8	
	MOV.W Rs, @ERd	W			2							$Rs16 \rightarrow @ERd$	-	—	\$	€	0	-	4	
	MOV.W Rs, @(d:16, ERd)	W				4						$Rs16 \rightarrow @(d:16, ERd)$	—	—	\$	¢	0	-	6	
	MOV.W Rs, @(d:24, ERd)	W				8						$Rs16 \rightarrow @(d:24, ERd)$	—	_	\$	\$	0	_	10	

Mnemonic			Addressing Mode and Instruction Length (bytes))									No. of States ^{*1}	
		berand Size		5	ERn	(d, ERn)	-ERn/@ERn+	aa	(d, PC)	@aa		Operation		Con	ditio	n Co	ode		ormal	dvanced	
			ŧ	Ř	8	8	0	8	8	0			I	н	N	z	v	С	ž	Ă	
BLD	BLD #xx:3, @ERd	В			4							(#xx:3 of @ERd) \rightarrow C		—	—	—	-	↕	6	3	
	BLD #xx:3, @aa:8	В						4				(#xx:3 of @aa:8) \rightarrow C	—	—	—	—	-	\updownarrow	e	3	
BILD	BILD #xx:3, Rd	В		2								\neg (#xx:3 of Rd8) \rightarrow C	_	—	—	_	-	\$	2	2	
	BILD #xx:3, @ERd	В			4							$\neg \text{ (#xx:3 of @ERd)} \rightarrow \text{C}$	—		—	—	-	\updownarrow	6		
	BILD #xx:3, @aa:8	в						4				\neg (#xx:3 of @aa:8) \rightarrow C	—	—	—	-		(6		
BST	BST #xx:3, Rd	В		2								$C \rightarrow (\#xx:3 \text{ of } Rd8)$	-	—	-	-	-	—	2		
	BST #xx:3, @ERd	В			4							$C \rightarrow (\#xx:3 \text{ of } @ERd24)$	—	—	—	—	-	—	8	8	
	BST #xx:3, @aa:8	В						4				$C \rightarrow (\#xx:3 \text{ of } @aa:8)$	—	—	—	—	—	—	8		
BIST	BIST #xx:3, Rd	В		2								$\neg C \rightarrow (\#xx:3 \text{ of } Rd8)$	—	—	—	—	—	—	2		
	BIST #xx:3, @ERd	В			4							$\neg C \rightarrow (\#xx:3 \text{ of } @ERd24)$	—	—	—	—	—	—	8		
	BIST #xx:3, @aa:8	в						4				$\neg C \rightarrow (\#xx:3 \text{ of } @aa:8)$	—		—	—	—	—	8		
BAND	BAND #xx:3, Rd	В		2								$C \land (\#xx:3 \text{ of } Rd8) \rightarrow C$	—	—	—	-	-	\$	2	2	
	BAND #xx:3, @ERd	в			4							$C \land (\#xx:3 \text{ of } @ERd24) \rightarrow C$	_	—	—	_	-	\$	E	3	
	BAND #xx:3, @aa:8	в						4				$C \land (\#xx:3 \text{ of } @aa:8) \rightarrow C$	_	—	—	_	—	\$	6		
BIAND	BIAND #xx:3, Rd	в		2								$C \land \neg$ (#xx:3 of Rd8) $\rightarrow C$	—	—	—	—	—	\$	2		
	BIAND #xx:3, @ERd	в			4							C∧ ¬ (#xx:3 of @ERd24) → C	—		—	—	—	\$	6		
	BIAND #xx:3, @aa:8	в						4				$C \land \neg$ (#xx:3 of @aa:8) \rightarrow C	—		—	—	-	\$	6		
BOR	BOR #xx:3, Rd	В		2								C∨(#xx:3 of Rd8) → C	—	—	—	—	—	\$	2	2	
	BOR #xx:3, @ERd	В			4							$C \lor (\#xx:3 \text{ of } @ ERd24) \rightarrow C$	—	—	—	—	—	\$	6		
	BOR #xx:3, @aa:8	В						4				$C \lor (\#xx:3 \text{ of } @aa:8) \rightarrow C$	—	—	_	_	—	\$	E	3	
BIOR	BIOR #xx:3, Rd	В		2								C∨ ¬ (#xx:3 of Rd8) → C	_	—	_	_	—	\$	2	2	
	BIOR #xx:3, @ERd	В			4							$C \lor \neg$ (#xx:3 of @ERd24) \rightarrow C	_	—	—	—	—	\$	6		
	BIOR #xx:3, @aa:8	в						4				$C \lor \neg$ (#xx:3 of @aa:8) \rightarrow C	_	—	_	_	—	\$	6		
BXOR	BXOR #xx:3, Rd	в		2								C⊕(#xx:3 of Rd8) \rightarrow C	_	_	_	_	—	\$	2	2	
	BXOR #xx:3, @ERd	В			4							C⊕(#xx:3 of @ERd24) → C	_	_	_	_	_	\$	6		
	BXOR #xx:3, @aa:8	В						4				C⊕(#xx:3 of @aa:8) \rightarrow C	_	_	_	_	-	\$	6		
BIXOR	BIXOR #xx:3, Rd	В		2								C⊕ ¬ (#xx:3 of Rd8) \rightarrow C	_	_	_	_	_	\$	2	2	
	BIXOR #xx:3, @ERd	В			4							C⊕ ¬ (#xx:3 of @ERd24) → C	_	_	_	_	-	\$	6		
	BIXOR #xx:3, @aa:8	в				C⊕ ¬ (#xx:3 of @aa:8) → C	-	—	—	-	-	\$	e	3							

