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1.3. Serial Ports

The C8051F91x-C8051F90x Family includes an SMBus/I2C interface, a full-duplex UART with enhanced 
baud rate configuration, and two Enhanced SPI interfaces. Each of the serial buses is fully implemented in 
hardware and makes extensive use of the CIP-51's interrupts, thus requiring very little CPU intervention.

1.4. Programmable Counter Array

An on-chip Programmable Counter/Timer Array (PCA) is included in addition to the four 16-bit general 
purpose counter/timers. The PCA consists of a dedicated 16-bit counter/timer time base with six 
programmable capture/compare modules. The PCA clock is derived from one of six sources: the system 
clock divided by 12, the system clock divided by 4, Timer 0 overflows, an External Clock Input (ECI), the 
system clock, or the external oscillator clock source divided by 8. ‘F912 and ‘F902 devices also support a 
SmaRTClock divided by 8 clock source.

Each capture/compare module can be configured to operate in a variety of modes: edge-triggered capture, 
software timer, high-speed output, pulse width modulator (8, 9, 10, 11, or 16-bit), or frequency output. 
Additionally, Capture/Compare Module 5 offers watchdog timer (WDT) capabilities. Following a system 
reset, Module 5 is configured and enabled in WDT mode. The PCA Capture/Compare Module I/O and 
External Clock Input may be routed to Port I/O via the Digital Crossbar. 

Figure 1.6. PCA Block Diagram
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Figure 3.2. QSOP-24 Pinout Diagram F912 (Top View)
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Table 4.5. Power Management Electrical Specifications
VDD = 1.8 to 3.6 V, –40 to +85 °C unless otherwise specified.

Parameter Conditions Min Typ Max Units

Idle Mode Wake-up Time 2 — 3 SYSCLKs

Suspend Mode Wake-up Time Low power oscillator — 400 — ns

Precision oscillator — 400 — ns

Sleep Mode Wake-up Time Two-cell mode — 2 — µs

One-cell mode — 10 — µs

Table 4.6. Flash Electrical Characteristics
VDD = 1.8 to 3.6 V, –40 to +85 °C unless otherwise specified.

Parameter Conditions Min Typ Max Units

Flash Size C8051F912/1 16384* — — bytes

C8051F902/1 8192 — — bytes

Scratchpad Size 512 — 512 bytes

Endurance 1 k 90 k —
Erase/Write 

Cycles

Erase Cycle Time 28 32 36 ms

Write Cycle Time 57 64 71 µs

*Note:  On 16 kB devices, 1024 bytes at addresses 0x3C00 to 0x3FFF are reserved.

Table 4.7. Internal Precision Oscillator Electrical Characteristics
VDD = 1.8 to 3.6 V; TA = –40 to +85 °C unless otherwise specified; Using factory-calibrated settings.

Parameter Conditions Min Typ Max Units

Oscillator Frequency –40 to +85 °C, 
VDD = 1.8–3.6 V

24 24.5 25 MHz

Oscillator Supply Current 
(from VDD)

25 °C; includes bias current 
of 90–100 µA

— 300* — µA

*Note:  Does not include clock divider or clock tree supply current.

Table 4.8. Internal Low-Power Oscillator Electrical Characteristics
VDD = 1.8 to 3.6 V; TA = –40 to +85 °C unless otherwise specified; Using factory-calibrated settings.

Parameter Conditions Min Typ Max Units

Oscillator Frequency
–40 to +85 °C, 
VDD = 1.8–3.6 V 18 20 22 MHz

Oscillator Supply Current 
(from VDD)

25 °C

No separate bias current 
required.

— 100* — µA

*Note:  Does not include clock divider or clock tree supply current.
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SFR Page = 0xF; SFR Address = 0x86

SFR Page = 0xF; SFR Address = 0x85

SFR Definition 5.13. TOFFH: ADC0 Data Word High Byte

Bit 7 6 5 4 3 2 1 0

Name TOFF[9:2]

Type R R R R R R R R

Reset Varies Varies Varies Varies Varies Varies Varies Varies

Bit Name Function

7:0 TOFF[9:2] Temperature Sensor Offset High Bits.

