
Freescale Semiconductor - MC9S12XD64CAA Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor HCS12X

Core Size 16-Bit

Speed 80MHz

Connectivity CANbus, EBI/EMI, I²C, IrDA, LINbus, SCI, SPI

Peripherals LVD, POR, PWM, WDT

Number of I/O 59

Program Memory Size 64KB (64K x 8)

Program Memory Type FLASH

EEPROM Size 1K x 8

RAM Size 4K x 8

Voltage - Supply (Vcc/Vdd) 2.35V ~ 5.5V

Data Converters A/D 8x10b

Oscillator Type External

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 80-QFP

Supplier Device Package 80-QFP (14x14)

Purchase URL https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mc9s12xd64caa

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/mc9s12xd64caa-4397803
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

MC9S12XDP512 Data Sheet, Rev. 2.21

20 Freescale Semiconductor

Section Number Title Page

20.4 Functional Description . 768
20.4.1 S12XDBG Operation . 768
20.4.2 Comparator Modes . 769
20.4.3 Trigger Modes . 772
20.4.4 State Sequence Control . 774
20.4.5 Trace Buffer Operation . 775
20.4.6 Tagging . 782
20.4.7 Breakpoints . 783

Chapter 21
External Bus Interface (S12XEBIV2)

21.1 Introduction . 787
21.1.1 Features . 787
21.1.2 Modes of Operation . 787
21.1.3 Block Diagram . 788

21.2 External Signal Description . 788
21.3 Memory Map and Register Definition . 790

21.3.1 Module Memory Map . 790
21.3.2 Register Descriptions . 790

21.4 Functional Description . 794
21.4.1 Operating Modes and External Bus Properties . 794
21.4.2 Internal Visibility . 795
21.4.3 Accesses to Port Replacement Registers . 798
21.4.4 Stretched External Bus Accesses . 798
21.4.5 Data Select and Data Direction Signals . 799
21.4.6 Low-Power Options . 801

21.5 Initialization/Application Information . 801
21.5.1 Normal Expanded Mode . 802
21.5.2 Emulation Modes . 803

Chapter 22
DP512 Port Integration Module (S12XDP512PIMV2)

22.1 Introduction . 807
22.1.1 Features . 808
22.1.2 Block Diagram . 808

22.2 External Signal Description . 810
22.2.1 Signal Properties . 810

22.3 Memory Map and Register Definition . 817
22.3.1 Module Memory Map . 817
22.3.2 Register Descriptions . 820

22.4 Functional Description . 881
22.4.1 Registers . 881

Chapter 1 Device Overview MC9S12XD-Family

MC9S12XDP512 Data Sheet, Rev. 2.21

42 Freescale Semiconductor

Table 1-3. Device Internal Resources (see Figure 1-4)

Device
RAMSIZE/
RAM_LOW

EEPROMSIZE/
EEPROM_LOW

FLASHSIZE0/
FLASH_LOW

FLASHSIZE1/
FLASH_HIGH

9S12XDT384 20K
0x0F_B000

4K
0x13_F000

128K
0x79_FFFF

256K
0x7C_0000

9S12XDQ256 16K
0x0F_C000

4K
0x13_F000

128K
0x79_FFFF

128K
0x7E_0000

9S12XDT256 16K
0x0F_C000

4K
0x13_F000

9S12XD256 14K
0x0F_C800

4K
0x13_F000

9S12XA256 16K
0x0F_C000

4K
0x13_F000

9S12XB256 10K
0x0F_D800

2K
0x13_F800

Chapter 2 Clocks and Reset Generator (S12CRGV6)

MC9S12XDP512 Data Sheet, Rev. 2.21

Freescale Semiconductor 87

5
LVRF

Low Voltage Reset Flag — If low voltage reset feature is not available (see device specification) LVRF always
reads 0. LVRF is set to 1 when a low voltage reset occurs. This flag can only be cleared by writing a 1. Writing
a 0 has no effect.
0 Low voltage reset has not occurred.
1 Low voltage reset has occurred.

4
LOCKIF

PLL Lock Interrupt Flag — LOCKIF is set to 1 when LOCK status bit changes. This flag can only be cleared
by writing a 1. Writing a 0 has no effect.If enabled (LOCKIE = 1), LOCKIF causes an interrupt request.
0 No change in LOCK bit.
1 LOCK bit has changed.

