

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	SMBus (2-Wire/I²C), SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT
Number of I/O	16
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	0.9V ~ 3.6V
Data Converters	A/D 15x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	24-WFQFN Exposed Pad
Supplier Device Package	24-QFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f911-gmr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 25.2 T0 Mode 2 Block Diagram	74
Figure 25.3 T0 Mode 3 Block Diagram	275
Figure 25.4. Timer 2 16-Bit Mode Block Diagram	280
Figure 25.5. Timer 2 8-Bit Mode Block Diagram	281
Figure 25.6. Timer 2 Capture Mode Block Diagram	282
Figure 25.7. Timer 3 16-Bit Mode Block Diagram	286
Figure 25.8. Timer 3 8-Bit Mode Block Diagram.	287
Figure 25.9. Timer 3 Capture Mode Block Diagram	288
Figure 26.1. PCA Block Diagram	292
Figure 26.2. PCA Counter/Timer Block Diagram	294
Figure 26.3. PCA Interrupt Block Diagram	295
Figure 26.4. PCA Capture Mode Diagram	297
Figure 26.5. PCA Software Timer Mode Diagram	298
Figure 26.6. PCA High-Speed Output Mode Diagram	299
Figure 26.7. PCA Frequency Output Mode	300
Figure 26.8. PCA 8-Bit PWM Mode Diagram	301
Figure 26.9. PCA 9, 10 and 11-Bit PWM Mode Diagram	302
Figure 26.10. PCA 16-Bit PWM Mode	303
Figure 26.11. PCA Module 5 with Watchdog Timer Enabled	304
Figure 27.1. Typical C2 Pin Sharing	315

List of Tables

2	26
Table 2.1. Product Selection Guide	26
Table 3.1. Pin Definitions for the C8051F91x-C8051F90x	27
Table 3.2. QFN-24 Package Dimensions	32
Table 3.3. PCB Land Pattern	33
Table 3.4. QSOP-24 Package Dimensions	34
Table 3.5. PCB Land Pattern Image: Comparison of the second sec	35
Table 4.1. Absolute Maximum Ratings	36
Table 4.2. Global Electrical Characteristics	37
Table 4.3. Port I/O DC Electrical Characteristics	47
Table 4.4. Reset Electrical Characteristics	52
Table 4.5. Power Management Electrical Specifications	53
Table 4.6. Flash Electrical Characteristics	53
Table 4.7. Internal Precision Oscillator Electrical Characteristics	53
Table 4.8. Internal Low-Power Oscillator Electrical Characteristics	53
Table 4.9. SmaRTClock Characteristics	54
Table 4.10. ADC0 Electrical Characteristics	54
Table 4.11. Temperature Sensor Electrical Characteristics	55
Table 4.12. Voltage Reference Electrical Characteristics	56
Table 4.13. IREFU Electrical Characteristics	57
Table 4.14. Comparator Electrical Characteristics	58
Table 4.15. VREGU Electrical Characteristics	59
Table 4.16. DC-DC Converter (DC0) Electrical Characteristics	
Table 5.1. Representative Conversion Times and Energy Consumption for the SAF	к С0
ADC WITH 1.05 V HIGH-Speed VREF	
Table 0.1. CIF-51 Illsuuction Set Summary Man (Dage 0v0)	112
Table 11.1. Special Function Register (SFR) Memory Map (Page 0x0)	110
Table 11.2. Special Function Registers	14
Table 12.1 Interrupt Summary	10
Table 12.1. Interrupt Summary	22
Table 1/ 1 Power Modes	1/3
Table 15.1 Example 16-bit CRC Outputs	53
Table 16.1 IPeak Inductor Current Limit Settings	61
Table 19.1 Recommended XECN Settings for Crystal Mode	81
Table 19.2 Recommended XFCN Settings for BC and C modes	82
Table 20.1 SmaRTClock Internal Registers	89
Table 20.2 SmaRTClock Load Capacitance Settings	96
Table 20.3 SmaRTClock Bias Settings	98
Table 21.1. Port I/O Assignment for Analog Functions	207
Table 21.2. Port I/O Assignment for Digital Functions	208
Table 21.3. Port I/O Assignment for External Digital Event Capture Functions 2	200
Table 22.1. SMBus Clock Source Selection	230