Most Significant Bits of the 10-bit temperature sensor offset measurement.

SFR Definition 5.14. TOFFL: ADC0 Data Word Low Byte

Bit 7 6 5 4 3 2 1 0

Name TOFF[1:0]

Type R R

Reset Varies Varies 0 0 0 0 0 0

Bit Name Function

7:6 TOFF[1:0] Temperature Sensor Offset Low Bits.

Least Significant Bits of the 10-bit temperature sensor offset measurement.

5:0 Unused Unused.

Read = 0; Write = Don't Care.
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6. Programmable Current Reference (IREF0)
C8051F91x-C8051F90x devices include an on-chip programmable current reference (source or sink) with 
two output current settings: Low Power Mode and High Current Mode. The maximum current output in Low 
Power Mode is 63 µA (1 µA steps) and the maximum current output in High Current Mode is 504 µA (8 µA 
steps). 

The current source/sink is controlled though the IREF0CN special function register. It is enabled by setting 
the desired output current to a non-zero value. It is disabled by writing 0x00 to IREF0CN. The port I/O pin 
associated with ISRC0 should be configured as an analog input and skipped in the Crossbar. See Section 
“21. Port Input/Output” on page 205 for more details.

SFR Page = 0x0; SFR Address = 0xB9

6.1. PWM Enhanced Mode

On ‘F912 and ‘F902 devices, the precision of the current reference can be increased by fine tuning the 
IREF0 output using a PWM signal generated by the PCA. This mode allows the IREF0DAT bits to perform 
a course adjustment on the IREF0 output. Any available PCA channel can perform a fine adjustment on 
the IREF0 output. When enabled (PWMEN = 1), the CEX signal selected using the PWMSS bit field is 
internally routed to IREF0 to control the on time of a current source having the weight of 2 LSBs. With the 
two least significant bits of IREF0DAT set to 00b, applying a 100% duty cycle on the CEX signal will be 
equivalent to setting the two LSBs of IREF0DAT to 10b. PWM enhanced mode is enabled and setup using 
the IREF0CF register.

SFR Definition 6.1. IREF0CN: Current Reference Control

Bit 7 6 5 4 3 2 1 0

Name SINK MODE IREF0DAT

Type R/W R/W R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7 SINK IREF0 Current Sink Enable.

Selects if IREF0 is a current source or a current sink.
0: IREF0 is a current source.
1: IREF0 is a current sink.

6 MDSEL IREF0 Output Mode Select. 

Selects Low Power or High Current Mode.
0: Low Power Mode is selected (step size = 1 µA).
1: High Current Mode is selected (step size = 8 µA).

5:0 IREF0DAT[5:0] IREF0 Data Word.

Specifies the number of steps required to achieve the desired output current.
Output current = direction x step size x IREF0DAT.
IREF0 is in a low power state when IREF0DAT is set to 0x00.



Rev. 1.1 101

C8051F91x-C8051F90x

CLR A Clear A 1 1
CPL A Complement A 1 1
RL A Rotate A left 1 1
RLC A Rotate A left through Carry 1 1
RR A Rotate A right 1 1
RRC A Rotate A right through Carry 1 1
SWAP A Swap nibbles of A 1 1