3
LOCK

Lock Status Bit — LOCK reflects the current state of PLL lock condition. This bit is cleared in self clock mode.
Writes have no effect.
0 PLL VCO is not within the desired tolerance of the target frequency.
1 PLL VCO is within the desired tolerance of the target frequency.

2
TRACK

Track Status Bit — TRACK reflects the current state of PLL track condition. This bit is cleared in self clock mode.
Writes have no effect.
0 Acquisition mode status.
1Tracking mode status.

1
SCMIF

Self Clock Mode Interrupt Flag — SCMIF is set to 1 when SCM status bit changes. This flag can only be
cleared by writing a 1. Writing a 0 has no effect. If enabled (SCMIE = 1), SCMIF causes an interrupt request.
0 No change in SCM bit.
1 SCM bit has changed.

0
SCM

Self Clock Mode Status Bit — SCM reflects the current clocking mode. Writes have no effect.
0 MCU is operating normally with OSCCLK available.
1 MCU is operating in self clock mode with OSCCLK in an unknown state. All clocks are derived from PLLCLK

running at its minimum frequency fSCM.

Table 2-2. CRGFLG Field Descriptions (continued)

Field Description

Chapter 4 Analog-to-Digital Converter (ATD10B16CV4) Block Description

MC9S12XDP512 Data Sheet, Rev. 2.21

150 Freescale Semiconductor

4.3.2.15 Port Data Register 1 (PORTAD1)

The data port associated with the ATD is input-only. The port pins are shared with the analog A/D inputs
AN7-0.

Read: Anytime

Write: Anytime, no effect

The A/D input channels may be used for general-purpose digital input.

7 6 5 4 3 2 1 0

R PTAD7 PTAD6 PTAD5 PTAD4 PTAD3 PTAD2 PTAD1 PTAD0

W

Reset 1 1 1 1 1 1 1 1

Pin
Function

AN 7 AN6 AN5 AN4 AN3 AN2 AN1 AN0

= Unimplemented or Reserved

Figure 4-17. Port Data Register 1 (PORTAD1)

Table 4-26. PORTAD1 Field Descriptions

Field Description

7:0
PTAD[7:8]

A/D Channel x (ANx) Digital Input Bits — If the digital input buffer on the ANx pin is enabled (IENx=1) or
channel x is enabled as external trigger (ETRIGE = 1, ETRIGCH[3-0] = x, ETRIGSEL = 0) read returns the
logic level on ANx pin (signal potentials not meeting VIL or VIH specifications will have an indeterminate value)).
If the digital input buffers are disabled (IENx = 0) and channel x is not enabled as external trigger, read returns
a “1”.
Reset sets all PORTAD1 bits to “1”.

Chapter 6 XGATE (S12XGATEV2)

MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor 245

Operation

PC + $0002 + (REL10 << 1) ⇒ PC

Branches always

CCR Effects

Code and CPU Cycles

BRA Branch Always BRA

N Z V C

— — — —

N: Not affected.
Z: Not affected.
V: Not affected.
C: Not affected.

Source Form
Address

Mode
Machine Code Cycles

BRA REL10 REL10 0 0 1 1 1 1 REL10 PP

Chapter 10 Freescale’s Scalable Controller Area Network (S12MSCANV3)