3. Pinout and Package Definitions

Table 3.1. Pin Definitio	ns for the C805	1F91x-C8051F90x
--------------------------	-----------------	-----------------

	Pin Nu	mbers			
Name	'F912-GM 'F902-GM 'F911-GM 'F901-GM	'F912-GU 'F902-GU 'F911-GU 'F901-GU	Туре	Description	
VBAT	5	8	P In	Battery Supply Voltage.	
				C8051F911/01 devices: Must be 0.9 to 1.8 V in single-cell battery mode and 1.8 to 3.6 V in dual-cell battery mode.	
				Must be 0.9 to 3.6 V in single-cell battery mode and 1.8 to 3.6 V in dual-cell battery mode.	
V _{DD} /	3	6	P In	Power Supply Voltage. Must be 1.8 to 3.6 V. This supply voltage is not required in low power sleep mode. This voltage must always be \geq VBAT.	
DC+			P Out	P Out be ≥ VBA1. P Out Positive output of the dc-dc converter. In single-cell battery mo a 1uF ceramic capacitor is required between DC+ and DC The pin can supply power to external devices when operating in sincell battery mode. P In DC-DC converter return current path. In single-cell battery mode this pin is typically not connected to ground.	
DC-/	1	4	P In	DC-DC converter return current path. In single-cell battery mode, this pin is typically not connected to ground.	
GND			G	In dual-cell battery mode, this pin must be connected directly to ground.	
GND	2	5	G	Required Ground.	
DCEN	4	7	P In	DC-DC Enable Pin. In single-cell battery mode, this pin must be connected to VBAT through a 0.68 μ H inductor.	
			G	In dual-cell battery mode, this pin must be connected directly to ground.	
RST/	6	9	D I/O	Device Reset. Open-drain output of internal POR or V_{DD} monitor. An external source can initiate a system reset by driving this pin low for at least 15 µs. A 1 k Ω to 5 k Ω pullup to V_{DD} is recom- mended. See Section "18. Reset Sources" on page 171 Section for a complete description.	
C2CK			D I/O	Clock signal for the C2 Debug Interface.	
P2.7/	7	10	D I/O	Port 2.7. This pin can only be used as GPIO. The Crossbar cannot route signals to this pin and it cannot be configured as an analog input. See Port I/O Section for a complete description.	
C2D			D I/O	Bi-directional data signal for the C2 Debug Interface.	
*Note: Availabl	le only on th	ne C8051F9	12/02.		

Figure 3.4. Typical QFN-24 Landing Diagram

Table 3.3. PCB Land Pattern

Dimension	Min	Max	Dimension	Min	Max
C1	3.90	4.00	X1	0.20	0.30
C2	3.90	4.00	X2	2.70	2.80
E	0.50 BS	SC	Y1	0.65	0.75
			 Y2	2.70	2.80

Notes:

General

- 1. All dimensions shown are in millimeters (mm) unless otherwise noted.
- 2. This Land Pattern Design is based on the IPC-7351 guidelines.

Solder Mask Design

1. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be $60 \ \mu m$ minimum, all the way around the pad.

Stencil Design

- **1.** A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
- 2. The stencil thickness should be 0.125 mm (5 mils).
- 3. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads.
- **4.** A 2 x 2 array of 1.0 x 1.0 mm square openings on 1.30 mm pitch should be used for the center ground pad.

Card Assembly

- **1.** A No-Clean, Type-3 solder paste is recommended.
- 2. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

SFR Definition 5.10. ADC0LTH: ADC0 Less-Than High Byte

Bit	7	6	5	4	3	2	1	0
Name	e AD0LT[15:8]							
Туре	R/W							
Reset	0	0	0	0	0	0	0	0
SFR Page = 0x0; SFR Address = 0xC6								
Rit	Namo				Eunction			

Bit	Name	Function
7:0	AD0LT[15:8]	ADC0 Less-Than High Byte.
		Most Significant Byte of the 16-bit Less-Than window compare register.