Data Transfer
MOV A, Rn Move Register to A 1 1
MOV A, direct Move direct byte to A 2 2
MOV A, @Ri Move indirect RAM to A 1 2
MOV A, #data Move immediate to A 2 2
MOV Rn, A Move A to Register 1 1
MOV Rn, direct Move direct byte to Register 2 2
MOV Rn, #data Move immediate to Register 2 2
MOV direct, A Move A to direct byte 2 2
MOV direct, Rn Move Register to direct byte 2 2
MOV direct, direct Move direct byte to direct byte 3 3
MOV direct, @Ri Move indirect RAM to direct byte 2 2
MOV direct, #data Move immediate to direct byte 3 3
MOV @Ri, A Move A to indirect RAM 1 2
MOV @Ri, direct Move direct byte to indirect RAM 2 2
MOV @Ri, #data Move immediate to indirect RAM 2 2
MOV DPTR, #data16 Load DPTR with 16-bit constant 3 3
MOVC A, @A+DPTR Move code byte relative DPTR to A 1 3
MOVC A, @A+PC Move code byte relative PC to A 1 3
MOVX A, @Ri Move external data (8-bit address) to A 1 3
MOVX @Ri, A Move A to external data (8-bit address) 1 3
MOVX A, @DPTR Move external data (16-bit address) to A 1 3
MOVX @DPTR, A Move A to external data (16-bit address) 1 3
PUSH direct Push direct byte onto stack 2 2
POP direct Pop direct byte from stack 2 2
XCH A, Rn Exchange Register with A 1 1
XCH A, direct Exchange direct byte with A 2 2
XCH A, @Ri Exchange indirect RAM with A 1 2
XCHD A, @Ri Exchange low nibble of indirect RAM with A 1 2

Boolean Manipulation
CLR C Clear Carry 1 1
CLR bit Clear direct bit 2 2
SETB C Set Carry 1 1
SETB bit Set direct bit 2 2
CPL C Complement Carry 1 1
CPL bit Complement direct bit 2 2
ANL C, bit AND direct bit to Carry 2 2

Table 8.1. CIP-51 Instruction Set Summary  (Continued)

Mnemonic Description Bytes Clock 
Cycles
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9. Memory Organization
The memory organization of the CIP-51 System Controller is similar to that of a standard 8051. There are 
two separate memory spaces: program memory and data memory. Program and data memory share the 
same address space but are accessed via different instruction types. The memory organization of the 
C8051F91x-C8051F90x device family is shown in Figure 9.1

Figure 9.1. C8051F91x-C8051F90x Memory Map
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Note: Code compatible devices with up to 64 kB Flash and 4 kB RAM are available as the C8051F93x-92x family. 
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TL0  0x8A 0x0 Timer/Counter 0 Low 278

TL1  0x8B 0x0 Timer/Counter 1 Low 278

TMOD  0x89 0x0 Timer/Counter Mode 277

TMR2CN  0xC8 0x0 Timer/Counter 2 Control 283

TMR2H  0xCD 0x0 Timer/Counter 2 High 285

TMR2L  0xCC 0x0 Timer/Counter 2 Low 285

TMR2RLH  0xCB 0x0 Timer/Counter 2 Reload High 284

TMR2RLL  0xCA 0x0 Timer/Counter 2 Reload Low 284

TMR3CN  0x91 0x0 Timer/Counter 3 Control 289

TMR3H  0x95 0x0 Timer/Counter 3 High 291

TMR3L  0x94 0x0 Timer/Counter 3 Low 291

TMR3RLH  0x93 0x0 Timer/Counter 3 Reload High 290

TMR3RLL  0x92 0x0 Timer/Counter 3 Reload Low 290

TOFFH  0x86 0xF Temperature Offset High 82

TOFFL  0x85 0xF Temperature Offset Low 82

VDM0CN  0xFF 0x0 VDD Monitor Control 175

XBR0  0xE1 0x0 Port I/O Crossbar Control 0 212

XBR1  0xE2 0x0 Port I/O Crossbar Control 1 213

XBR2  0xE3 0x0 Port I/O Crossbar Control 2 214

Table 11.3. Special Function Registers  (Continued)

SFRs are listed in alphabetical order. All undefined SFR locations are reserved. SFRs highlighted 
in blue are only available on ‘F912 and ‘F902 devices.