MC9S12XDP512 Data Sheet, Rev. 2.21

Freescale Semiconductor 423

0x0002
CANBTR0

R
SJW1 SJW0 BRP5 BRP4 BRP3 BRP2 BRP1 BRP0

W

0x0003
CANBTR1

R
SAMP TSEG22 TSEG21 TSEG20 TSEG13 TSEG12 TSEG11 TSEG10

W

0x0004
CANRFLG

R
WUPIF CSCIF

RSTAT1 RSTAT0 TSTAT1 TSTAT0
OVRIF RXF

W

0x0005
CANRIER

R
WUPIE CSCIE RSTATE1 RSTATE0 TSTATE1 TSTATE0 OVRIE RXFIE

W

0x0006
CANTFLG

R 0 0 0 0 0
TXE2 TXE1 TXE0

W

0x0007
CANTIER

R 0 0 0 0 0
TXEIE2 TXEIE1 TXEIE0

W

0x0008
CANTARQ

R 0 0 0 0 0
ABTRQ2 ABTRQ1 ABTRQ0

W

0x0009
CANTAAK

R 0 0 0 0 0 ABTAK2 ABTAK1 ABTAK0

W

0x000A
CANTBSEL

R 0 0 0 0 0
TX2 TX1 TX0

W

0x000B
CANIDAC

R 0 0
IDAM1 IDAM0

0 IDHIT2 IDHIT1 IDHIT0

W

0x000C
Reserved

R 0 0 0 0 0 0 0 0

W

0x000D
CANMISC

R 0 0 0 0 0 0 0
BOHOLD

W

0x000E
CANRXERR

R RXERR7 RXERR6 RXERR5 RXERR4 RXERR3 RXERR2 RXERR1 RXERR0

W

0x000F
CANTXERR

R TXERR7 TXERR6 TXERR5 TXERR4 TXERR3 TXERR2 TXERR1 TXERR0

W

0x0010–0x0013
CANIDAR0–3

R
AC7 AC6 AC5 AC4 AC3 AC2 AC1 AC0

W

Register
Name

Bit 7 6 5 4 3 2 1 Bit 0

= Unimplemented or Reserved u = Unaffected

Figure 10-3. MSCAN Register Summary (continued)

MC9S12XDP512 Data Sheet, Rev. 2.21

Freescale Semiconductor 515

Chapter 12
Serial Peripheral Interface (S12SPIV4)

12.1 Introduction
The SPI module allows a duplex, synchronous, serial communication between the MCU and peripheral
devices. Software can poll the SPI status flags or the SPI operation can be interrupt driven.

12.1.1 Glossary of Terms

12.1.2 Features

The SPI includes these distinctive features:

• Master mode and slave mode

• Bidirectional mode

• Slave select output

• Mode fault error flag with CPU interrupt capability

• Double-buffered data register

• Serial clock with programmable polarity and phase

• Control of SPI operation during wait mode

12.1.3 Modes of Operation

The SPI functions in three modes: run, wait, and stop.

• Run mode

This is the basic mode of operation.

• Wait mode

SPI Serial Peripheral Interface

SS Slave Select

SCK Serial Clock

MOSI Master Output, Slave Input

MISO Master Input, Slave Output

MOMI Master Output, Master Input

SISO Slave Input, Slave Output

Chapter 17 Memory Mapping Control (S12XMMCV2)

MC9S12XDP512 Data Sheet, Rev. 2.21

Freescale Semiconductor 643

17.4.4.2 Access Conflicts on Target Buses

The arbitration scheme allows only one master to be connected to a target at any given time. The following
rules apply when prioritizing accesses from different masters to the same target bus:

• CPU always has priority over XGATE.

• BDM access has priority over XGATE.

• XGATE access to PRU registers constitutes a special case. It is always granted and stalls the CPU
and BDM for its duration.

• In emulation modes all internal accesses are visible on the external bus as well.

• During access to the PRU registers, the external bus is reserved.

17.4.5 Interrupts

17.4.5.1 Outgoing Interrupt Requests

The following interrupt requests can be triggered by the MMC module:

CPU access violation: The CPU access violation signals to the CPU detection of an error condition in the
CPU application code which is resulted in write access to the protected XGATE RAM area (see
Section 1.4.3.2, “Illegal CPU Accesses”).

17.5 Initialization/Application Information

17.5.1 CALL and RTC Instructions

CALL and RTC instructions are uninterruptable CPU instructions that automate page switching in the
program page window. The CALL instruction is similar to the JSR instruction, but the subroutine that is
called can be located anywhere in the local address space or in any Flash or ROM page visible through the
program page window. The CALL instruction calculates and stacks a return address, stacks the current
PPAGE value and writes a new instruction-supplied value to the PPAGE register. The PPAGE value
controls which of the 256 possible pages is visible through the 16 Kbyte program page window in the
64 Kbyte local CPU memory map. Execution then begins at the address of the called subroutine.

