E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	SMBus (2-Wire/I ² C), SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT
Number of I/O	16
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	0.9V ~ 3.6V
Data Converters	A/D 15x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	24-WFQFN Exposed Pad
Supplier Device Package	24-QFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f912-d-gm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

SER Definition 14.2 PMI I0MD: Power Management Unit Mode	150
SFR Definition 14.3. PCON: Power Management Control Register	151
SER Definition 15.1 CRC0CN: CRC0 Control	155
SFR Definition 15.2 CRC0IN: CRC0 Data Input	156
SFR Definition 15.3 CRC0DAT: CRC0 Data Output	156
SFR Definition 15.4 CRC0AUTO: CRC0 Automatic Control	157
SFR Definition 15.5. CRC0CNT: CRC0 Automatic Elash Sector Count	158
SER Definition 15.6. CRC0ELIP: CRC0 Bit Elin	150
SFR Definition 16.1. DC0CN: DC-DC Converter Control	167
SFR Definition 16.2. DC0CF: DC-DC Converter Configuration	168
SFR Definition 16.3. DC0MD: DC-DC Mode	160
SFR Definition 17.1 REGOCN: Voltage Regulator Control	170
SFR Definition 18.1 VDM0CN: VDD/DC+ Supply Monitor Control	175
SER Definition 18.2 RSTSRC: Reset Source	178
SER Definition 10.1 CLKSEL: Clock Select	185
SFR Definition 19.2. OSCICN: Internal Oscillator Control	186
SER Definition 19.3. OSCICL: Internal Oscillator Calibration	186
SER Definition 19.4. OSCYCN: External Oscillator Control	187
SER Definition 20.1 RTCOKEV: SmaRTClock Lock and Key	107
SEP Definition 20.2 PTC0ADP: SmaPTClock Address	102
SER Definition 20.3. RTCODAT: SmaRTClock Data	103
Internal Register Definition 20.4. RTCOCN: SmaRTClock Control	201
Internal Register Definition 20.5. RTCOVCN: Smart Clock Oscillator Control	201
Internal Register Definition 20.6. RTCOXCE: SmaRTClock Oscillator Configuration	202
Internal Register Definition 20.7, RTCOPIN: SmaRTClock Disclinator Configuration .	203
Internal Register Definition 20.8. CAPTURED: SmaRTClock Timer Conture	203
Internal Register Definition 20.9. ALARMn: SmaRTClock Alarm Programmed Value	204
SER Definition 21.1 XBR0: Port I/O Crossbar Register 0	207
SFR Definition 21.2 XBR1: Port I/O Crossbar Register 1	212
SFR Definition 21.3 XBR2: Port I/O Crossbar Register 2	213
SFR Definition 21.4 POMASK' PortO Mask Register	214
SFR Definition 21.5 POMAT: Porto Match Register	215
SFR Definition 21.6 P1MASK: Port1 Mask Register	210
SFR Definition 21.7 P1MAT: Port1 Match Register	210
SER Definition 21.8 PO: PortO	210
SFR Definition 21.0. POSKIP: Port0 Skin	210
SER Definition 21.10. DOMDIN: Port0 Input Mode	210
SFR Definition 21.11 P0MDOLIT: Port0 Output Mode	210
SFR Definition 21.12 P0DRV/: Port0 Drive Strength	213
SFR Definition 21.13 D1: Port1	220
SFR Definition 21.14 D1SKID: Port1 Skip	221
SFR Definition 21.15. D1MDIN: Port1 Input Mode	221
SFR Definition 21.16 P1MDOUT Port1 Output Mode	<u>~~</u> ~ 222
SFR Definition 21.17 P1DRV/ Port1 Drive Strength	222
SER Definition 21.18 D2. Dort2	223
	223

1.5. SAR ADC with 16-bit Auto-Averaging Accumulator and Autonomous Low Power Burst Mode

C8051F91x-C8051F90x devices have a 300 ksps, 10-bit or 75 ksps 12-bit successive-approximationregister (SAR) ADC with integrated track-and-hold and programmable window detector. ADC0 also has an autonomous low power Burst Mode which can automatically enable ADC0, capture and accumulate samples, then place ADC0 in a low power shutdown mode without CPU intervention. It also has a 16-bit accumulator that can automatically average the ADC results, providing an effective 11, 12, or 13 bit ADC result without any additional CPU intervention.