Register Address SFR Page Description Page
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12.5. Interrupt Register Descriptions

The SFRs used to enable the interrupt sources and set their priority level are described in the following 
register descriptions. Refer to the data sheet section associated with a particular on-chip peripheral for 
information regarding valid interrupt conditions for the peripheral and the behavior of its interrupt-pending 
flag(s).
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14.7. Determining the Event that Caused the Last Wakeup

When waking from idle mode, the CPU will vector to the interrupt which caused it to wake up. When wak-
ing from stop mode, the RSTSRC register may be read to determine the cause of the last reset. 

Upon exit from suspend or sleep mode, the wake-up flags in the PMU0CF register can be read to deter-
mine the event which caused the device to wake up. After waking up, the wake-up flags will continue to be 
updated if any of the wake-up events occur. Wake-up flags are always updated, even if they are not 
enabled as wake-up sources.

All wake-up flags enabled as wake-up sources in PMU0CF must be cleared before the device can enter 
suspend or sleep mode. After clearing the wake-up flags, each of the enabled wake-up events should be 
checked in the individual peripherals to ensure that a wake-up event did not occur while the wake-up flags 
were being cleared.
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15.5. CRC0 Bit Reverse Feature

CRC0 includes hardware to reverse the bit order of each bit in a byte as shown in Figure 15.2. Each byte 
of data written to CRC0FLIP is read back bit reversed. For example, if 0xC0 is written to CRC0FLIP, the 
data read back is 0x03. Bit reversal is a useful mathematical function used in algorithms such as the FFT.

Figure 15.2. Bit Reverse Register

SFR Page = 0xF; SFR Address = 0x95

SFR Definition 15.6. CRC0FLIP: CRC0 Bit Flip

Bit 7 6 5 4 3 2 1 0

Name CRC0FLIP[7:0]

Type R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7:0 CRC0FLIP[7:0] CRC0 Bit Flip.

Any byte written to CRC0FLIP is read back in a bit-reversed order, i.e. the written 
LSB becomes the MSB. For example:
If 0xC0 is written to CRC0FLIP, the data read back will be 0x03.
If 0x05 is written to CRC0FLIP, the data read back will be 0xA0.

CRC0FLIP
Write

CRC0FLIP
Read
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16.2. High Power Applications

The dc-dc converter is designed to provide the system with 65 mW of output power, however, it can safely 
provide up to 100 mW of output power without any risk of damage to the device. For high power applica-
tions, the system should be carefully designed to prevent unwanted VBAT and VDD/DC+ Supply Monitor 
resets, which are more likely to occur when the dc-dc converter output power exceeds 65mW. In addition, 
output power above 65 mW causes the dc-dc converter to have relaxed output regulation, high output rip-
ple and more analog noise. At high output power, an inductor with low DC resistance should be chosen in 
order to minimize power loss and maximize efficiency.

The combination of high output power and low input voltage will result in very high peak and average 
inductor currents. If the power supply has a high internal resistance, the transient voltage on the VBAT ter-
minal could drop below 0.9 V and trigger a VBAT Supply Monitor Reset, even if the open-circuit voltage is 
well above the 0.9 V threshold. While this problem is most often associated with operation from very small 
batteries or batteries that are near the end of their useful life, it can also occur when using bench power 
supplies that have a slow transient response; the supply’s display may indicate a voltage above 0.9 V, but 
the minimum voltage on the VBAT pin may be lower. A similar problem can occur at the output of the dc-dc 
converter: using the default low current limit setting (125 mA) can trigger VDD Supply Monitor resets if there 
is a high transient load current, particularly if the programmed output voltage is at or near 1.8 V. 

16.3. Pulse Skipping Mode

The dc-dc converter allows the user to set the minimum pulse width such that if the duty cycle needs to 
decrease below a certain width in order to maintain regulation, an entire "clock pulse" will be skipped.

