

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	HCS12X
Core Size	16-Bit
Speed	80MHz
Connectivity	EBI/EMI, I ² C, IrDA, LINbus, SCI, SPI
Peripherals	LVD, POR, PWM, WDT
Number of I/O	91
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2.35V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	112-LQFP
Supplier Device Package	112-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc9s12xa256cal

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Section Number

Title

Page

	4.3.1	Module Memory Map
	4.3.2	Register Descriptions
4.4	Functio	nal Description
	4.4.1	Analog Sub-block
	4.4.2	Digital Sub-Block
	4.4.3	Operation in Low Power Modes
4.5	Resets	
4.6	Interrup	ts

Chapter 5Analog-to-Digital Converter (S12ATD10B8CV3)

5.1	Introdu	ction	59
	5.1.1	Features	59
	5.1.2	Modes of Operation	59
	5.1.3	Block Diagram	60
5.2	Externa	Il Signal Description	60
	5.2.1	ANx (x = 7, 6, 5, 4, 3, 2, 1, 0) — Analog Input Pin	60
	5.2.2	ETRIG3, ETRIG2, ETRIG1, and ETRIG0 — External Trigger Pins 10	60
	5.2.3	V _{RH and} V _{RL} — High and Low Reference Voltage Pins	60
	5.2.4	V_{DDA} and V_{SSA} — Power Supply Pins	60
5.3	Memor	y Map and Register Definition	62
	5.3.1	Module Memory Map	62
	5.3.2	Register Descriptions	62
5.4	Functio	nal Description	80
	5.4.1	Analog Sub-Block	80
	5.4.2	Digital Sub-Block	81
5.5	Resets		82
5.6	Interrup	pts	82

Chapter 6 XGATE (S12XGATEV2)

6.1	Introduc	ction	183
	6.1.1	Glossary of Terms	183
	6.1.2	Features	184
	6.1.3	Modes of Operation	184
	6.1.4	Block Diagram	185
6.2	Externa	l Signal Description	185
6.3	Memory	y Map and Register Definition	186
	6.3.1	Register Descriptions	186
6.4	Function	nal Description	202
	6.4.1	XGATE RISC Core	202
	6.4.2	Programmer's Model	202
	6.4.3	Memory Map	203

Section Number

Title

Page

2.3.2.5 CRG Interrupt Enable Register (CRGINT)

This register enables CRG interrupt requests.

Read: Anytime

Write: Anytime

Field	Description
7 RTIE	Real Time Interrupt Enable Bit 0 Interrupt requests from RTI are disabled. 1 Interrupt will be requested whenever RTIF is set.
6 ILAF	 Illegal Address Reset Flag — ILAF is set to 1 when an illegal address reset occurs. Refer to S12XMMC Block Guide for details. This flag can only be cleared by writing a 1. Writing a 0 has no effect. 0 Illegal address reset has not occurred. 1 Illegal address reset has occurred.
4 LOCKIE	Lock Interrupt Enable Bit 0 LOCK interrupt requests are disabled. 1 Interrupt will be requested whenever LOCKIF is set.
1 SCMIE	Self ClockMmode Interrupt Enable Bit 0 SCM interrupt requests are disabled. 1 Interrupt will be requested whenever SCMIF is set.

Table 2-3. CRGINT Field Descriptions

[•] 2 Clocks and Reset Generator (S12CRGV6)

Figure 2-22. Stop Mode Entry/Exit Sequence

Figure 2-26. RESET Pin Tied to V_{DD} (by a pull-up resistor)

2.6 Interrupts

The interrupts/reset vectors requested by the CRG are listed in Table 2-16. Refer to MCU specification for related vector addresses and priorities.

Interrupt Source	CCR Mask	Local Enable
Real time interrupt	l bit	CRGINT (RTIE)
LOCK interrupt	l bit	CRGINT (LOCKIE)
SCM interrupt	l bit	CRGINT (SCMIE)

Table 2-16. CRG Interrupt Vectors

2.6.1 Real Time Interrupt

The CRG generates a real time interrupt when the selected interrupt time period elapses. RTI interrupts are locally disabled by setting the RTIE bit to 0. The real time interrupt flag (RTIF) is set to1 when a timeout occurs, and is cleared to 0 by writing a 1 to the RTIF bit.