SFR Definition 5.11. ADC0LTL: ADC0 Less-Than Low Byte

Bit	7	6	5	4	3	2	1	0
Name	AD0LT[7:0]							
Туре	R/W							
Reset	0	0	0	0	0	0	0	0
SFR Pa	ge = 0x0; SF	R Address =	= 0xC5					
Bit	Name				Function)		
7:0	AD0LT[7:0]	AD0LT[7:0] ADC0 Less-Than Low Byte.						
	Least Significant Byte of the 16-bit Less-Than window compare register.							
Note: In	Note: In 8-bit mode, this register should be set to 0x00.							

SILICON LABS

7.6. Comparator0 and Comparator1 Analog Multiplexers

Comparator0 and Comparator1 on C8051F91x-C8051F90x devices have analog input multiplexers to connect Port I/O pins and internal signals the comparator inputs; CP0+/CP0- are the positive and negative input multiplexers for Comparator0 and CP1+/CP1- are the positive and negative input multiplexers for Comparator1.

The comparator input multiplexers directly support capacitive touch switches. When the Capacitive Touch Sense Compare input is selected on the positive or negative multiplexer, any Port I/O pin connected to the other multiplexer can be directly connected to a capacitive touch switch with no additional external components. The Capacitive Touch Sense Compare provides the appropriate reference level for detecting when the capacitive touch switches have charged or discharged through the on-chip Rsense resistor. The Comparator outputs can be routed to Timer2 or Timer3 for capturing sense capacitor's charge and discharge time. See Section "25. Timers" on page 270 for details.

Any of the following may be selected as comparator inputs: Port I/O pins, Capacitive Touch Sense Compare, VDD/DC+ Supply Voltage, Regulated Digital Supply Voltage (Output of VREG0), the VBAT Supply voltage or ground. The Comparator's supply voltage divided by 2 is also available as an input; the resistors used to divide the voltage only draw current when this setting is selected. The Comparator input multiplexers are configured using the CPT0MX and CPT1MX registers described in SFR Definition 7.5 and SFR Definition 7.6.

Figure 7.4. CPn Multiplexer Block Diagram

Important Note About Comparator Input Configuration: Port pins selected as comparator inputs should be configured as analog inputs, and should be skipped by the Digital Crossbar. To configure a Port pin for analog input, set to 0 the corresponding bit in register PnMDIN and disable the digital driver (PnMDOUT = 0 and Port Latch = 1). To force the Crossbar to skip a Port pin, set to 1 the corresponding bit in register PnSKIP. See Section "21. Port Input/Output" on page 205 for more Port I/O configuration details.

SFR Definition 7.5. CPT0MX: Comparator0 Input Channel Select

Bit	7	6	5	4	3	2	1	0
Name	CMX0N[3:0]				CMX0P[3:0]			
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1

SFR Page = 0x0; SFR Address = 0x9F

Bit	Name		Fur	nction					
7:4	CMX0N	Comparator0	omparator0 Negative Input Selection.						
		Selects the ne	egative input channel for Cor	mparator0.					
		0000:	P0.1	1000:	Reserved				
		0001:	P0.3	1001:	Reserved				
		0010:	P0.5	1010:	Reserved				
		0011:	P0.7	1011:	Reserved				
		0100:	P1.1	1100:	Capacitive Touch Sense Compare				
		0101:	P1.3	1101:	VDD/DC+ divided by 2				
		0110:	P1.5	1110:	Digital Supply Voltage				
		0111:	Reserved	1111:	Ground				
3:0	CMX0P	Comparator0	Positive Input Selection.						
		Selects the po	sitive input channel for Com	nparator0.					
		0000:	P0.0	1000:	Reserved				
		0001:	P0.2	1001:	Reserved				
		0010:	P0.4	1010:	Reserved				
		0011:	P0.6	1011:	Reserved				
		0100:	P1.0	1100:	Capacitive Touch Sense Compare				
		0101:	P1.2	1101:	VDD/DC+ divided by 2				
		0110:	P1.4	1110:	VBAT Supply Voltage				
		0111:	P1.6	1111:	VDD/DC+ Supply Voltage				