Pulse skipping can provide substantial power savings, particularly at low values of load current. The con-
verter will continue to maintain a minimum output voltage at its programmed value when pulse skipping is 
employed, though the output voltage ripple can be higher. Another consideration is that the dc-dc will oper-
ate with pulse-frequency modulation rather than pulse-width modulation, which makes the switching fre-
quency spectrum less predictable; this could be an issue if the dc-dc converter is used to power a radio. 
Figure 4.5 and Figure 4.6 on page 45 and 46 show the effect of pulse skipping on power consumption.
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20.2.5. Automatic Gain Control (Crystal Mode Only) and SmaRTClock Bias Doubling

Automatic Gain Control allows the SmaRTClock oscillator to trim the oscillation amplitude of a crystal in 
order to achieve the lowest possible power consumption. Automatic Gain Control automatically detects 
when the oscillation amplitude has reached a point where it safe to reduce the drive current, therefore, it 
may be enabled during crystal startup. It is recommended to enable Automatic Gain Control in most 
systems which use the SmaRTClock oscillator in Crystal Mode. The following are recommended crystal 
specifications and operating conditions when Automatic Gain Control is enabled:

• ESR < 50 k
• Load Capacitance < 10 pF 
• Supply Voltage < 3.0 V
• Temperature > –20 °C 
When using Automatic Gain Control, it is recommended to perform an oscillation robustness test to ensure 
that the chosen crystal will oscillate under the worst case condition to which the system will be exposed. 
The worst case condition that should result in the least robust oscillation is at the following system 
conditions: lowest temperature, highest supply voltage, highest ESR, highest load capacitance, and lowest 
bias current (AGC enabled, Bias Double Disabled).

To perform the oscillation robustness test, the SmaRTClock oscillator should be enabled and selected as 
the system clock source. Next, the SYSCLK signal should be routed to a port pin configured as a push-pull 
digital output. The positive duty cycle of the output clock can be used as an indicator of oscillation 
robustness. As shown in Figure 20.2, duty cycles less than 55% indicate a robust oscillation. As the duty 
cycle approaches 60%, oscillation becomes less reliable and the risk of clock failure increases. Increasing 
the bias current (by disabling AGC) will always improve oscillation robustness and will reduce the output 
clock’s duty cycle. This test should be performed at the worst case system conditions, as results at very 
low temperatures or high supply voltage will vary from results taken at room temperature or low supply 
voltage.

Figure 20.2. Interpreting Oscillation Robustness (Duty Cycle) Test Results

As an alternative to performing the oscillation robustness test, Automatic Gain Control may be disabled at 
the cost of increased power consumption (approximately 200 nA). Disabling Automatic Gain Control will 
provide the crystal oscillator with higher immunity against external factors which may lead to clock failure. 
Automatic Gain Control must be disabled if using the SmaRTClock oscillator in self-oscillate mode.

Table 20.3 shows a summary of the oscillator bias settings. The SmaRTClock Bias Doubling feature allows 
the self-oscillation frequency to be increased (almost doubled) and allows a higher crystal drive strength in 
crystal mode. High crystal drive strength is recommended when the crystal is exposed to poor 
environmental conditions such as excessive moisture. SmaRTClock Bias Doubling is enabled by setting 
BIASX2 (RTC0XCN.5) to 1.

Duty Cycle25% 55% 60%

Safe Operating Zone
Low Risk of Clock 

Failure
High Risk of Clock

Failure
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20.3.2. Setting a SmaRTClock Alarm

The SmaRTClock alarm function compares the 32-bit value of SmaRTClock Timer to the value of the 
ALARMn registers. An alarm event is triggered if the SmaRTClock timer is equal to the ALARMn registers. 
If Auto Reset is enabled, the 32-bit timer will be cleared to zero one SmaRTClock cycle after the alarm 
event.

The SmaRTClock alarm event can be configured to reset the MCU, wake it up from a low power mode, or 
generate an interrupt. See Section “12. Interrupt Handler” on page 120, Section “14. Power Management” 
on page 143, and Section “18. Reset Sources” on page 171 for more information.

