

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	HCS12X
Core Size	16-Bit
Speed	80MHz
Connectivity	EBI/EMI, I ² C, IrDA, LINbus, SCI, SPI
Peripherals	LVD, POR, PWM, WDT
Number of I/O	91
Program Memory Size	512KB (512K × 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2.35V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	112-LQFP
Supplier Device Package	112-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mc9s12xa512val

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Section Num	ber Title	Page
Chapter 25	2 Kbyte EEPROM Module (S12XEETX2KV1)	.1039
Chapter 26	4 Kbyte EEPROM Module (S12XEETX4KV2)	.1073
Chapter 27	512 Kbyte Flash Module (S12XFTX512K4V2)	.1107
Chapter 28	256 Kbyte Flash Module (S12XFTX256K2V1)	.1149
Chapter 29	128 Kbyte Flash Module (S12XFTX128K1V1)	.1191
Chapter 30	Security (S12X9SECV2)	.1231
Appendix A	Electrical Characteristics	.1239
Appendix B	Package Information	.1290
Appendix C	Recommended PCB Layout	.1294
Appendix D	Using L15Y Silicon	.1299
Appendix E	Derivative Differences	.1300
Appendix F	Ordering Information	.1308
Appendix G	Detailed Register Map	.1309

1.2.3.3 TEST — Test Pin

This input only pin is reserved for test. This pin has a pulldown device.

NOTE

The TEST pin must be tied to V_{SS} in all applications.

1.2.3.4 VREGEN — Voltage Regulator Enable Pin

This input only pin enables or disables the on-chip voltage regulator. The input has a pullup device.

1.2.3.5 XFC — PLL Loop Filter Pin

Please ask your Freescale representative for the interactive application note to compute PLL loop filter elements. Any current leakage on this pin must be avoided.

Figure 1-10. PLL Loop Filter Connections

1.2.3.6 BKGD / MODC — Background Debug and Mode Pin

The BKGD/MODC pin is used as a pseudo-open-drain pin for the background debug communication. It is used as a MCU operating mode select pin during reset. The state of this pin is latched to the MODC bit at the rising edge of RESET. The BKGD pin has a pullup device.

1.2.3.7 PAD[23:8] / AN[23:8] — Port AD Input Pins of ATD1

PAD[23:8] are general-purpose input or output pins and analog inputs AN[23:8] of the analog-to-digital converter ATD1.

1.2.3.8 PAD[7:0] / AN[7:0] — Port AD Input Pins of ATD0

PAD[7:0] are general-purpose input or output pins and analog inputs AN[7:0] of the analog-to-digital converter ATD0.

1.2.3.9 PAD[15:0] / AN[15:0] — Port AD Input Pins of ATD1

PAD[15:0] are general-purpose input or output pins and analog inputs AN[15:0] of the analog-to-digital converter ATD1.

1 Device Overview MC9S12XD-Family

1.3 System Clock Description

The clock and reset generator module (CRG) provides the internal clock signals for the core and all peripheral modules. Figure 1-12 shows the clock connections from the CRG to all modules.

See 79Chapterf or details on clock generation.

Figure 1-14. MC9S12XD Family Clock Connections

The MCU's system clock can be supplied in several ways enabling a range of system operating frequencies to be supported:

- The on-chip phase locked loop (PLL)
- the PLL self clocking
- the oscillator

The clock generated by the PLL or oscillator provides the main system clock frequencies core clock and bus clock. As shown in Figure 1-12, this system clocks are used throughout the MCU to drive the core, the memories, and the peripherals.

The program Flash memory and the EEPROM are supplied by the bus clock and the oscillator clock. The oscillator clock is used as a time base to derive the program and erase times for the NVM's. See the Flash and EEPROM section for more details on the operation of the NVM's.