The RTI continues to run during pseudo stop mode if the PRE bit is set to 1. This feature can be used for periodic wakeup from pseudo stop if the RTI interrupt is enabled.

5.4.2 Digital Sub-Block

This subsection explains some of the digital features in more detail. See register descriptions for all details.

5.4.2.1 External Trigger Input

The external trigger feature allows the user to synchronize ATD conversions to the external environment events rather than relying on software to signal the ATD module when ATD conversions are to take place. The external trigger signal (out of reset ATD channel 7, configurable in ATDCTL1) is programmable to be edge or level sensitive with polarity control. Table 5-23 gives a brief description of the different combinations of control bits and their effect on the external trigger function.

ETRIGLE	ETRIGP	ETRIGE	SCAN	Description
X	Х	0	0	Ignores external trigger. Performs one conversion sequence and stops.
X	Х	0	1	Ignores external trigger. Performs continuous conversion sequences.
0	0	1	Х	Falling edge triggered. Performs one conversion sequence per trigger.
0	1	1	X	Rising edge triggered. Performs one conversion sequence per trigger.
1	0	1	Х	Trigger active low. Performs continuous conversions while trigger is active.
1	1	1	Х	Trigger active high. Performs continuous conversions while trigger is active.

Table 5-23. External Trigger Control Bits

During a conversion, if additional active edges are detected the overrun error flag ETORF is set.

In either level or edge triggered modes, the first conversion begins when the trigger is received. In both cases, the maximum latency time is one bus clock cycle plus any skew or delay introduced by the trigger circuitry.

NOTE

The conversion results for the external trigger ATD channel 7 have no meaning while external trigger mode is enabled.

Once ETRIGE is enabled, conversions cannot be started by a write to ATDCTL5, but rather must be triggered externally.

If the level mode is active and the external trigger both de-asserts and re-asserts itself during a conversion sequence, this does not constitute an overrun; therefore, the flag is not set. If the trigger is left asserted in level mode while a sequence is completing, another sequence will be triggered immediately.

BGE

Branch if Greater than or Equal to Zero

BGE

Operation

If N \wedge V = 0, then PC + $0002 + (REL9 \le 1) \Rightarrow PC$

Branch instruction to compare signed numbers.

Branch if $RS1 \ge RS2$:

SUB R0,RS1,RS2 BGE REL9

CCR Effects

- N: Not affected.
- Z: Not affected.
- V: Not affected.
- C: Not affected.

Code and CPU Cycles

Source Form	Address Mode		Machine Code							
BGE REL9	REL9	0	0	1	1	0	1	0	REL9	PP/P

Sign Extend Byte to Word

Operation

The result in RD is the 16 bit sign extended representation of the original two's complement number in the low byte of RD.L.

CCR Effects

Ν	Ζ	V	С
Δ	Δ	0	—

N: Set if bit 15 of the result is set; cleared otherwise.

- Z: Set if the result is \$0000; cleared otherwise.
- V: 0; cleared.
- C: Not affected.

Code and CPU Cycles

Source Form	Address Mode	Machine Code								Cycles						
SEX RD	MON	0	0	0	0	0	RD	1	1	1	1	0	1	0	0	Р

Chapter 7 Enhanced Capture Timer (S12ECT16B8CV2)

7.3.2.21 ICPAR — Input Control Pulse Accumulators Register (ICPAR)

Figure 7-43. Input Control Pulse Accumulators Register (ICPAR)

Read: Anytime

Write: Anytime.

All bits reset to zero.

The 8-bit pulse accumulators PAC3 and PAC2 can be enabled only if PAEN in PACTL is cleared. If PAEN is set, PA3EN and PA2EN have no effect.

The 8-bit pulse accumulators PAC1 and PAC0 can be enabled only if PBEN in PBCTL is cleared. If PBEN is set, PA1EN and PA0EN have no effect.

Table 7-25	. ICPAR	Field	Descriptions
------------	---------	-------	--------------

Field	Description
3:0 PA[3:0]EN	 8-Bit Pulse Accumulator 'x' Enable 8-Bit Pulse Accumulator is disabled. 8-Bit Pulse Accumulator is enabled.