Mnemonic	Description	Bytes	Clock Cycles				
CLR A	Clear A	1	1				
CPL A	Complement A	1	1				
RL A	Rotate A left	1	1				
RLC A	Rotate A left through Carry	1	1				
RR A	Rotate A right	1	1				
RRC A	Rotate A right through Carry	1	1				
SWAP A	Swap nibbles of A	1	1				
	Data Transfer						
MOV A, Rn	Move Register to A	1	1				
MOV A, direct	Move direct byte to A	2	2				
MOV A, @Ri	Move indirect RAM to A	1	2				
MOV A, #data	Move immediate to A	2	2				
MOV Rn, A	Move A to Register	1	1				
MOV Rn, direct	Move direct byte to Register	2	2				
MOV Rn, #data	Move immediate to Register	2	2				
MOV direct, A	Move A to direct byte	2	2				
MOV direct, Rn	Move Register to direct byte	2	2				
MOV direct, direct	Move direct byte to direct byte	3	3				
MOV direct, @Ri	Move indirect RAM to direct byte	2	2				
MOV direct, #data	Move immediate to direct byte	3	3				
MOV @Ri, A	Move A to indirect RAM	1	2				
MOV @Ri, direct	Move direct byte to indirect RAM	2	2				
MOV @Ri, #data	Move immediate to indirect RAM	2	2				
MOV DPTR, #data16	Load DPTR with 16-bit constant	3	3				
MOVC A, @A+DPTR	Move code byte relative DPTR to A	1	3				
MOVC A, @A+PC	Move code byte relative PC to A	1	3				
MOVX A, @Ri	Move external data (8-bit address) to A	1	3				
MOVX @Ri, A	Move A to external data (8-bit address)	1	3				
MOVX A, @DPTR	Move external data (16-bit address) to A	1	3				
MOVX @DPTR, A	Move A to external data (16-bit address)	1	3				
PUSH direct	Push direct byte onto stack	2	2				
POP direct	Pop direct byte from stack	2	2				
XCH A, Rn	Exchange Register with A	1	1				
XCH A, direct	Exchange direct byte with A	2	2				
XCH A, @Ri	Exchange indirect RAM with A	1	2				
XCHD A, @Ri	Exchange low nibble of indirect RAM with A	1	2				
Boolean Manipulation							
CLR C	Clear Carry	1	1				
CLR bit	Clear direct bit	2	2				
SETB C	Set Carry	1	1				
SETB bit	Set direct bit	2	2				
CPL C	Complement Carry	1	1				
CPL bit	Complement direct bit	2	2				
ANL C, bit	AND direct bit to Carry	2	2				

Table 8.1. CIP-51 Instruction Set Summary (Continued)

16.1. Startup Behavior

On initial power-on, the dc-dc converter outputs a constant 50% duty cycle until there is sufficient voltage on the output capacitor to maintain regulation. The size of the output capacitor and the amount of load current present during startup will determine the length of time it takes to charge the output capacitor.

During initial power-on reset, the maximum peak inductor current threshold, which triggers the overcurrent protection circuit, is set to approximately 125 mA. This generates a "soft-start" to limit the output voltage slew rate and prevent excessive in-rush current at the output capacitor. In order to ensure reliable startup of the dc-dc converter, the following restrictions have been imposed:

- The maximum dc load current allowed during startup is given in Table 4.16 on page 60. If the dc-dc converter is powering external sensors or devices through the VDD/DC+ pin or through GPIO pins, then the current supplied to these sensors or devices is counted towards this limit. The in-rush current into capacitors does not count towards this limit.
- The maximum total output capacitance is given in Table 4.16 on page 60. This value includes the required 1 µF ceramic output capacitor and any additional capacitance connected to the VDD/DC+ pin.

Once initial power-on is complete, the peak inductor current limit can be increased by software as shown in Table 16.1. Limiting the peak inductor current can allow the device to start up near the battery's end of life.