WRAP3	WRAP2	WRAP1	WRAP0	Multiple Channel Conversions (MULT = 1) Wrap Around to AN0 after Converting
0	0	0	0	Reserved
0	0	0	1	AN1
0	0	1	0	AN2
0	0	1	1	AN3
0	1	0	0	AN4
0	1	0	1	AN5
0	1	1	0	AN6
0	1	1	1	AN7
1	0	0	0	AN8
1	0	0	1	AN9
1	0	1	0	AN10
1	0	1	1	AN11
1	1	0	0	AN12
1	1	0	1	AN13
1	1	1	0	AN14
1	1	1	1	AN15

Table 4-3. Multi-Channel Wrap Around Coding

4.3.2.2 ATD Control Register 1 (ATDCTL1)

Writes to this register will abort current conversion sequence but will not start a new sequence.

Figure 4-4. ATD Control Register 1 (ATDCTL1)

Read: Anytime

Write: Anytime

Table 4-4. ATDCTL1 Field Descriptions

Field	Description
7 ETRIGSEL	External Trigger Source Select — This bit selects the external trigger source to be either one of the AD channels or one of the ETRIG[3:0] inputs. See device specification for availability and connectivity of ETRIG[3:0] inputs. If ETRIG[3:0] input option is not available, writing a 1 to ETRISEL only sets the bit but has no effect, that means one of the AD channels (selected by ETRIGCH[3:0]) remains the source for external trigger. The coding is summarized in Table 4-5.
3:0 ETRIGCH[3:0]	External Trigger Channel Select — These bits select one of the AD channels or one of the ETRIG[3:0] inputs as source for the external trigger. The coding is summarized in Table 4-5.

SC	CD	СС	СВ	СА	Analog Input Channel
1	0	0	Х	Х	Reserved
1	0	1	0	0	V _{RH}
1	0	1	0	1	V _{RL}
1	0	1	1	0	(V _{RH} +V _{RL}) / 2
1	0	1	1	1	Reserved
1	1	Х	Х	Х	Reserved

Table 4-20. Special Channel Select Coding

4.3.2.10 ATD Status Register 2 (ATDSTAT2)

This read-only register contains the Conversion Complete Flags CCF15 to CCF8.

Read: Anytime

Write: Anytime, no effect

Field	Description
7:0 CCF[15:8]	 Conversion Complete Flag Bits — A conversion complete flag is set at the end of each conversion in a conversion sequence. The flags are associated with the conversion position in a sequence (and also the result register number). Therefore, CCF8 is set when the ninth conversion in a sequence is complete and the result is available in result register ATDDR8; CCF9 is set when the tenth conversion in a sequence is complete and the result is available in ATDDR9, and so forth. A flag CCFx (x = 15, 14, 13, 12, 11, 10, 9, 8) is cleared when one of the following occurs: Write to ATDCTL5 (a new conversion sequence is started) If AFFC = 0 and read of ATDSTAT2 followed by read of result register ATDDRx If AFFC = 1 and read of result register ATDDRx In case of a concurrent set and clear on CCFx: The clearing by method A) will overwrite the set. The clearing by methods B) or C) will be overwritten by the set.
	 0 Conversion number x not completed 1 Conversion number x has completed, result ready in ATDDRx

Chapter 6 XGATE (S12XGATEV2)

Branch if Carry Set (Same as BCS)

Operation

If C = 1, then PC + $0002 + (REL9 \le 1) \Rightarrow PC$

Branch instruction to compare unsigned numbers.

Branch if RS1 < RS2:

SUB R0,RS1,RS2 BLO REL9

CCR Effects

- N: Not affected.
- Z: Not affected.
- V: Not affected.
- C: Not affected.

Code and CPU Cycles

Source Form	Address Mode							N	Ma	chine Code	Cycles
BLO REL9	REL9	0	0	1	0	0	C)	1	REL9	PP/P

13 Periodic Interrupt Timer (S12PIT24B4CV1)

PIT operation in wait mode is controlled by the PITSWAI bit located in the PITCFLMT register. In wait mode, if the bus clock is globally enabled and if the PITSWAI bit is clear, the PIT operates like in run mode. In wait mode, if the PITSWAI bit is set, the PIT module is stalled.