The ADC can sample the voltage at any of the GPIO pins (with the exception of P2.7) and has an on-chip attenuator that allows it to measure voltages up to twice the voltage reference. Additional ADC inputs include an on-chip temperature sensor, the VDD/DC+ supply voltage, the VBAT supply voltage, and the internal digital supply voltage.

Figure 1.7. ADC0 Functional Block Diagram

Figure 3.6. QSOP-24 Landing Diagram

Table 3.5. PCB Land Pattern

Dimension	MIN	MAX	
С	5.20 5.30		
E	0.635	BSC	
Х	0.30	0.40	
Y	1.50	1.60	

Notes:

General

- 1. All dimensions shown are in millimeters (mm) unless otherwise noted.
- 2. This land pattern is based on the IPC-7351 guidelines.

Solder Mask Design

1. All metal pads are to be non-solder mask defined (NMSD). Clearance between the solder mask and the metal pad is to be $60 \ \mu m$ minimum, all the way around the pad.

Stencil Design

- 1. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
- 2. The stencil thickness should be 0.125 mm (5 mils).
- 3. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads.

Card Assembly

- 1. A No-Clean, Type 3 solder paste is recommended.
- 2. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

SFR Definition 7.4. CPT1MD: Comparator 1 Mode Selection

Bit	7	6	5	4	3	2	1	0	
Name			CP1RIE	CP1FIE			CP1M	D[1:0]	
Туре	R/W	R	R/W	R/W	R	R	R/W		
Reset	1	0	0	0	0	0	1	0	

SFR Page = 0x0; SFR Address = 0x9C

nparator1.
-

Mnemonic	Description	Bytes	Clock Cycles
ANL C, /bit	AND complement of direct bit to Carry	2	2
ORL C, bit	OR direct bit to carry	2	2
ORL C, /bit	OR complement of direct bit to Carry	2	2
MOV C, bit	Move direct bit to Carry	2	2
MOV bit, C	Move Carry to direct bit	2	2
JC rel	Jump if Carry is set	2	2/3
JNC rel	Jump if Carry is not set	2	2/3
JB bit, rel	Jump if direct bit is set	3	3/4
JNB bit, rel	Jump if direct bit is not set	3	3/4
JBC bit, rel	Jump if direct bit is set and clear bit	3	3/4
	Program Branching		•
ACALL addr11	Absolute subroutine call	2	3
LCALL addr16	Long subroutine call	3	4
RET	Return from subroutine	1	5
RETI	Return from interrupt	1	5
AJMP addr11	Absolute jump	2	3
LJMP addr16	Long jump	3	4
SJMP rel	Short jump (relative address)	2	3
JMP @A+DPTR	Jump indirect relative to DPTR	1	3
JZ rel	Jump if A equals zero	2	2/3
JNZ rel	Jump if A does not equal zero	2	2/3
CJNE A, direct, rel	Compare direct byte to A and jump if not equal	3	3/4
CJNE A, #data, rel	Compare immediate to A and jump if not equal	3	3/4
CJNE Rn, #data, rel	Compare immediate to Register and jump if not equal	3	3/4
CJNE @Ri, #data, rel	Compare immediate to indirect and jump if not equal	3	4/5
DJNZ Rn, rel	Decrement Register and jump if not zero	2	2/3
DJNZ direct, rel	Decrement direct byte and jump if not zero	3	3/4
NOP	No operation	1	1

Table 8.1. CIP-51 Instruction Set Summary (Continued)

Table 11.3. Special Function Registers (Continued)

SFRs are listed in alphabetical order. All undefined SFR locations are reserved. SFRs highlighted in **blue** are only available on 'F912 and 'F902 devices.