Figure 8-21. PWM Left Aligned Output Example Waveform

8.4.2.6 Center Aligned Outputs

For center aligned output mode selection, set the CAEx bit (CAEx = 1) in the PWMCAE register and the corresponding PWM output will be center aligned.

The 8-bit counter operates as an up/down counter in this mode and is set to up whenever the counter is equal to \$00. The counter compares to two registers, a duty register and a period register as shown in the block diagram in Figure 8-19. When the PWM counter matches the duty register, the output flip-flop changes state, causing the PWM waveform to also change state. A match between the PWM counter and the period register changes the counter direction from an up-count to a down-count. When the PWM counter decrements and matches the duty register again, the output flip-flop changes state causing the PWM output to also change state. When the PWM counter decrements and reaches zero, the counter direction changes from a down-count back to an up-count and a load from the double buffer period and duty registers to the associated registers is performed, as described in Section 8.4.2.3, "PWM Period and Duty". The counter counts from 0 up to the value in the period register and then back down to 0. Thus the effective period is PWMPERx*2.

NOTE

Changing the PWM output mode from left aligned to center aligned output (or vice versa) while channels are operating can cause irregularities in the PWM output. It is recommended to program the output mode before enabling the PWM channel.

Figure 8-22. PWM Center Aligned Output Waveform

Write: Anytime when out of initialization mode; exceptions are read-only RXACT and SYNCH, RXFRM (which is set by the module only), and INITRQ (which is also writable in initialization mode).

Table 10-1. CANCTL0 Register Field Descriptions

Field	Description
7 RXFRM ¹	 Received Frame Flag — This bit is read and clear only. It is set when a receiver has received a valid message correctly, independently of the filter configuration. After it is set, it remains set until cleared by software or reset. Clearing is done by writing a 1. Writing a 0 is ignored. This bit is not valid in loopback mode. 0 No valid message was received since last clearing this flag 1 A valid message was received since last clearing of this flag
6 RXACT	 Receiver Active Status — This read-only flag indicates the MSCAN is receiving a message. The flag is controlled by the receiver front end. This bit is not valid in loopback mode. 0 MSCAN is transmitting or idle² 1 MSCAN is receiving a message (including when arbitration is lost)²
5 CSWAI ³	 CAN Stops in Wait Mode — Enabling this bit allows for lower power consumption in wait mode by disabling all the clocks at the CPU bus interface to the MSCAN module. 0 The module is not affected during wait mode 1 The module ceases to be clocked during wait mode
4 SYNCH	 Synchronized Status — This read-only flag indicates whether the MSCAN is synchronized to the CAN bus and able to participate in the communication process. It is set and cleared by the MSCAN. 0 MSCAN is not synchronized to the CAN bus 1 MSCAN is synchronized to the CAN bus
3 TIME	Timer Enable — This bit activates an internal 16-bit wide free running timer which is clocked by the bit clock rate. If the timer is enabled, a 16-bit time stamp will be assigned to each transmitted/received message within the active TX/RX buffer. Right after the EOF of a valid message on the CAN bus, the time stamp is written to the highest bytes (0x000E, 0x000F) in the appropriate buffer (see Section 10.3.3, "Programmer's Model of Message Storage"). The internal timer is reset (all bits set to 0) when disabled. This bit is held low in initialization mode. 0 Disable internal MSCAN timer 1 Enable internal MSCAN timer
2 WUPE ⁴	Wake-Up EnableThis configuration bit allows the MSCAN to restart from sleep mode when traffic on CAN is detected (see Section 10.4.5.4, "MSCAN Sleep Mode"). This bit must be configured before sleep mode entry for the selected function to take effect.0Wake-up disabled1Wake-up enabledThe MSCAN is able to restart

Field	Description
1 OVRIF	Overrun Interrupt Flag — This flag is set when a data overrun condition occurs. If not masked, an error interrupt is pending while this flag is set. 0 No data overrun condition 1 A data overrun detected
0 RXF ²	 Receive Buffer Full Flag — RXF is set by the MSCAN when a new message is shifted in the receiver FIFO. This flag indicates whether the shifted buffer is loaded with a correctly received message (matching identifier, matching cyclic redundancy code (CRC) and no other errors detected). After the CPU has read that message from the RxFG buffer in the receiver FIFO, the RXF flag must be cleared to release the buffer. A set RXF flag prohibits the shifting of the next FIFO entry into the foreground buffer (RxFG). If not masked, a receive interrupt is pending while this flag is set. No new message available within the RxFG The receiver FIFO is not empty. A new message is available in the RxFG

¹ Redundant Information for the most critical CAN bus status which is "bus-off". This only occurs if the Tx error counter exceeds a number of 255 errors. Bus-off affects the receiver state. As soon as the transmitter leaves its bus-off state the receiver state skips to RxOK too. Refer also to TSTAT[1:0] coding in this register.