• Stop mode

In full stop mode or pseudo stop mode, the PIT module is stalled.

• Freeze mode

PIT operation in freeze mode is controlled by the PITFRZ bit located in the PITCFLMT register. In freeze mode, if the PITFRZ bit is clear, the PIT operates like in run mode. In freeze mode, if the PITFRZ bit is set, the PIT module is stalled.

13.1.4 Block Diagram

Figure 13-1 shows a block diagram of the PIT.

Figure 13-1. PIT Block Diagram

13.2 External Signal Description

The PIT module has no external pins.

Register Global Address 0x7FFF06

Table 15-3. BDM Clock Sources

PLLSEL	CLKSW	BDMCLK
0	0	Bus clock dependent on oscillator
0	1	Bus clock dependent on oscillator
1	0	Alternate clock (refer to the device specification to determine the alternate clock source)
1	1	Bus clock dependent on the PLL

15.3.2.2 BDM CCR LOW Holding Register (BDMCCRL)

	7	6	5	4	3	2	1	0
R W	CCR7	CCR6	CCR5	CCR4	CCR3	CCR2	CCR1	CCR0
Reset								
Special Single-Chip Mode	1	1	0	0	1	0	0	0
All Other Modes	0	0	0	0	0	0	0	0
Figure 15-4. BDM CCR LOW Holding Register (BDMCCRL)								

Read: All modes through BDM operation when not secured

Write: All modes through BDM operation when not secured

NOTE

When BDM is made active, the CPU stores the content of its CCR_L register in the BDMCCRL register. However, out of special single-chip reset, the BDMCCRL is set to 0xD8 and not 0xD0 which is the reset value of the CCR_L register in this CPU mode. Out of reset in all other modes the BDMCCRL register is read zero.

When entering background debug mode, the BDM CCR LOW holding register is used to save the low byte of the condition code register of the user's program. It is also used for temporary storage in the standard BDM firmware mode. The BDM CCR LOW holding register can be written to modify the CCR value.

22 DP512 Port Integration Module (S12XDP512PIMV2)

Register Name		Bit 7	6	5	4	3	2	1	Bit 0
PPSM	R W	PPSM7	PPSM6	PPSM5	PPSM4	PPSM3	PPSM2	PPSM1	PPSM0
WOMM	R W	WOMM7	WOMM6	WOMM5	WOMM4	WOMM3	WOMM2	WOMM1	WOMM0
MODRR	R W	0	MODRR6	MODRR5	MODRR4	MODRR3	MODRR2	MODRR1	MODRR0
PTP	R W	PTP7	PTP6	PTP5	PTP4	PTP3	PTP2	PTP1	PTP0
PTIP		PTIP7	PTIP6	PTIP5	PTIP4	PTIP3	PTIP2	PTIP1	PTIP0
	vvL								
DDRP	R W	DDRP7	DDRP6	DDRP5	DDRP4	DDRP3	DDRP2	DDRP1	DDRP0
RDRP	R W	RDRP7	RDRP6	RDRP5	RDRP4	RDRP3	RDRP2	RDRP1	RDRP0
PERP	R W	PERP7	PERP6	PERP5	PERP4	PERP3	PERP2	PERP1	PERP0
PPSP	R W	PPSP7	PPSP6	PPSP5	PPSP4	PPSP3	PPSP2	PPSP1	PPSP0
PIEP	R W	PIEP7	PIEP6	PIEP5	PIEP4	PIEP3	PIEP2	PIEP1	PIEP0
PIFP	R W	PIFP7	PIFP6	PIFP5	PIFP4	PIFP3	PIFP2	PIFP1	PIFP0
PTH	R W	PTH7	PTH6	PTH5	PTH4	PTH3	PTH2	PTH1	PTH0
PTIH	R	PTIH7	PTIH6	PTIH5	PTIH4	PTIH3	PTIH2	PTIH1	PTIH0
	W								
DDRH	R W	DDRH7	DDRH6	DDRH5	DDRH4	DDRH3	DDRH2	DDRH1	DDRH0
RDRH	R W	RDRH7	RDRH6	RDRH5	RDRH4	RDRH3	RDRH2	RDRH1	RDRH0
	Γ		= Unimpleme	ented or Reser	ved				

Figure 22-2. PIM Register Summary (Sheet 4 of 6)

Figure 22-5. Port A Data Direction Register (DDRA)

Read: Anytime. In emulation modes, read operations will return the data from the external bus, in all other modes the data are read from this register.