A.4 Combinations of Instructions and Addressing Modes

Table A.5 Combinations of Instructions and Addressing Modes

						A	ddres	ssing	Mode					
Functions	Instructions	XX#	Rn	@ERn	@(d:16.ERn)	@(d:24.ERn)	@ERn+/@ERn	@aa:8	@aa:16	@aa:24	@(d:8.PC)	@(d:16.PC)	@ @ aa:8	
Data	MOV	BWL	BWL	BWL	BWL	BWL	BWL	В	BWL	BWL	_	—	_	—
transfer	POP, PUSH	—	—	—	—	—	—	—	—	—	—	—	—	WL
instructions	MOVFPE,	—	—	—	—	—	—	—	—	—	—	—	—	—
	MOVTPE													
Arithmetic	ADD, CMP	BWL	BWL	—	—	—	—	_	—	—	—	—	—	—
operations	SUB	WL	BWL	_	—	_	_	_		—	_	—	_	_
	ADDX, SUBX	В	В	—	—	—	_	_	_	—	_	_	_	_
	ADDS, SUBS	—	L	_	—	—	_	_	_	—	_	_	_	_
	INC, DEC	—	BWL	_	—	_	—	_		—	_	—	_	_
	DAA, DAS	—	В	_	—	_	—	_		—	_	—	_	_
	MULXU,	—	BW	_	—	_	—	_		—	_	—	_	_
	MULXS,													
	DIVXU,													
	DIVXS													
	NEG	—	BWL	—	—	—	—	_	_	—	—	—	—	-
	EXTU, EXTS	-	WL	-	—	-	—	—	—	—	-	—	—	—
Logical	AND, OR, XOR	—	BWL	—	—	—	—	—	—	—	—	—	—	—
operations	NOT	—	BWL	—	—	—	—	—	—	—	—	—	—	—
Shift operation	ons	—	BWL	_	—	—	—	_	—	—	—	—		—
Bit manipulat	tions	—	В	В	—	—	—	В	—	—	—	—		—
Branching	BCC, BSR	—	—	_	—	—	—	_	—	—	—	—		—
instructions	JMP, JSR	-		0	—	—	—		—	—	0	$ \bigcirc$		—
	RTS	—	-	—	—	—	—		—	0	_	-	0	—
System	TRAPA	—	—	_	—	—	—	_	—	—	—	—		$ \circ $
control	RTE	-		-	—	-	—	—	—	—	—			\circ
Instructions	SLEEP	—	—	_	—	—	—	_	—	—	—	—		$ \circ $
	LDC	В	В	W	W	W	W	_	W	W	—	—		$ \circ $
	STC	-	В	W	W	W	W	—	W	W	—			—
	ANDC, ORC,	В	—]	—]	—]	—]	-	—	-	—]	—	—]	—]	—]
	XORC													
	NOP	-	-	-	-	-	-		—	-	-	-	-	0
Block data tra		-			—	—	—	—			-	—	BW	

