

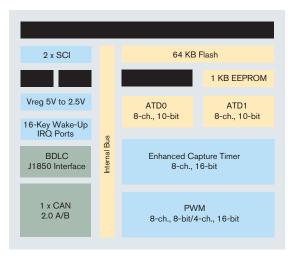
Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	HCS12
Core Size	16-Bit
Speed	25MHz
Connectivity	CANbus, I ² C, SCI, SPI
Peripherals	PWM, WDT
Number of I/O	59
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	2.35V ~ 5.25V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	80-QFP
Supplier Device Package	80-QFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc9s12dj64vfuer


MC9S12DJ64

Target Applications

- > Automotive applications
- > Industrial control

Overview

Freescale Semiconductor's HCS12 family of microcontrollers (MCUs) is the next generation of the highly successful 68HC12 architecture. Using Freescale's industry-leading 0.25 µs Flash, the MC9S12DJ64 is part of a pin-compatible family that scales from 32 KB to 512 KB of Flash memory. The DJ64 provides an upward migration path from Freescale's 68HC08, 68HC11 and 68HC12 architectures for applications that need larger memory, more peripherals and higher performance. Also, with the increasing number of CAN/J1850-based electronic control units (ECUs), its multiple network modules support this environment by enabling highly efficient communications between different network buses.

Features	Benefits
High-Performance 16-bit HCS12 CPU Core	
> 25 MHz bus operation at 5V for 40 ns	> Object code compatible 68HC12
minimum instruction cycle time	> Assembly source code compatible with the 68HC11
	> C-optimized architecture produces extremely compact code
On-Chip Debug Interface	
> Dedicated serial debug interface> On-chip breakpoints	 Real-time in-circuit emulation and debug without expensive and cumbersome box emulators
	> Read/write memory and registers while running at full speed
Network Modules	
> One msCAN module implementing the CAN	> Programmable bit rate up to 1 Mbps
2.0 A/B protocol Five receive buffers per module with FIFO	> FIFO receive approach superior for event-driven networks
storage scheme Three transmit buffers per module with internal prioritization	> Ability to send and receive messages across an SAE J1850 serial communication network
> One J1850 module	
Integrated Third-Generation Flash Memory	
> In-application reprogrammable	> Flexibility to change code in the field
> Self-timed, fast programming	> Efficient end-of-line programming
• Fast Flash page erase—20 ms (512 bytes)	> Total program time for 128 KB code is less than five seconds
Can program 16 bits in 20 μs while in burst mode EV Floab program/graps/graps/	> Reduces production programming cost through ultra-fast programming
 5V Flash program/erase/read Flash granularity—512 byte Flash erase/ 2 byte Flash program 	No external high voltage or charge pump required
> Flexible block protection and security	> Virtual EEPROM implementation, Flash array usable for EE extension
1 KB Integrated EEPROM	
> Flexible protection scheme for protection against accidental program or erase	> Can erase 4 bytes at a time and program 2 bytes at a time for calibration, security,
> EEPROM can be programmed in 46 µs	personality and diagnostic information
10-bit Analog-to-Digital Converter (ADC)	
> Two, 8-channel ADCs	> Fast, easy conversion from analog inputs like
> 7 μs, 10-bit single conversion time, scan mode available	temperature, pressure and fluid levels to digital values for CPU processing
	> Can effectively have 3.5 μs conversion time by sampling same signal with both ADCs

Benefits Clock Generation Module with Phase-Lock Loop (PLL) > Clock monitor with self clock mode in case > Reliable, robust operation of no external clock Provides high performance using low-cost > Programmable clock frequency with 1024 reference crystals options ranging from divide by 16 to multiply > Reduces generated noise by 64 from base oscillator > Reduces power consumption > Real-time interrupt > Easily able to implement real-time clock > Watchdog **Enhanced Capture Timer** > 8-channel, 16-bit with input capture, output > Flexible, programmable timer system compare and pulse accumulator > 16-bit modulus down counter 8-bit or 16-bit Pulse-Width Modulation (PWM) > 8-channel, 8-bit or 4-channel, 16-bit PWM > Efficiently implement motor control, battery charging or digital-to-analog (DAC) functions > PWM supports center-aligned operation **Two Serial Communications Interfaces** > Asynchronous communication between the > 8192 prescaler options MCU and a terminal, computer or a network of MCUs > Exact baud rate matching One Serial Peripheral Interface > Up to 12.5 Mbps > High-speed synchronous communication between multiple MCUs or between MCU and serial peripherals Inter-IC (I2C) Bus > 256 clock-rate options > Provides a simple, efficient method of data exchange between devices > Minimizes the need for large numbers of connections between devices and eliminates the need for an address decoder Up to 91 Input/Output (I/O) Lines > Programmable pull-ups/pull-downs > Reduce system cost > Dual drive capability > Able to tailor application for minimum EMC or high current loads