SWSEL	ILIMIT	Peak Current (mA) Normal Power Mode	Peak Current (mA) Low Power Mode
1	0	100	75
1	1	125	100
0	0	250	125
0	1	500	250

 Table 16.1. IPeak Inductor Current Limit Settings

The peak inductor current is dependent on several factors including the dc load current and can be estimated using following equation:

$$I_{PK} = \sqrt{\frac{2 \ I_{LOAD}(VDD/DC + - VBAT)}{efficiency \times inductance \times frequency}}$$

efficiency = 0.80 inductance = 0.68 μH frequency = 2.4 MHz

19.4. Special Function Registers for Selecting and Configuring the System Clock

The clocking sources on C8051F91x-C8051F90x devices are enabled and configured using the OSCICN, OSCICL, OSCXCN and the SmaRTClock internal registers. See Section "20. SmaRTClock (Real Time Clock)" on page 188 for SmaRTClock register descriptions. The system clock source for the MCU can be selected using the CLKSEL register. To minimize active mode current, the oneshot timer which sets Flash read time should by bypassed when the system clock is greater than 10 MHz. See the FLSCL register description for details.

The clock selected as the system clock can be divided by 1, 2, 4, 8, 16, 32, 64, or 128. When switching between two clock divide values, the transition may take up to 128 cycles of the undivided clock source. The CLKRDY flag can be polled to determine when the new clock divide value has been applied. The clock divider must be set to "divide by 1" when entering Suspend or Sleep Mode.

The system clock source may also be switched on-the-fly. The switchover takes effect after one clock period of the slower oscillator.

SFR Definition 19.1. Cl	LKSEL: Clock Select
-------------------------	----------------------------

Bit	7	6	5	4	3	2	1	0
Name	CLKRDY		CLKDIV[2:0]			CLKSEL[2:0]		
Туре	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	1	1	0	1	0	0

SFR Page = All Pages; SFR Address = 0xA9

Bit	Name	Function
7	CLKRDY	System Clock Divider Clock Ready Flag.
		0: The selected clock divide setting has not been applied to the system clock.
		1: The selected clock divide setting has been applied to the system clock.
6:4	CLKDIV[2:0]	System Clock Divider Bits.
		Selects the clock division to be applied to the undivided system clock source.
		000: System clock is divided by 1.
		001: System clock is divided by 2.
		010: System clock is divided by 4.
		011: System clock is divided by 8.
		100: System clock is divided by 16.
		101: System clock is divided by 32.
		110: System clock is divided by 64.
		111: System clock is divided by 128.
3	Unused	Unused.
		Read = 0b. Must Write 0b.
2:0	CLKSEL[2:0]	System Clock Select.
		Selects the oscillator to be used as the undivided system clock source.
		000: Precision Internal Oscillator.
		001: External Oscillator.
		011: SmaRTClock Oscillator.
		100: Low Power Oscillator.
		All other values reserved.

20. SmaRTClock (Real Time Clock)

C8051F91x-C8051F90x devices include an ultra low power 32-bit SmaRTClock Peripheral (Real Time Clock) with alarm. The SmaRTClock has a dedicated 32 kHz oscillator that can be configured for use with or without a crystal. No external resistor or loading capacitors are required. The on-chip loading capacitors are programmable to 16 discrete levels allowing compatibility with a wide range of crystals. The SmaRTClock can operate directly from a 0.9–3.6 V battery voltage and remains operational even when the device goes into its lowest power down mode. On 'F912 and 'F902 devices, the SmaRTClock output can be buffered and routed to a GPIO pin to provide an accurate, low frequency clock to other devices while the MCU is in its lowest power down mode (see "PMU0MD: Power Management Unit Mode" on page 150 for more details). 'F912 and 'F902 devices also support an ultra low power internal LFO that reduces sleep mode current.

The SmaRTClock allows a maximum of 36 hour 32-bit independent time-keeping when used with a 32.768 kHz Watch Crystal. The SmaRTClock provides an Alarm and Missing SmaRTClock events, which could be used as reset or wakeup sources. See Section "18. Reset Sources" on page 171 and Section "14. Power Management" on page 143 for details on reset sources and low power mode wake-up sources, respectively.