Register	Address	SFR Page	Description P		
PCA0MD	0xD9	0x0	PCA0 Mode 3		
PCA0PWM	0xDF	0x0	CA0 PWM Configuration 3		
PCON	0x87	0x0	Power Control	151	
PMU0CF	0xB5	0x0	PMU0 Configuration	149	
PMU0MD	0xB5	0xF	PMU0 Mode	150	
PSCTL	0x8F	0x0	Program Store R/W Control	140	
PSW	0xD0	All	Program Status Word	106	
REF0CN	0xD1	0x0	Voltage Reference Control	85	
REG0CN	0xC9	0x0	Voltage Regulator (VREG0) Control	170	
RSTSRC	0xEF	0x0	Reset Source Configuration/Status	178	
RTC0ADR	0xAC	0x0	RTC0 Address	193	
RTC0DAT	0xAD	0x0	RTC0 Data	193	
RTC0KEY	0xAE	0x0	RTC0 Key	192	
SBUF0	0x99	0x0	UART0 Data Buffer	253	
SCON0	0x98	0x0	UART0 Control	252	
SFRPAGE	0xA7	All	SFR Page	115	
SMB0ADM	0xF5	0x0	SMBus Slave Address Mask	237	
SMB0ADR	0xF4	0x0	SMBus Slave Address	237	
SMB0CF	0xC1	0x0	SMBus Configuration	232	
SMB0CN	0xC0	0x0	SMBus Control	234	
SMB0DAT	0xC2	0x0	SMBus Data	238	
SP	0x81	All	Stack Pointer	105	
SPI0CFG	0xA1	0x0	SPI0 Configuration	263	
SPI0CKR	0xA2	0x0	SPI0 Clock Rate Control	265	
SPI0CN	0xF8	0x0	SPI0 Control	264	
SPI0DAT	0xA3	0x0	SPI0 Data	266	
SPI1CFG	0x84	0x0	SPI1 Configuration	263	
SPI1CKR	0x85	0x0	SPI1 Clock Rate Control	265	
SPI1CN	0xB0	0x0	SPI1 Control	264	
SPI1DAT	0x86	0x0	SPI1 Data	266	
TCON	0x88	0x0	Timer/Counter Control	276	
TH0	0x8C	0x0	Timer/Counter 0 High	279	
TH1	0x8D	0x0	Timer/Counter 1 High	279	

14.7. Determining the Event that Caused the Last Wakeup

When waking from idle mode, the CPU will vector to the interrupt which caused it to wake up. When waking from stop mode, the RSTSRC register may be read to determine the cause of the last reset.

Upon exit from suspend or sleep mode, the wake-up flags in the PMU0CF register can be read to determine the event which caused the device to wake up. After waking up, the wake-up flags will continue to be updated if any of the wake-up events occur. Wake-up flags are always updated, even if they are not enabled as wake-up sources.

All wake-up flags enabled as wake-up sources in PMU0CF must be cleared before the device can enter suspend or sleep mode. After clearing the wake-up flags, each of the enabled wake-up events should be checked in the individual peripherals to ensure that a wake-up event did not occur while the wake-up flags were being cleared.

19. Clocking Sources

C8051F91x-C8051F90x devices include a programmable precision internal oscillator, an external oscillator drive circuit, a low power internal oscillator, and a SmaRTClock real time clock oscillator. The precision internal oscillator can be enabled/disabled and calibrated using the OSCICN and OSCICL registers, as shown in Figure 19.1. The external oscillator can be configured using the OSCXCN register. The low power internal oscillator is automatically enabled and disabled when selected and deselected as a clock source. SmaRTClock operation is described in the SmaRTClock oscillator chapter.

The system clock (SYSCLK) can be derived from the precision internal oscillator, external oscillator, low power internal oscillator, or SmaRTClock oscillator. The global clock divider can generate a system clock that is 1, 2, 4, 8, 16, 32, 64, or 128 times slower that the selected input clock source. Oscillator electrical specifications can be found in the Electrical Specifications Chapter.

Figure 19.1. Clocking Sources Block Diagram

The proper way of changing the system clock when both the clock source and the clock divide value are being changed is as follows:

If switching from a fast "undivided" clock to a slower "undivided" clock:

- a. Change the clock divide value.
- b. Poll for CLKRDY > 1.
- c. Change the clock source.
- If switching from a slow "undivided" clock to a faster "undivided" clock:
- a. Change the clock source.
- b. Change the clock divide value.
- c. Poll for CLKRDY > 1.