² To ensure data integrity, do not read the receive buffer registers while the RXF flag is cleared. For MCUs with dual CPUs, reading the receive buffer registers while the RXF flag is cleared may result in a CPU fault condition.

10.3.2.6 MSCAN Receiver Interrupt Enable Register (CANRIER)

This register contains the interrupt enable bits for the interrupt flags described in the CANRFLG register.

Figure 10-9. MSCAN Receiver Interrupt Enable Register (CANRIER)

NOTE

The CANRIER register is held in the reset state when the initialization mode is active (INITRQ=1 and INITAK=1). This register is writable when not in initialization mode (INITRQ=0 and INITAK=0).

The RSTATE[1:0], TSTATE[1:0] bits are not affected by initialization mode.

Read: Anytime

Write: Anytime when not in initialization mode

Register Name		Bit 7	6	5	4	3	2	1	Bit 0			
PORTA	R W	PA7	PA6	PA5	PA4	PA3	PA2	PA1	PA0			
PORTB	R W	PB7	PB6	PB5	PB4	PB3	PB2	PB1	PB0			
DDRA	R W	DDRA7	DDRA6	DDRA5	DDRA4	DDRA3	DDRA2	DDRA1	DDRA0			
DDRB	R W	DDRB7	DDRB6	DDRB5	DDRB4	DDRB3	DDRB2	DDRB1	DDRB0			
PORTC	R W	PC7	PC6	PC5	PC4	PC3	PC2	PC1	PC0			
PORTD	R W	PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0			
DDRC	R W	DDRC7	DDRC6	DDRC5	DDRC4	DDRC3	DDRC2	DDRC1	DDRC0			
DDRD	R W	DDRD7	DDRD6	DDRD5	DDRD4 DDRD3		DDRD2	DDRD1	DDRD0			
PORTE	R W	PE7	PE6	PE5	PE4	PE3	PE2	PE1	PE0			
DDRE	R W	DDRE7 DDRE6 DDRE5 DDRE4 DDRE3 DDRE2 0							0			
Non-PIM Address Range	R W	Non-PIM Address Range										
PUCR	R W	R PUPKE BKPUE 0 PUPEE PUPDE PUPCE PUPBE PU										
RDRIV	R W	RDPK	0	0	RDPE	RDPD	RDPC	RDPB	RDPA			
Non-PIM Address Range	R W	Non-PIM Address Range										
		= Unimplemented or Reserved										

Figure 22-2. PIM Register Summary (Sheet 1 of 6)

Port	Pin Name	Pin Function and Priority	I/O	Description	Pin Function after Reset		
	DM7	TXCAN4	0	MSCAN4 transmit pin			
		GPIO	I/O	General-purpose I/O			
	PM6	RXCAN4	I	MSCAN4 receive pin			
		GPIO	I/O	General-purpose I/O			
		TXCAN0	0	MSCAN0 transmit pin			
		TXCAN4	0	MSCAN4 transmit pin			
	PM5	SCK0	I/O	Serial Peripheral Interface 0 serial clock pin If CAN0 is routed to PM[3:2] the SPI0 can still be used in bidirectional master mode.	-		
		GPIO	I/O	General-purpose I/O			
		RXCAN0	I	MSCAN0 receive pin			
		RXCAN4	I	MSCAN4 receive pin]		
М	PM4	PM4 MOSI0		Serial Peripheral Interface 0 master out/slave in pin If CAN0 is routed to PM[3:2] the SPI0 can still be used in bidirectional master mode.	GPIO		
		GPIO	I/O	General-purpose I/O			
		TXCAN0	0	MSCAN0 transmit pin			
	PM3	<u>SS0</u>	I/O	Serial Peripheral Interface 0 slave select output in master mode, input for slave mode or master mode.			
		GPIO	I/O	General-purpose I/O			
		RXCAN0	I	MSCAN0 receive pin			
	PM2	MISO0 I/O Serial Periphera		Serial Peripheral Interface 0 master in/slave out pin			
		GPIO I/O General-purpose I/O					
	PM1	TXCAN0	0	MSCAN0 transmit pin			
		GPIO	I/O	General-purpose I/O			
	PMO	RXCAN0 I MSCAN0 receive pin					
		GPIO	I/O	General-purpose I/O			