Figure 20.1. SmaRTClock Block Diagram

Analog Function	Potentially Assignable Port Pins	SFR(s) used for Assignment			
Voltage Reference (VREF0)	P0.0	REF0CN, PnSKIP			
Analog Ground Reference (AGND)	P0.1	REF0CN, PnSKIP			
Current Reference (IREF0)	P0.7	IREF0CN, PnSKIP			
External Oscillator Input (XTAL1)	P0.2	OSCXCN, PnSKIP			
External Oscillator Output (XTAL2)	P0.3	OSCXCN, PnSKIP			

Table 21.1. Port I/O Assignment for Analog Functions

21.2.2. Assigning Port I/O Pins to Digital Functions

Any Port pins not assigned to analog functions may be assigned to digital functions or used as GPIO. Most digital functions rely on the Crossbar for pin assignment; however, some digital functions bypass the Crossbar in a manner similar to the analog functions listed above. **Port pins used by these digital func-tions and any Port pins selected for use as GPIO should have their corresponding bit in PnSKIP set to 1.** Table 21.2 shows all available digital functions and the potential mapping of Port I/O to each digital function.

Table 21.2. Port I/O Assignment for Digital Functions

Digital Function	Potentially Assignable Port Pins	SFR(s) used for Assignment
UART0, SPI1, SPI0, SMBus, CP0 and CP1 Outputs, Sys- tem Clock Output, PCA0, Timer0 and Timer1 External Inputs.	Any Port pin available for assignment by the Crossbar. This includes P0.0–P1.6 pins which have their PnSKIP bit set to 0. Note: The Crossbar will always assign UART0 and SPI1 pins to fixed locations.	XBR0, XBR1, XBR2
Any pin used for GPIO	P0.0–P1.6, P2.7	P0SKIP, P1SKIP

21.2.3. Assigning Port I/O Pins to External Digital Event Capture Functions

External digital event capture functions can be used to trigger an interrupt or wake the device from a low power mode when a transition occurs on a digital I/O pin. The digital event capture functions do not require dedicated pins and will function on both GPIO pins (PnSKIP = 1) and pins in use by the Crossbar (PnSKIP = 0). External digital even capture functions cannot be used on pins configured for analog I/O. Table 21.3 shows all available external digital event capture functions.

Table 21.3. Port I/O Assignment for External Digital Event Capture Functions

Digital Function	Potentially Assignable Port Pins	SFR(s) used for Assignment
External Interrupt 0	P0.0-P0.7	IT01CF
External Interrupt 1	P0.0-P0.7	IT01CF
Port Match	P0.0-P1.6	P0MASK, P0MAT P1MASK, P1MAT

SFR Definition 21.19. P2MDOUT: Port2 Output Mode

Bit	7	6	5	4	3	2	1	0
Name	P2MDOUT							
Туре	R/W							
Reset	0	0	0	0	0	0	0	0

SFR Page = 0x0; SFR Address = 0xA6

Bit	Name	Function
7	P2MDOUT	Output Configuration Bits for P2.7.
		These bits control the digital driver.
		0: P2.7 Output is open-drain.
		1: P2.7 Output is push-pull.
6:0	Unused	Unused.
		Read = 0000000b; Write = Don't Care.

SFR Definition 21.20. P2DRV: Port2 Drive Strength

Bit	7	6	5	4	3	2	1	0
Name	P2DRV							
Туре	R/W							
Reset	0	0	0	0	0	0	0	0

SFR Page = 0x0F; SFR Address = 0xA6

Bit	Name	Function
7	P2DRV	Drive Strength Configuration Bits for P2.7.
		Configures digital I/O Port cells to high or low output drive strength. 0: P2.7 Output has low output drive strength. 1: P2.7 Output has high output drive strength.
6:0	Unused	Unused.
		Read = 0000000b; Write = Don't Care.

22.5. SMBus Transfer Modes

The SMBus interface may be configured to operate as master and/or slave. At any particular time, it will be operating in one of the following four modes: Master Transmitter, Master Receiver, Slave Transmitter, or Slave Receiver. The SMBus interface enters Master Mode any time a START is generated, and remains in Master Mode until it loses an arbitration or generates a STOP. An SMBus interrupt is generated at the end of all SMBus byte frames. Note that the position of the ACK interrupt when operating as a receiver depends on whether hardware ACK generation is enabled. As a receiver, the interrupt for an ACK occurs **before** the ACK with hardware ACK generation disabled, and **after** the ACK when hardware ACK generation is enabled. As a transmitter, interrupts occur **after** the ACK, regardless of whether hardware ACK generation is enabled or not.