The following steps can be used to set up a SmaRTClock Alarm:

1. Disable SmaRTClock Alarm Events (RTC0AEN = 0).
2. Set the ALARMn registers to the desired value.
3. Enable SmaRTClock Alarm Events (RTC0AEN = 1).

Notes:
• The ALRM bit, which is used as the SmaRTClock Alarm Event flag, is cleared by disabling SmaRTClock Alarm 

Events (RTC0AEN = 0). 
• If AutoReset is disabled, disabling (RTC0AEN = 0) then Re-enabling Alarm Events (RTC0AEN = 1) after a 

SmaRTClock Alarm without modifying ALARMn registers will automatically schedule the next alarm after 2^32 
SmaRTClock cycles (approximately 36 hours using a 32.768 kHz crystal).

• The SmaRTClock Alarm Event flag will remain asserted for a maximum of one SmaRTClock cycle. See Section 
“14. Power Management” on page 143 for information on how to capture a SmaRTClock Alarm event using a flag 
which is not automatically cleared by hardware.

20.3.3. Software Considerations for using the SmaRTClock Timer and Alarm

The SmaRTClock timer and alarm have two operating modes to suit varying applications. The two modes 
are described below:

Mode 1:
The first mode uses the SmaRTClock timer as a perpetual timebase which is never reset to zero. Every 36 
hours, the timer is allowed to overflow without being stopped or disrupted. The alarm interval is software 
managed and is added to the ALRMn registers by software after each alarm. This allows the alarm match 
value to always stay ahead of the timer by one software managed interval. If software uses 32-bit unsigned 
addition to increment the alarm match value, then it does not need to handle overflows since both the timer 
and the alarm match value will overflow in the same manner.

This mode is ideal for applications which have a long alarm interval (e.g., 24 or 36 hours) and/or have a 
need for a perpetual timebase. An example of an application that needs a perpetual timebase is one 
whose wake-up interval is constantly changing. For these applications, software can keep track of the 
number of timer overflows in a 16-bit variable, extending the 32-bit (36 hour) timer to a 48-bit (272 year) 
perpetual timebase.

Mode 2:
The second mode uses the SmaRTClock timer as a general purpose up counter which is auto reset to zero 
by hardware after each alarm. The alarm interval is managed by hardware and stored in the ALRMn 
registers. Software only needs to set the alarm interval once during device initialization. After each alarm, 
software should keep a count of the number of alarms that have occurred in order to keep track of time.

This mode is ideal for applications that require minimal software intervention and/or have a fixed alarm 
interval. This mode is the most power efficient since it requires less CPU time per alarm.
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SFR Page = All Pages; SFR Address = 0x90; Bit-Addressable

SFR Page = 0x0; SFR Address = 0xD5

SFR Definition 21.13. P1: Port1

Bit 7 6 5 4 3 2 1 0

Name P1[6:0]

Type R/W

Reset 0 1 1 1 1 1 1 1

Bit Name Description Write Read

7 Unused Unused. 

Read =0b; Write = Don’t Care.

6:0 P1[6:0] Port 1 Data. 

Sets the Port latch logic 
value or reads the Port pin 
logic state in Port cells con-
figured for digital I/O.

0: Set output latch to logic 
LOW.
1: Set output latch to logic 
HIGH.

0: P1.n Port pin is logic 
LOW.
1: P1.n Port pin is logic 
HIGH.

SFR Definition 21.14. P1SKIP: Port1 Skip 

Bit 7 6 5 4 3 2 1 0

Name P1SKIP[6:0]

Type R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7 Unused Unused. 

Read =0b; Write = Don’t Care.

6:0 P1SKIP[6:0] Port 1 Crossbar Skip Enable Bits.