20.2.4. Programmable Load Capacitance

The programmable load capacitance has 16 values to support crystal oscillators with a wide range of recommended load capacitance. If Automatic Load Capacitance Stepping is enabled, the crystal load capacitors start at the smallest setting to allow a fast startup time, then slowly increase the capacitance until the final programmed value is reached. The final programmed loading capacitor value is specified using the LOADCAP bits in the RTC0XCF register. The LOADCAP setting specifies the amount of on-chip load capacitance and does not include any stray PCB capacitance. Once the final programmed loading capacitor value is reached, the LOADRDY flag will be set by hardware to logic 1.

When using the SmaRTClock oscillator in Self-Oscillate mode, the programmable load capacitance can be used to fine tune the oscillation frequency. In most cases, increasing the load capacitor value will result in a decrease in oscillation frequency. Table 20.2 shows the crystal load capacitance for various settings of LOADCAP.

LOADCAP	Crystal Load Capacitance	Equivalent Capacitance seen on XTAL3 and XTAL4
0000	4.0 pF	8.0 pF
0001	4.5 pF	9.0 pF
0010	5.0 pF	10.0 pF
0011	5.5 pF	11.0 pF
0100	6.0 pF	12.0 pF
0101	6.5 pF	13.0 pF
0110	7.0 pF	14.0 pF
0111	7.5 pF	15.0 pF
1000	8.0 pF	16.0 pF
1001	8.5 pF	17.0 pF
1010	9.0 pF	18.0 pF
1011	9.5 pF	19.0 pF
1100	10.5 pF	21.0 pF
1101	11.5 pF	23.0 pF
1110	12.5 pF	25.0 pF
1111	13.5 pF	27.0 pF

Table 20.2. SmaRTClock Load Capacitance Settings

20.2.5. Automatic Gain Control (Crystal Mode Only) and SmaRTClock Bias Doubling

Automatic Gain Control allows the SmaRTClock oscillator to trim the oscillation amplitude of a crystal in order to achieve the lowest possible power consumption. Automatic Gain Control automatically detects when the oscillation amplitude has reached a point where it safe to reduce the drive current, therefore, it may be enabled during crystal startup. It is recommended to enable Automatic Gain Control in most systems which use the SmaRTClock oscillator in Crystal Mode. The following are recommended crystal specifications and operating conditions when Automatic Gain Control is enabled:

- ESR < 50 kΩ
- Load Capacitance < 10 pF
- Supply Voltage < 3.0 V
- Temperature > -20 °C

When using Automatic Gain Control, it is recommended to perform an oscillation robustness test to ensure that the chosen crystal will oscillate under the worst case condition to which the system will be exposed. The worst case condition that should result in the least robust oscillation is at the following system conditions: lowest temperature, highest supply voltage, highest ESR, highest load capacitance, and lowest bias current (AGC enabled, Bias Double Disabled).

To perform the oscillation robustness test, the SmaRTClock oscillator should be enabled and selected as the system clock source. Next, the SYSCLK signal should be routed to a port pin configured as a push-pull digital output. The positive duty cycle of the output clock can be used as an indicator of oscillation robustness. As shown in Figure 20.2, duty cycles less than 55% indicate a robust oscillation. As the duty cycle approaches 60%, oscillation becomes less reliable and the risk of clock failure increases. Increasing the bias current (by disabling AGC) will always improve oscillation robustness and will reduce the output clock's duty cycle. This test should be performed at the worst case system conditions, as results at very low temperatures or high supply voltage will vary from results taken at room temperature or low supply voltage.

As an alternative to performing the oscillation robustness test, Automatic Gain Control may be disabled at the cost of increased power consumption (approximately 200 nA). Disabling Automatic Gain Control will provide the crystal oscillator with higher immunity against external factors which may lead to clock failure. Automatic Gain Control must be disabled if using the SmaRTClock oscillator in self-oscillate mode.