22.5.1. Write Sequence (Master)

During a write sequence, an SMBus master writes data to a slave device. The master in this transfer will be a transmitter during the address byte, and a transmitter during all data bytes. The SMBus interface generates the START condition and transmits the first byte containing the address of the target slave and the data direction bit. In this case the data direction bit (R/W) will be logic 0 (WRITE). The master then transmits one or more bytes of serial data. After each byte is transmitted, an acknowledge bit is generated by the slave. The transfer is ended when the STO bit is set and a STOP is generated. Note that the interface will switch to Master Receiver Mode if SMB0DAT is not written following a Master Transmitter interrupt. Figure 22.5 shows a typical master write sequence. Two transmit data bytes are shown, though any number of bytes may be transmitted. Notice that all of the 'data byte transferred' interrupts occur **after** the ACK cycle in this mode, regardless of whether hardware ACK generation is enabled.

Figure 22.5. Typical Master Write Sequence

Table 22.5. SMBus Status Decoding With Hardware ACK Generation Disabled (EHACK = 0)(Continued)

	Valu	es	Rea	d			۷a ۱	lues Nrit	sto e	:us ected
Mode	Status Vector	ACKRQ	ARBLOST	ACK	Current SMbus State	Typical Response Options	STA	STO	ACK	Next Stat Vector Expo
_		0	0	0	A slave byte was transmitted; NACK received.	No action required (expecting STOP condition).	0	0	Х	0001
eceiver Slave Transmitter	0100	0	0	1	A slave byte was transmitted; ACK received.	Load SMB0DAT with next data byte to transmit.	0	0	х	0100
'e Trar		0	1	х	A Slave byte was transmitted; error detected.	No action required (expecting Master to end transfer).	0	0	х	0001
Slav	0101	0	x	x	An illegal STOP or bus error was detected while a Slave Transmission was in progress.	Clear STO.	0	0	х	-
						If Write, Acknowledge received address	0	0	1	0000
	0010	1	0	Х	received; ACK requested.	If Read, Load SMB0DAT with data byte; ACK received address	0	0	1	0100
						NACK received address.	0	0	0	-
						If Write, Acknowledge received address	0	0	1	0000
eiver		1	1	x	Lost arbitration as master; slave address + R/W received; ACK requested.	If Read, Load SMB0DAT with data byte; ACK received address	0	0	1	0100
ece						NACK received address.	0	0	0	-
lave R						Reschedule failed transfer; NACK received address.	1	0	0	1110
S	0001	0	0	x	A STOP was detected while addressed as a Slave Trans- mitter or Slave Receiver.	Clear STO.	0	0	х	-
		1	1	х	Lost arbitration while attempt- ing a STOP.	No action required (transfer complete/aborted).	0	0	0	-
	0000	1	0	x	A slave byte was received;	Acknowledge received byte; Read SMB0DAT.	0	0	1	0000
					Aon lequested.	NACK received byte.	0	0	0	-
uo	0010	0	1	Y	Lost arbitration while attempt-	Abort failed transfer.	0	0	Х	-
nditi	0010				ing a repeated START.	Reschedule failed transfer.	1	0	Х	1110
Co	0001	0	1	x	Lost arbitration due to a	Abort failed transfer.	0	0	Х	-
rror	0001				detected STOP.	Reschedule failed transfer.	1	0	Х	1110
ы Б	0000	1	1	x	Lost arbitration while transmit-	Abort failed transfer.	0	0	0	-
Bu	0000				ting a data byte as master.	Reschedule failed transfer.	1	0	0	1110

SFR Definition 24.3. SPInCKR: SPI Clock Rate

Bit	7	6	5	4	3	2	1	0
Name	SCRn[7:0]							
Туре	R/W							
Reset	0 0 0 0 0 0 0 0							

SFR Addresses: SPI0CKR = 0xA2, SPI1CKR = 0x85 SFR Pages: SPI0CKR = 0x0, SPI1CKR = 0x0