These bits select Port 1 pins to be skipped by the Crossbar Decoder. Port pins used 
for analog, special functions or GPIO should be skipped by the Crossbar.
0: Corresponding P1.n pin is not skipped by the Crossbar.
1: Corresponding P1.n pin is skipped by the Crossbar.
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22.4.3. Hardware Slave Address Recognition

The SMBus hardware has the capability to automatically recognize incoming slave addresses and send an 
ACK without software intervention. Automatic slave address recognition is enabled by setting the EHACK 
bit in register SMB0ADM to 1. This will enable both automatic slave address recognition and automatic 
hardware ACK generation for received bytes (as a master or slave). More detail on automatic hardware 
ACK generation can be found in Section 22.4.2.2.

The registers used to define which address(es) are recognized by the hardware are the SMBus Slave 
Address register (SFR Definition 22.3) and the SMBus Slave Address Mask register (SFR Definition 22.4). 
A single address or range of addresses (including the General Call Address 0x00) can be specified using 
these two registers. The most-significant seven bits of the two registers are used to define which 
addresses will be ACKed. A 1 in bit positions of the slave address mask SLVM[6:0] enable a comparison 
between the received slave address and the hardware’s slave address SLV[6:0] for those bits. A 0 in a bit 
of the slave address mask means that bit will be treated as a “don’t care” for comparison purposes. In this 
case, either a 1 or a 0 value are acceptable on the incoming slave address. Additionally, if the GC bit in 
register SMB0ADR is set to 1, hardware will recognize the General Call Address (0x00). Table 22.4 shows 
some example parameter settings and the slave addresses that will be recognized by hardware under 
those conditions.

Table 22.4. Hardware Address Recognition Examples (EHACK = 1)

Hardware Slave Address

SLV[6:0]

Slave Address Mask

SLVM[6:0]

GC bit Slave Addresses Recognized by 
Hardware

0x34 0x7F 0 0x34

0x34 0x7F 1 0x34, 0x00 (General Call)

0x34 0x7E 0 0x34, 0x35

0x34 0x7E 1 0x34, 0x35, 0x00 (General Call)

0x70 0x73 0 0x70, 0x74, 0x78, 0x7C
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SFR Addresses: SPI0CKR = 0xA2, SPI1CKR = 0x85 
SFR Pages: SPI0CKR = 0x0, SPI1CKR = 0x0

SFR Definition 24.3. SPInCKR: SPI Clock Rate

Bit 7 6 5 4 3 2 1 0

Name SCRn[7:0]

Type R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7:0 SCRn SPI Clock Rate.

These bits determine the frequency of the SCK output when the SPI module is 
configured for master mode operation. The SCK clock frequency is a divided 
version of the system clock, and is given in the following equation, where SYSCLK 
is the system clock frequency and SPInCKR is the 8-bit value held in the SPInCKR 
register.

for 0 <= SPI0CKR <= 255

Example: If SYSCLK = 2 MHz and SPInCKR = 0x04, 

fSCK
SYSCLK

2 SPInCKR[7:0] 1+ 
-----------------------------------------------------------=

fSCK
2000000

2 4 1+ 
--------------------------=

fSCK 200kHz=
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Table 24.1. SPI Slave Timing Parameters

Parameter Description Min Max Units

Master Mode Timing* (See Figure 24.8 and Figure 24.9)

TMCKH SCK High Time 1 x TSYSCLK — ns

TMCKL SCK Low Time 1 x TSYSCLK — ns

TMIS MISO Valid to SCK Shift Edge 1 x TSYSCLK + 20 — ns

TMIH SCK Shift Edge to MISO Change 0 — ns

Slave Mode Timing* (See Figure 24.10 and Figure 24.11)