Write: Anytime. In emulation modes, write operations will also be directed to the external bus.

Table 22-6. DDRA Field Descriptions

Field	Description
7–0 DDRA[7:0]	 Data Direction Port A — This register controls the data direction for port A. When Port A is operating as a general purpose I/O port, DDRA determines whether each pin is an input or output. A logic level "1" causes the associated port pin to be an output and a logic level "0" causes the associated pin to be a high-impedance input. 0 Associated pin is configured as input. 1 Associated pin is configured as output. Note: Due to internal synchronization circuits, it can take up to 2 bus clock cycles until the correct value is read on PORTA after changing the DDRA register.

22.3.2.4 Port B Data Direction Register (DDRB)

Figure 22-6. Port B Data Direction Register (DDRB)

Read: Anytime. In emulation modes, read operations will return the data from the external bus, in all other modes the data are read from this register.

Write: Anytime. In emulation modes, write operations will also be directed to the external bus.

Table 22-7. DDRB Field Descriptions

Field	Description
7–0 DDRB[7:0]	 Data Direction Port B — This register controls the data direction for port B. When Port B is operating as a general purpose I/O port, DDRB determines whether each pin is an input or output. A logic level "1" causes the associated port pin to be an output and a logic level "0" causes the associated pin to be a high-impedance input. 0 Associated pin is configured as input. 1 Associated pin is configured as output. Note: Due to internal synchronization circuits, it can take up to 2 bus clock cycles until the correct value is read on PORTB after changing the DDRB register.

22.4 Functional Description

Each pin except PE0, PE1, and BKGD can act as general purpose I/O. In addition each pin can act as an output from the external bus interface module or a peripheral module or an input to the external bus interface module.

A set of configuration registers is common to all ports with exceptions in the expanded bus interface and ATD ports (Table 22-67). All registers can be written at any time; however a specific configuration might not become active.

Example: Selecting a pull-up device

This device does not become active while the port is used as a push-pull output.

Port	Data	Data Direction	Input	Reduced Drive	Pull Enable	Polarity Select	Wired-OR Mode	Interrupt Enable	Interrupt Flag		
A	yes	yes	—	yes	yes	—	_	_	—		
В	yes	yes	—			_	_	_	—		
С	yes	yes	—			_	_	_	—		
D	yes	yes	—				_	—	_	—	
E	yes	yes	—							_	—
К	yes	yes	—			_	—	_	—		
Т	yes	yes	yes	yes	yes	—	—	_	—		
S	yes	yes	yes	yes	yes	yes	yes	_	—		
М	yes	yes	yes	yes	yes	yes	yes	_	—		
Р	yes	yes	yes	yes	yes	yes	—	yes	yes		
Н	yes	yes	yes	yes	yes	yes	—	yes	yes		
J	yes	yes	yes	yes	yes	yes	—	yes	yes		
AD0	yes	yes	_	yes	yes	—	—	_	—		
AD1	yes	yes	_	yes	yes	_	_	_	_		

Table 22-67. Register Availability per Port¹

¹ Each cell represents one register with individual configuration bits

22.4.1 Registers

22.4.1.1 Data Register

This register holds the value driven out to the pin if the pin is used as a general purpose I/O.

Writing to this register has only an effect on the pin if the pin is used as general purpose output. When reading this address, the buffered state of the pin is returned if the associated data direction register bit is set to "0".

If the data direction register bits are set to logic level "1", the contents of the data register is returned. This is independent of any other configuration (Figure 22-76).