Bit	Name	Function
7:0	SCRn	SPI Clock Rate.
		These bits determine the frequency of the SCK output when the SPI module is configured for master mode operation. The SCK clock frequency is a divided version of the system clock, and is given in the following equation, where SYSCLK is the system clock frequency and SPInCKR is the 8-bit value held in the SPInCKR register. $f_{SCK} = \frac{SYSCLK}{2 \times (SPLECKP17.01 \times 1)}$
		$2 \times (SPInCKR[7:0] + 1)$
		for 0 <= SPI0CKR <= 255
		Example: If SYSCLK = 2 MHz and SPInCKR = 0x04,
		$f_{SCK} = \frac{2000000}{2 \times (4+1)}$
		$f_{SCK} = 200 kHz$

SFR Definition 25.4. TL0: Timer 0 Low Byte

Bit	7	6	5	4	3	2	1	0
Nam	TL0[7:0]							
Type R/W								
Rese	et 0	0	0	0	0	0	0	0
SFR Page = 0x0; SFR Address = 0x8A								
Bit	Name	Function						
7:0	TL0[7:0]	Timer 0 Lov	w Byte.					

0	TL0[7:0]	Timer 0 Low Byte.
		The TL0 register is the low byte of the 16-bit Timer 0.

SFR Definition 25.5. TL1: Timer 1 Low Byte

Bit	7	6	5	4	3	2	1	0
Nam	ne TL1[7:0]							
Туре	Type R/W							
Rese	et 0	0	0	0	0	0	0	0
SFR Page = 0x0; SFR Address = 0x8B								
Bit	Name	Function						
7:0	TL1[7:0]	Timer 1 Low Byte.						
		The TL1 register is the low byte of the 16-bit Timer 1.						

25.3.2. 8-bit Timers with Auto-Reload

When T3SPLIT is set, Timer 3 operates as two 8-bit timers (TMR3H and TMR3L). Both 8-bit timers operate in auto-reload mode as shown in Figure 25.8. TMR3RLL holds the reload value for TMR3L; TMR3RLH holds the reload value for TMR3H. The TR3 bit in TMR3CN handles the run control for TMR3H. TMR3L is always running when configured for 8-bit Mode.

Each 8-bit timer may be configured to use SYSCLK, SYSCLK divided by 12, the external oscillator clock source divided by 8, or Comparator 1. The Timer 3 Clock Select bits (T3MH and T3ML in CKCON) select either SYSCLK or the clock defined by the Timer 3 External Clock Select bits (T3XCLK[1:0] in TMR3CN), as follows:

ТЗМН	T3XCLK[1:0]	TMR3H Clock Source
0	00	SYSCLK / 12
0	01	Comparator 1
0	10	Reserved
0	11	External Clock / 8
1	Х	SYSCLK

T3ML	T3XCLK[1:0]	TMR3L Clock Source
0	00	SYSCLK / 12
0	01	Comparator 1
0	10	Reserved
0	11	External Clock / 8
1	Х	SYSCLK

The TF3H bit is set when TMR3H overflows from 0xFF to 0x00; the TF3L bit is set when TMR3L overflows from 0xFF to 0x00. When Timer 3 interrupts are enabled, an interrupt is generated each time TMR3H overflows. If Timer 3 interrupts are enabled and TF3LEN (TMR3CN.5) is set, an interrupt is generated each time either TMR3L or TMR3H overflows. When TF3LEN is enabled, software must check the TF3H and TF3L flags to determine the source of the Timer 3 interrupt. The TF3H and TF3L interrupt flags are not cleared by hardware and must be manually cleared by software.

Figure 26.3. PCA Interrupt Block Diagram

CONTACT INFORMATION

Silicon Laboratories Inc.

400 West Cesar Chavez Austin, TX 78701

Please visit the Silicon Labs Technical Support web page: https://www.silabs.com/support/pages/contacttechnicalsupport.aspx and register to submit a technical support request.

The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice. Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to support or sustain life, or for any other application in which the failure of the Silicon Laboratories products for any such unintended or unauthorized application, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.

Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc. Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.