TSE NSS Falling to First SCK Edge 2 x TSYSCLK — ns

TSD Last SCK Edge to NSS Rising 2 x TSYSCLK — ns

TSEZ NSS Falling to MISO Valid — 4 x TSYSCLK ns

TSDZ NSS Rising to MISO High-Z — 4 x TSYSCLK ns

TCKH SCK High Time 5 x TSYSCLK — ns

TCKL SCK Low Time 5 x TSYSCLK — ns

TSIS MOSI Valid to SCK Sample Edge 2 x TSYSCLK — ns

TSIH SCK Sample Edge to MOSI Change 2 x TSYSCLK — ns

TSOH SCK Shift Edge to MISO Change — 4 x TSYSCLK ns

TSLH
Last SCK Edge to MISO Change 
(CKPHA = 1 ONLY)

6 x TSYSCLK 8 x TSYSCLK ns

*Note:  TSYSCLK is equal to one period of the device system clock (SYSCLK).
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25.1.3. Mode 2: 8-bit Counter/Timer with Auto-Reload

Mode 2 configures Timer 0 and Timer 1 to operate as 8-bit counter/timers with automatic reload of the start 
value. TL0 holds the count and TH0 holds the reload value. When the counter in TL0 overflows from all 
ones to 0x00, the timer overflow flag TF0 (TCON.5) is set and the counter in TL0 is reloaded from TH0. If 
Timer 0 interrupts are enabled, an interrupt will occur when the TF0 flag is set. The reload value in TH0 is 
not changed. TL0 must be initialized to the desired value before enabling the timer for the first count to be 
correct. When in Mode 2, Timer 1 operates identically to Timer 0. 

Both counter/timers are enabled and configured in Mode 2 in the same manner as Mode 0. Setting the 
TR0 bit (TCON.4) enables the timer when either GATE0 (TMOD.3) is logic 0 or when the input signal INT0
is active as defined by bit IN0PL in register IT01CF (see Section “12.6. External Interrupts INT0 and INT1” 
on page 130 for details on the external input signals INT0 and INT1).

Figure 25.2. T0 Mode 2 Block Diagram
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26.3.5.2.  9/10/11-bit Pulse Width Modulator Mode

The duty cycle of the PWM output signal in 9/10/11-bit PWM mode should be varied by writing to an “Auto-
Reload” Register, which is dual-mapped into the PCA0CPHn and PCA0CPLn register locations. The data 
written to define the duty cycle should be right-justified in the registers. The auto-reload registers are 
accessed (read or written) when the bit ARSEL in PCA0PWM is set to 1. The capture/compare registers 
are accessed when ARSEL is set to 0.

When the least-significant N bits of the PCA0 counter match the value in the associated module’s 
capture/compare register (PCA0CPn), the output on CEXn is asserted high. When the counter overflows 
from the Nth bit, CEXn is asserted low (see Figure 26.9). Upon an overflow from the Nth bit, the COVF flag 
is set, and the value stored in the module’s auto-reload register is loaded into the capture/compare 
register. The value of N is determined by the CLSEL bits in register PCA0PWM.

The 9, 10 or 11-bit PWM mode is selected by setting the ECOMn and PWMn bits in the PCA0CPMn 
register, and setting the CLSEL bits in register PCA0PWM to the desired cycle length (other than 8-bits). If 
the MATn bit is set to 1, the CCFn flag for the module will be set each time a comparator match (rising 
edge) occurs. The COVF flag in PCA0PWM can be used to detect the overflow (falling edge), which will 
occur every 512 (9-bit), 1024 (10-bit) or 2048 (11-bit) PCA clock cycles. The duty cycle for 9/10/11-Bit 
PWM Mode is given in Equation 26.2, where N is the number of bits in the PWM cycle.

Important Note About PCA0CPHn and PCA0CPLn Registers: When writing a 16-bit value to the 
PCA0CPn registers, the low byte should always be written first. Writing to PCA0CPLn clears the ECOMn 
bit to 0; writing to PCA0CPHn sets ECOMn to 1.

Equation 26.3. 9, 10, and 11-Bit PWM Duty Cycle

A 0% duty cycle may be generated by clearing the ECOMn bit to 0.

Figure 26.9. PCA 9, 10 and 11-Bit PWM Mode Diagram
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