24.0.5.8 S12X_EBI Ports Reduced Drive Register (RDRIV)

1. Register implemented, function disabled: Written values can be read back.

Read: Anytime.

Write: Anytime.

This register is used to select reduced drive for the pins associated with ports A, B, E, and K. If enabled, the pins drive at about 1/6 of the full drive strength. The reduced drive function is independent of which function is being used on a particular pin.

The reduced drive functionality does not take effect on the pins in emulation modes.

Table 24-11. RDRIV Field Descriptions

Field	Description							
7 RDPK	Reduced Drive of Port K 0 All port K output pins have full drive enabled. 1 All port K output pins have reduced drive enabled.							
4 RDPE	Reduced Drive of Port E 0 All port E output pins have full drive enabled. 1 All port E output pins have reduced drive enabled.							
1 RDPB	Reduced Drive of Port B 0 All port B output pins have full drive enabled. 1 All port B output pins have reduced drive enabled.							
0 RDPA	Reduced Drive of Ports A 0 All Port A output pins have full drive enabled. 1 All port A output pins have reduced drive enabled.							

26 4 Kbyte EEPROM Module (S12XEETX4KV2)

Register Name		Bit 7	6	5	4	3	2	1	Bit 0				
ECLKDIV	R W	EDIVLD	PRDIV8	EDIV5	EDIV4	EDIV3	EDIV2	EDIV1	EDIV0				
RESERVED1	R	0	0	0	0	0	0	0	0				
	w												
RESERVED2	R	0	0	0	0	0	0	0	0				
	w												
ECNFG	R	CBEIE	CCIE	0	0	0	0	0	0				
	vv												
EPROT	R	EPOPEN	RNV6	RNV5	RNV4	EPDIS	EPS2	EPS1	EPS0				
	W												
ESTAT	R	CBEIF	CCIF	PVIOL	ACCERR	0	BLANK	0	0				
	W												
ECMD	R	0	СМДВ										
	W												
RESERVED3	R	0	0	0	0	0	0	0	0				
	W												
EADDRHI	R	0	0	0	0	0		EABHI					
	W												
EADDRLO	R				EAE	BLO							
	w												
EDATAHI	R				EC	DHI							
	w												
EDATALO	R				ED	LO							
	w												
	[= Unimplemented or Reserved											

Figure 26-3. EETX4K Register Summary

26.3.2.1 EEPROM Clock Divider Register (ECLKDIV)

The ECLKDIV register is used to control timed events in program and erase algorithms.

28.4.2.6 Sector Erase Abort Command

The sector erase abort operation will terminate the active sector erase operation so that other sectors in a Flash block are available for read and program operations without waiting for the sector erase operation to complete.

An example flow to execute the sector erase abort operation is shown in Figure 28-31. The sector erase abort command write sequence is as follows:

- 1. Write to any Flash block address to start the command write sequence for the sector erase abort command. The address and data written are ignored.
- 2. Write the sector erase abort command, 0x47, to the FCMD register.
- 3. Clear the CBEIF flag in the FSTAT register by writing a 1 to CBEIF to launch the sector erase abort command.

If the sector erase abort command is launched resulting in the early termination of an active sector erase operation, the ACCERR flag will set once the operation completes as indicated by the CCIF flag being set. The ACCERR flag sets to inform the user that the Flash sector may not be fully erased and a new sector erase command must be launched before programming any location in that specific sector. If the sector erase abort command is launched but the active sector erase operation completes normally, the ACCERR flag will not set upon completion of the operation as indicated by the CCIF flag being set. Therefore, if the ACCERR flag is not set after the sector erase abort command has completed, a Flash sector being erased when the abort command was launched will be fully erased. The maximum number of cycles required to abort a sector erase operation is equal to four FCLK periods (see Section 28.4.1.1, "Writing the FCLKDIV Register") plus five bus cycles as measured from the time the CBEIF flag is cleared until the CCIF flag is set. If sectors in multiple Flash blocks are being simultaneously erased, the sector erase abort operation will be applied to all active Flash blocks without writing to each Flash block in the sector erase abort command write sequence.