Table 20.3 shows a summary of the oscillator bias settings. The SmaRTClock Bias Doubling feature allows the self-oscillation frequency to be increased (almost doubled) and allows a higher crystal drive strength in crystal mode. High crystal drive strength is recommended when the crystal is exposed to poor environmental conditions such as excessive moisture. SmaRTClock Bias Doubling is enabled by setting BIASX2 (RTC0XCN.5) to 1.

21.1. Port I/O Modes of Operation

Port pins P0.0–P1.6 use the Port I/O cell shown in Figure 21.2. Each Port I/O cell can be configured by software for analog I/O or digital I/O using the PnMDIN registers. On reset, all Port I/O cells default to a digital high impedance state with weak pull-ups enabled.

21.1.1. Port Pins Configured for Analog I/O

Any pins to be used as Comparator or ADC input, external oscillator input/output, or AGND, VREF, or Current Reference output should be configured for analog I/O (PnMDIN.n = 0). When a pin is configured for analog I/O, its weak pullup and digital receiver are disabled. In most cases, software should also disable the digital output drivers. Port pins configured for analog I/O will always read back a value of 0 regardless of the actual voltage on the pin.

Configuring pins as analog I/O saves power and isolates the Port pin from digital interference. Port pins configured as digital inputs may still be used by analog peripherals; however, this practice is not recommended and may result in measurement errors.

21.1.2. Port Pins Configured For Digital I/O

Any pins to be used by digital peripherals (UART, SPI, SMBus, etc.), external digital event capture functions, or as GPIO should be configured as digital I/O (PnMDIN.n = 1). For digital I/O pins, one of two output modes (push-pull or open-drain) must be selected using the PnMDOUT registers.

Push-pull outputs (PnMDOUT.n = 1) drive the Port pad to the VDD/DC+ or GND supply rails based on the output logic value of the Port pin. Open-drain outputs have the high side driver disabled; therefore, they only drive the Port pad to GND when the output logic value is 0 and become high impedance inputs (both high and low drivers turned off) when the output logic value is 1.

When a digital I/O cell is placed in the high impedance state, a weak pull-up transistor pulls the Port pad to the VDD/DC+ supply voltage to ensure the digital input is at a defined logic state. Weak pull-ups are disabled when the I/O cell is driven to GND to minimize power consumption and may be globally disabled by setting WEAKPUD to 1. The user must ensure that digital I/O are always internally or externally pulled or driven to a valid logic state. Port pins configured for digital I/O always read back the logic state of the Port pad, regardless of the output logic value of the Port pin.

Figure 21.2. Port I/O Cell Block Diagram

22.4.2. SMB0CN Control Register

SMB0CN is used to control the interface and to provide status information (see SFR Definition 22.2). The higher four bits of SMB0CN (MASTER, TXMODE, STA, and STO) form a status vector that can be used to jump to service routines. MASTER indicates whether a device is the master or slave during the current transfer. TXMODE indicates whether the device is transmitting or receiving data for the current byte.

STA and STO indicate that a START and/or STOP has been detected or generated since the last SMBus interrupt. STA and STO are also used to generate START and STOP conditions when operating as a master. Writing a 1 to STA will cause the SMBus interface to enter Master Mode and generate a START when the bus becomes free (STA is not cleared by hardware after the START is generated). Writing a 1 to STO while in Master Mode will cause the interface to generate a STOP and end the current transfer after the next ACK cycle. If STO and STA are both set (while in Master Mode), a STOP followed by a START will be generated.

The ARBLOST bit indicates that the interface has lost an arbitration. This may occur anytime the interface is transmitting (master or slave). A lost arbitration while operating as a slave indicates a bus error condition. ARBLOST is cleared by hardware each time SI is cleared.

The SI bit (SMBus Interrupt Flag) is set at the beginning and end of each transfer, after each byte frame, or when an arbitration is lost; see Table 22.3 for more details.

Important Note About the SI Bit: The SMBus interface is stalled while SI is set; thus SCL is held low, and the bus is stalled until software clears SI.