Table 24-1. Pin Functions and Priorities (Sheet 3 of 5)

Figure 29-26. Example Program Command Flow

If all four 16-bit words match the Flash contents at 0xFF00–0xFF07 (0x7F_FF00–0x7F_FF07), the microcontroller will be unsecured and the security bits SEC[1:0] in the Flash Security register FSEC will be forced to the unsecured state ('10'). The contents of the Flash options/security byte are not changed by this procedure, and so the microcontroller will revert to the secure state after the next reset unless further action is taken as detailed below.

If any of the four 16-bit words does not match the Flash contents at 0xFF00–0xFF07 (0x7F_FF00–0x7F_FF07), the microcontroller will remain secured.

30.1.6 Reprogramming the Security Bits

In normal single chip mode (NS), security can also be disabled by erasing and reprogramming the security bits within Flash options/security byte to the unsecured value. Because the erase operation will erase the entire sector from 0xFE00–0xFFFF (0x7F_FE00–0x7F_FFFF), the backdoor key and the interrupt vectors will also be erased; this method is not recommended for normal single chip mode. The application software can only erase and program the Flash options/security byte if the Flash sector containing the Flash options/security byte is not protected (see Flash protection). Thus Flash protection is a useful means of preventing this method. The microcontroller will enter the unsecured state after the next reset following the programming of the security bits to the unsecured value.

This method requires that:

- The application software previously programmed into the microcontroller has been designed to have the capability to erase and program the Flash options/security byte, or security is first disabled using the backdoor key method, allowing BDM to be used to issue commands to erase and program the Flash options/security byte.
- The Flash sector containing the Flash options/security byte is not protected.

30.1.7 Complete Memory Erase (Special Modes)

The microcontroller can be unsecured in special modes by erasing the entire EEPROM and Flash memory contents.

When a secure microcontroller is reset into special single chip mode (SS), the BDM firmware verifies whether the EEPROM and Flash memory are erased. If any EEPROM or Flash memory address is not erased, only BDM hardware commands are enabled. BDM hardware commands can then be used to write to the EEPROM and Flash registers to mass erase the EEPROM and all Flash memory blocks.

When next reset into special single chip mode, the BDM firmware will again verify whether all EEPROM and Flash memory are erased, and this being the case, will enable all BDM commands, allowing the Flash options/security byte to be programmed to the unsecured value. The security bits SEC[1:0] in the Flash security register will indicate the unsecure state following the next reset.

The relative deviation of t_{nom} is at its maximum for one clock period, and decreases towards zero for larger number of clock periods (N).

Defining the jitter as:

$$J(N) = max\left(\left|1 - \frac{t_{max}(N)}{N \cdot t_{nom}}\right|, \left|1 - \frac{t_{min}(N)}{N \cdot t_{nom}}\right|\right)$$

For N < 1000, the following equation is a good fit for the maximum jitter:

$$J(N) = \frac{j_1}{\sqrt{N}} + j_2$$

Figure A-5. Maximum Bus Clock Jitter Approximation

This is very important to notice with respect to timers, serial modules where a prescaler will eliminate the effect of the jitter to a large extent.

0x0180–0x01BF Freescale Scalable CAN — MSCAN (CAN1) Map (Sheet 3 of 3)

Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CAN1IDMR7	R W	AM7	AM6	AM5	AM4	AM3	AM2	AM1	AM0
CAN1RXFG	R		(See Detaile	FORE ed MSCAN F	GROUND R Foreground F	ECEIVE BU Receive and	FFER Transmit Bu	ffer Layout)	
	W								
CAN1TXFG	R		(See Detaile	FORE		RANSMIT BU	JFFER Transmit Bu	ffer Lavout)	
	Name CAN1IDMR7 CAN1RXFG CAN1TXFG	Name CAN1IDMR7 R CAN1RXFG W CAN1TXFG	Name Bit 7 CAN1IDMR7 R W CAN1RXFG R W CAN1TXFG R W	Name Bit 7 Bit 6 CAN1IDMR7 R AM7 AM6 CAN1RXFG R (See Detaile W CAN1TXFG R CAN1TXFG R (See Detaile	Name Bit 7 Bit 6 Bit 5 CAN1IDMR7 R AM7 AM6 AM5 R CAN1RXFG R FORE CAN1TXFG R FORE W FORE CAN1TXFG R FORE	Name Bit 7 Bit 6 Bit 5 Bit 4 CAN1IDMR7 R AM7 AM6 AM5 AM4 R FOREGROUND R (See Detailed MSCAN Foreground F CAN1TXFG R FOREGROUND TF W FOREGROUND TF CAN1TXFG R	Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 CAN1IDMR7 R AM7 AM6 AM5 AM4 AM3 R FOREGROUND RECEIVE BU (See Detailed MSCAN Foreground Receive and W CAN1TXFG R FOREGROUND TRANSMIT BU (See Detailed MSCAN Foreground Receive and W	Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 CAN1IDMR7 R AM7 AM6 AM5 AM4 AM3 AM2 R FOREGROUND RECEIVE BUFFER CAN1RXFG (See Detailed MSCAN Foreground Receive and Transmit Bu W CAN1TXFG R FOREGROUND TRANSMIT BUFFER W FOREGROUND TRANSMIT BUFFER	Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 CAN1IDMR7 R W AM7 AM6 AM5 AM4 AM3 AM2 AM1 R FOREGROUND RECEIVE BUFFER (See Detailed MSCAN Foreground Receive and Transmit Buffer Layout) W CAN1TXFG R W FOREGROUND TRANSMIT BUFFER (See Detailed MSCAN Foreground Receive and Transmit Buffer Layout)

0x01C0–0x01FF Freescale Scalable CAN — MSCAN (CAN2) Map

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0x01C0	CAN2CTL0	R W	RXFRM	RXACT	CSWAI	SYNCH	TIME	WUPE	SLPRQ	INITRQ
0x01C1	CAN2CTL1	R W	CANE	CLKSRC	LOOPB	LISTEN	BORM	WUPM	SLPAK	INITAK
0x01C2	CAN2BTR0	R W	SJW1	SJW0	BRP5	BRP4	BRP3	BRP2	BRP1	BRP0
0x01C3	CAN2BTR1	R W	SAMP	TSEG22	TSEG21	TSEG20	TSEG13	TSEG12	TSEG11	TSEG10
0x01C4	CAN2RFLG	R W	WUPIF	CSCIF	RSTAT1	RSTAT0	TSTAT1	TSTAT0	OVRIF	RXF
0x01C5	CAN2RIER	R W	WUPIE	CSCIE	RSTATE1	RSTATE0	TSTATE1	TSTATE0	OVRIE	RXFIE
0x01C6	CAN2TFLG	R W	0	0	0	0	0	TXE2	TXE1	TXE0
0x01C7	CAN2TIER	R W	0	0	0	0	0	TXEIE2	TXEIE1	TXEIE0
0x01C8	CAN2TARQ	R W	0	0	0	0	0	ABTRQ2	ABTRQ1	ABTRQ0
0x01C9	CAN2TAAK	R W	0	0	0	0	0	ABTAK2	ABTAK1	ABTAK0
0x01CA	CAN2TBSEL	R W	0	0	0	0	0	TX2	TX1	TX0
0x01CB	CAN2IDAC	R W	0	0	IDAM1	IDAM0	0	IDHIT2	IDHIT1	IDHIT0
0x01CC	Reserved	R W	0	0	0	0	0	0	0	0
0x01CD	CAN2MISC	R W	0	0	0	0	0	0	0	BOHOLD
0x01CE	CAN2RXERR	R W	RXERR7	RXERR6	RXERR5	RXERR4	RXERR3	RXERR2	RXERR1	RXERR0
0x01CF	CAN2TXERR	R W	TXERR7	TXERR6	TXERR5	TXERR4	TXERR3	TXERR2	TXERR1	TXERR0
0x01D0	CAN2IDAR0	R W	AC7	AC6	AC5	AC4	AC3	AC2	AC1	AC0