NOTE

Since the ACCERR bit in the FSTAT register may be set at the completion of the sector erase abort operation, a command write sequence is not allowed to be buffered behind a sector erase abort command write sequence. The CBEIF flag will not set after launching the sector erase abort command to indicate that a command should not be buffered behind it. If an attempt is made to start a new command write sequence with a sector erase abort operation active, the ACCERR flag in the FSTAT register will be set. A new command write sequence may be started after clearing the ACCERR flag, if set.

NOTE

The sector erase abort command should be used sparingly since a sector erase operation that is aborted counts as a complete program/erase cycle.

A.1.8 Power Dissipation and Thermal Characteristics

Power dissipation and thermal characteristics are closely related. The user must assure that the maximum operating junction temperature is not exceeded. The average chip-junction temperature (T_J) in °C can be obtained from:

$$\mathsf{T}_{\mathsf{J}} = \mathsf{T}_{\mathsf{A}} + (\mathsf{P}_{\mathsf{D}} \bullet \Theta_{\mathsf{J}} \mathsf{A})$$

 T_{I} = Junction Temperature, [°C]

 $T_A = Ambient Temperature, [°C]$

P_D = Total Chip Power Dissipation, [W]

 Θ_{JA} = Package Thermal Resistance, [°C/W]

The total power dissipation can be calculated from:

$$P_D = P_{INT} + P_{IO}$$

P_{INT} = Chip Internal Power Dissipation, [W]

Two cases with internal voltage regulator enabled and disabled must be considered:

1. Internal voltage regulator disabled

$$P_{INT} = I_{DD} \cdot V_{DD} + I_{DDPLL} \cdot V_{DDPLL} + I_{DDA} \cdot V_{DDA}$$
$$P_{IO} = \sum_{i} R_{DSON} \cdot I_{IO_{i}}^{2}$$

 $P_{\rm IO}$ is the sum of all output currents on I/O ports associated with V_{DDX} and $V_{DDR}.$ For R_{DSON} is valid:

$$R_{DSON} = \frac{V_{OL}}{I_{OL}}$$
; for outputs driven low

respectively

$$R_{DSON} = \frac{V_{DD5} - V_{OH}}{I_{OH}}; \text{for outputs driven high}$$

2. Internal voltage regulator enabled

$$P_{INT} = I_{DDR} \cdot V_{DDR} + I_{DDA} \cdot V_{DDA}$$

 I_{DDR} is the current shown in Table A-10. and not the overall current flowing into V_{DDR} , which additionally contains the current flowing into the external loads with output high.

$$P_{IO} = \sum_{i} R_{DSON} \cdot I_{IO_{i}}^{2}$$

 P_{IO} is the sum of all output currents on I/O ports associated with V_{DDX} and V_{DDR} .

Condit	Conditions are shown in Table A-4 unless otherwise noted											
Num	С	Rating	Symbol	Min	Тур	Max	Unit					
1	Ρ	Self clock mode frequency	f _{SCM}	1	_	5.5	MHz					
2	D	VCO locking range	f _{VCO}	8	—	80	MHz					
3	D	Lock detector transition from acquisition to tracking mode	$ \Delta_{trk} $	3	—	4	% ¹					
4	D	Lock detection	$ \Delta_{Lock} $	0	—	1.5	% ¹					
5	D	Unlock detection	$ \Delta_{unl} $	0.5	—	2.5	% ¹					
6	D	Lock detector transition from tracking to acquisition mode	$ \Delta_{unt} $	6	—	8	% ¹					
7	С	PLLON total stabilization delay (auto mode) ²	t _{stab}	_	0.24	—	ms					
8	D	PLLON acquisition mode stabilization delay ²	t _{acq}	_	0.09	—	ms					
9	D	PLLON tracking mode stabilization delay ²	t _{al}	_	0.16	—	ms					
10	D	Fitting parameter VCO loop gain	K ₁	—	-195	—	MHz/V					
11	D	Fitting parameter VCO loop frequency	f ₁	_	126	_	MHz					
12	D	Charge pump current acquisition mode	i _{ch}	_	38.5	—	μA					
13	D	Charge pump current tracking mode	∣i _{ch} ∣	_	3.5	—	μA					
14	С	Jitter fit parameter 1 ²	j ₁		0.9	1.3	%					
15	С	Jitter fit parameter 2 ²	j ₂		0.02	0.12	%					