22.4.2.1.Software ACK Generation

When the EHACK bit in register SMB0ADM is cleared to 0, the firmware on the device must detect incoming slave addresses and ACK or NACK the slave address and incoming data bytes. As a receiver, writing the ACK bit defines the outgoing ACK value; as a transmitter, reading the ACK bit indicates the value received during the last ACK cycle. ACKRQ is set each time a byte is received, indicating that an outgoing ACK value is needed. When ACKRQ is set, software should write the desired outgoing value to the ACK bit before clearing SI. A NACK will be generated if software does not write the ACK bit before clearing SI. SDA will reflect the defined ACK value immediately following a write to the ACK bit; however SCL will remain low until SI is cleared. If a received slave address is not acknowledged, further slave events will be ignored until the next START is detected.

22.4.2.2.Hardware ACK Generation

When the EHACK bit in register SMB0ADM is set to 1, automatic slave address recognition and ACK generation is enabled. More detail about automatic slave address recognition can be found in Section 22.4.3. As a receiver, the value currently specified by the ACK bit will be automatically sent on the bus during the ACK cycle of an incoming data byte. As a transmitter, reading the ACK bit indicates the value received on the last ACK cycle. The ACKRQ bit is not used when hardware ACK generation is enabled. If a received slave address is NACKed by hardware, further slave events will be ignored until the next START is detected, and no interrupt will be generated.

Table 22.3 lists all sources for hardware changes to the SMB0CN bits. Refer to Table 22.5 for SMBus status decoding using the SMB0CN register.

	Valu	Values Read				Va V	lues Nrit	sto e	tus ected	
Mode	Status Vector	ACKRQ	ARBLOST	ACK	Current SMbus State	Typical Response Options	STA	STO	ACK	Next Stat Vector Exp
	1110	0	0	Х	A master START was gener- ated.	Load slave address + R/W into SMB0DAT.	0	0	Х	1100
					A master data or address byte	Set STA to restart transfer.	1	0	Х	1110
ter		U	U	U	received.	Abort transfer.	0	1	х	-
ansmit						Load next data byte into SMB0DAT.	0	0	Х	1100
r Tra	1100					End transfer with STOP.	0	1	Х	-
Mastei	1100	0	0	1	A master data or address byte was transmitted; ACK	End transfer with STOP and start another transfer.	1	1	х	-
					received.	Send repeated START.	1	0	Х	1110
						Switch to Master Receiver Mode (clear SI without writing new data to SMB0DAT).	0	0	x	1000
						Acknowledge received byte; Read SMB0DAT.	0	0	1	1000
						Send NACK to indicate last byte, and send STOP.	0	1	0	-
iver				Send NACK to indicate last byte, and send STOP followed by START.	1	1	0	1110		
Recei	1000	1	0	x	A master data byte was	Send ACK followed by repeated START.	1	0	1	1110
Master	laster					Send NACK to indicate last byte, and send repeated START.	1	0	0	1110
						Send ACK and switch to Master Transmitter Mode (write to SMB0DAT before clearing SI).	0	0	1	1100
						Send NACK and switch to Mas- ter Transmitter Mode (write to SMB0DAT before clearing SI).	0	0	0	1100

SFR Definition 23.2. SBUF0: Serial (UART0) Port Data Buffer

Bit	7	6	5	4	3	2	1	0
Name	SBUF0[7:0]							
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR Page = 0x0; SFR Address = 0x99

Bit	Name	Function
7:0	SBUF0	Serial Data Buffer Bits 7:0 (MSB–LSB).
		This SFR accesses two registers; a transmit shift register and a receive latch register. When data is written to SBUF0, it goes to the transmit shift register and is held for serial transmission. Writing a byte to SBUF0 initiates the transmission. A read of SBUF0 returns the contents of the receive latch.