Application	Mata		Engina		Dullatina
ADDIICALION	Notes	and I	enaine	erina	bulletins

AN1284	Transporting M68HC11 Code to M68HC12 Devices
AN1716	Using M68HC12 Indexed Indirect Addressing
AN1775	Expanding Digital Input with an A/D Converter
AN1783	Determining MCU Oscillator Start-Up Parameters
AN2104	Using Background Debug Mode for the M68HC12 Family
AN2204	Fast NVM Programming for the MC9S12DP256
AN2216	MC9S12DP256 Software Development Using Metrowerks CodeWarrior™
AN2318	Using the I ² C Bus with HCS12 Microcontrollers
BCANPSV2.0	Bosch Controller Area Network (CAN) Version 2.0 Protocol Standard
BDLCRM	Byte Data Link Controller Reference Manual
EB396	Use of OSC2/XTAL as a Clock Output on Motorola Microcontrollers

Data Sheets

9S12DJ64DGV1 MC9S12A64 Device Guide MC9S12A64 Port Integration S12A64PIMV1

Module Block Guide HCS12 Background Debug (BDM)

S12BDMV4 Block Guide

HCS12 Breakpoint (BKP) Block Guide S12BKVD1 S12CPUV2 HCS12 CPU Reference Manual S12MSCANV2 HCS12 Motorola Scalable Controller Area Network Block Guide

S12ATD10B8CV2 HCS12 10-bit 8-channel Analog to

Digital Block Guide S12CRGV3 HCS12 Clock Reset Generator

Block Guide

S12ECT16B8CV1 HCS12 16-bit 8-channel Enhanced Capture Timer Block Guide

S12EETS2KV1 HCS12 2K EEPROM Block Guide S12FTS128KV1 HCS12 128K Flash Block Guide S12IICV2 HCS12 I2C Block Guide

S12INTV1 HCS12 Interrupt (INT) Block Guide S12MEBIV3 HCS12 Multiplexed External Bus Interface (MEBI) Block Guide HCS12 Module Mapping Control S12MMCV4

(MMC) Block Guide S12PWM8B8CV1 HCS12 8-bit 8-channel Pulse-Width

Modulator Block Guide

S12SCIV2 **HCS12 Serial Communications** Interface Block Guide

S12SPIV2 HCS12 Serial Peripheral Interface Block Guide

HCS12 Voltage Regulator S12VRFGV1

Block Guide

S12BDLCV1 HCS12 Byte Data Link Controller

Block Guide

Cost-Effective Development Tools

For more information on development tools, please refer to the Freescale Development Tool Selector Guide (SG1011).

M68KIT912DP256

\$495*

Evaluation kit for development and evaluation of HCS12 application code that includes the M68EVB912DP256 and

USBMULTILINKBDM

M68CYCLONEPRO

\$499

HC08/HCS08/HC12/HCS12 stand-alone Flash programmer or in-circuit emulator, debugger, Flash programmer; USB, serial or Ethernet

interface options

USBMULTILINKBDM Universal HCS08/HCS12 in-circuit \$99* emulator, debugger, and Flash programmer; USB PC interface

CWX-H12-SE

Free*

CodeWarrior™ Special Edition for HCS12 MCUs; includes integrated development environment (IDE), linker, debugger, unlimited assembler, Processor Expert™ auto-code generator, full-chip simulation and limited C compiler

Package Options

Part Number	Package
MC9S12DJ64CFU	80 QFP
MC9S12DJ64VFU	80 QFP
MC9S12DJ64MFU	80 QFP
MC9S12DJ64CPV	112 LQFP
MC9S12DJ64VPV	112 LQFP
MC9S12DJ64MPV	112 LQFP

Temp. Range -40°C to +85°C -40°C to +105°C -40°C to +125°C -40°C to +85°C -40°C to +105°C -40°C to +125°C

80-Lead QFP FU

Learn More: For more information about Freescale products, please visit www.freescale.com.

*Price indicated is MSRP.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. This product incorporates SuperFlash® technology licensed from SST. © Freescale Semiconductor, Inc. 2005