Table A-23. PLL Characteristics

¹ % deviation from target frequency

 2 f_{osc} = 4 MHz, f_{BUS} = 40 MHz equivalent f_{VCO} = 80 MHz: REFDV = #\$00, SYNR = #\$09, C_S = 4.7 nF, C_P = 470 pF, R_S = 4.7 k\Omega

A.6 MSCAN

Table A-24. MSCAN Wake-up Pulse Characteristics

Condit	Conditions are shown in Table A-4 unless otherwise noted										
Num	С	Rating	Symbol	Min	Тур	Max	Unit				
1	Р	MSCAN wakeup dominant pulse filtered	t _{WUP}	_	_	2	μs				
2	Р	MSCAN wakeup dominant pulse pass	t _{WUP}	5	—	—	μs				

0x00D0–0x00D7 Asynchronous Serial Interface (SCI1) Map (continued)

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
0x00D5	SCI1SR2	R	AMAP	0	0	ΤΧΡΟΙ	RXPOI	BRK13		RAF	
		CONTOR	00110112	00110112	W	, uvi, u				100 02	BRITIO
00000	SCI1DRH		R	R8	то	0	0	0	0	0	0
000006		W		10							
0x00D7	SCIIDDI	R	R7	R6	R5	R4	R3	R2	R1	R0	
	SCHURL	W	T7	T6	T5	T4	Т3	T2	T1	Т0	

¹ Those registers are accessible if the AMAP bit in the SCI1SR2 register is set to zero

² Those registers are accessible if the AMAP bit in the SCI1SR2 register is set to one

0x00D8–0x00DF Serial Peripheral Interface (SPI0) Map

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0x00D8	SPI0CR1	R W	SPIE	SPE	SPTIE	MSTR	CPOL	CPHA	SSOE	LSBFE
0x00D9		R	0	0	0	MODEEN	BIDIROF	0	SPISWAI	SPC0
0.00020	01100112	W					DIDINOL			0.00
	SPIOBR	R	0	SPPR2	SPPR1	SPPR0	0	SPR2	SPR1	SPR0
ONCODIN	OFIODIC	W						01112		OFIC
0x00DB	SPI0SR	R	SPIF	0	SPTEF	MODF	0	0	0	0
ONCODE		W								
0x00DC	Reserved	R	0	0	0	0	0	0	0	0
000000	Received	W								
0x00DD	SPIODR	R	Bit7	6	5	4	з	2	1	Bit0
UNUUDD	OFICER	W	DIG	0	0		0	L	1	Dito
	Received	R	0	0	0	0	0	0	0	0
UNUUDE	Reserved	W								
	Reserved	R	0	0	0	0	0	0	0	0
UXUUDF	Reserveu	W								

0x00E0-0x00E7 Inter IC Bus (IIC0) Map

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
0x00E0	IBAD	R W	ADR7	ADR6	ADR5	ADR4	ADR3	ADR2	ADR1	0	
0x00E1	IBFD	R W	IBC7	IBC6	IBC5	IBC4	IBC3	IBC2	IBC1	IBC0	
	IBCR	R	IBEN	IBIE	MS/SI	TX/RX	τχακ	0	0	IBSWAI	
ONCOLL	IDOIN	12011	W	IBEN	1012	110,02	174100	170	RSTA		12011/1
	IBSR	R	TCF	IAAS	IBB	IBAI	0	SRW	IRIE	RXAK	
0000000		W				IDAL					
0x00E4	IBDR	R W	D7	D6	D5	D4	D3	D2	D1	D 0	