Figure 24.2. Multiple-Master Mode Connection Diagram

Figure 24.3. 3-Wire Single Master and 3-Wire Single Slave Mode Connection Diagram

Figure 24.4. 4-Wire Single Master Mode and 4-Wire Slave Mode Connection Diagram

26.3.6. 16-Bit Pulse Width Modulator Mode

A PCA module may also be operated in 16-Bit PWM mode. 16-bit PWM mode is independent of the other (8/9/10/11-bit) PWM modes. In this mode, the 16-bit capture/compare module defines the number of PCA clocks for the low time of the PWM signal. When the PCA counter matches the module contents, the output on CEXn is asserted high; when the 16-bit counter overflows, CEXn is asserted low. To output a varying duty cycle, new value writes should be synchronized with PCA CCFn match interrupts. 16-Bit PWM Mode is enabled by setting the ECOMn, PWMn, and PWM16n bits in the PCA0CPMn register. For a varying duty cycle, match interrupts should be enabled (ECCFn = 1 AND MATn = 1) to help synchronize the capture/compare register writes. If the MATn bit is set to 1, the CCFn flag for the module will be set each time a 16-bit comparator match (rising edge) occurs. The CF flag in PCA0CN can be used to detect the overflow (falling edge). The duty cycle for 16-Bit PWM Mode is given by Equation 26.4.

Important Note About Capture/Compare Registers: When writing a 16-bit value to the PCA0 Capture/Compare registers, the low byte should always be written first. Writing to PCA0CPLn clears the ECOMn bit to 0; writing to PCA0CPHn sets ECOMn to 1.

$$Duty Cycle = \frac{(65536 - PCA0CPn)}{65536}$$

Equation 26.4. 16-Bit PWM Duty Cycle

Using Equation 26.4, the largest duty cycle is 100% (PCA0CPn = 0), and the smallest duty cycle is 0.0015% (PCA0CPn = 0xFFFF). A 0% duty cycle may be generated by clearing the ECOMn bit to 0.

Figure 26.10. PCA 16-Bit PWM Mode

27. C2 Interface

C8051F91x-C8051F90x devices include an on-chip Silicon Labs 2-Wire (C2) debug interface to allow Flash programming and in-system debugging with the production part installed in the end application. The C2 interface uses a clock signal (C2CK) and a bi-directional C2 data signal (C2D) to transfer information between the device and a host system. See the C2 Interface Specification for details on the C2 protocol.

27.1. C2 Interface Registers

The following describes the C2 registers necessary to perform Flash programming through the C2 interface. All C2 registers are accessed through the C2 interface as described in the C2 Interface Specification.

C2 Register Definition 27.1. C2ADD: C2 Address

Bit	7	6	5	4	3	2	1	0
Name	C2ADD[7:0]							
Туре	R/W							
Reset	0	0	0	0	0	0	0	0

Bit	Name	Function					
7:0	C2ADD[7:0]	C2 Address.					
		The C2ADD register is accessed via the C2 interface to select the target Data register for C2 Data Read and Data Write commands.					
		Address	s Description				
		0x00	Selects the Device ID register for Data Read instructions				
		0x01	Selects the Revision ID register for Data Read instructions				
		0x02	Selects the C2 Flash Programming Control register for Data Read/Write instructions				
		0xB4	Selects the C2 Flash Programming Data register for Data Read/Write instructions				

C2 Register Definition 27.4. FPCTL: C2 Flash Programming Control

Bit	7	6	5	4	3	2	1	0
Name	FPCTL[7:0]							
Туре	R/W							
Reset	0	0	0	0	0	0	0	0

C2 Address: 0x02

Bit	Name	Function
7:0	FPCTL[7:0]	Flash Programming Control Register.
		This register is used to enable Flash programming via the C2 interface. To enable C2 Flash programming, the following codes must be written in order: 0x02, 0x01. Note that once C2 Flash programming is enabled, a system reset must be issued to resume normal operation.

C2 Register Definition 27.5. FPDAT: C2 Flash Programming Data

Bit	7	6	5	4	3	2	1	0
Name	FPDAT[7:0]							
Туре	R/W							
Reset	0	0	0	0	0	0	0	0

C2 Address: 0xB4

Bit	Name	Function				
7:0	FPDAT[7:0]	C2 Flash Programming Data Register.				
		This register is used to pass Flash commands, addresses, and data during C2 Flash accesses. Valid commands are listed below.				
		Code	Command			
		0x06	Flash Block Read			
		0x07	Flash Block Write			
		0x08	Flash Page Erase			
		0x03	Device Erase			