During the execution of the CALL instruction, the CPU performs the following steps:

1. Writes the current PPAGE value into an internal temporary register and writes the new
instruction-supplied PPAGE value into the PPAGE register

2. Calculates the address of the next instruction after the CALL instruction (the return address) and
pushes this 16-bit value onto the stack

3. Pushes the temporarily stored PPAGE value onto the stack

4. Calculates the effective address of the subroutine, refills the queue and begins execution at the new
address

Chapter 18 Memory Mapping Control (S12XMMCV3)

MC9S12XDP512 Data Sheet, Rev. 2.21

690 Freescale Semiconductor

Chapter 19 S12X Debug (S12XDBGV2) Module

MC9S12XDP512 Data Sheet, Rev. 2.21

Freescale Semiconductor 723

Loop1 mode only inhibits consecutive duplicate source address entries that would typically be stored in
most tight looping constructs. It does not inhibit repeated entries of destination addresses or vector
addresses, since repeated entries of these would most likely indicate a bug in the user’s code that the DBG
module is designed to help find.

NOTE
In certain very tight loops, the source address will have already been fetched
again before the background comparator is updated. This results in the
source address being stored twice before further duplicate entries are
suppressed. This condition occurs with branch-on-bit instructions when the
branch is fetched by the first P-cycle of the branch or with loop-construct
instructions in which the branch is fetched with the first or second P cycle.
See examples below:

LOOP INX ;1-byte instruction fetched by 1st P-cycle of BRCLR
BRCLR CMPTMP,#$0c,LOOP ;the BRCLR instruction also will be fetched by 1st P-cycle

;of BRCLR

LOOP2 BRN* ; 2-byte instruction fetched by 1st P-cycle of DBNE
NOP ; 1-byte instruction fetched by 2nd P-cycle of DBNE
DBNE A,LOOP2 ; this instruction also fetched by 2nd P-cycle of DBNE

19.4.5.2.3 Detail Mode

In detail mode, address and data for all memory and register accesses is stored in the trace buffer. In the
case of XGATE tracing this means that initialization of the R1 register during a vector fetch is not traced.
This mode is intended to supply additional information on indexed, indirect addressing modes where
storing only the destination address would not provide all information required for a user to determine
where the code is in error. This mode also features information byte storage to the trace buffer, for each
address byte storage. The information byte indicates the size of access (word or byte), the type of access
(read or write).

When tracing CPU activity in detail mode, all cycles are traced except those when the CPU is either in a
free or opcode fetch cycle. In this mode the XGATE program counter is also traced to provide a snapshot
of the XGATE activity. CXINF information byte bits indicate the type of XGATE activity occurring at the
time of the trace buffer entry. When tracing CPU activity alone in detail mode, the address range can be
limited to a range specified by the TRANGE bits in DBGTCR. This function uses comparators C and D
to define an address range inside which CPU activity should be traced (see Table 19-10). Thus, the traced
CPU activity can be restricted to register range accesses.

When tracing XGATE activity in detail mode, all cycles apart from opcode fetch and free cycles are stored
to the trace buffer. Additionally the CPU program counter is stored at the time of the XGATE trace buffer
entry to provide a snapshot of CPU activity.

19.4.5.3 Trace Buffer Organization

The buffer can be used to trace either from CPU, from XGATE or from both sources. An “X” prefix
denotes information from the XGATE module, a “C” prefix denotes information from the CPU.
ADRH,ADRM,ADRL denote address high, middle and low byte respectively. INF bytes contain control

Chapter 19 S12X Debug (S12XDBGV2) Module

MC9S12XDP512 Data Sheet, Rev. 2.21

726 Freescale Semiconductor

This describes the format of the information byte used only when tracing from CPU or XGATE in detail
mode. When tracing from the CPU in detail mode, information is stored to the trace buffer on all cycles
except opcode fetch and free cycles. The XGATE entry stored on the same line is a snapshot of the
XGATE program counter. In this case the CSZ and CRW bits indicate the type of access being made by
the CPU, while the XACK and XOCF bits indicate if the simultaneous XGATE cycle is a free cycle (no
bus acknowledge) or opcode fetch cycle. Similarly when tracing from the XGATE in detail mode,
information is stored to the trace buffer on all cycles except opcode fetch and free cycles. The CPU entry
stored on the same line is a snapshot of the CPU program counter. In this case the XSZ and XRW bits
indicate the type of access being made by the XGATE, while the CFREE and COCF bits indicate if the
simultaneous CPU cycle is a free cycle or opcode fetch cycle.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

CFREE CSZ CRW COCF XACK XSZ XRW XOCF

Figure 19-26. Information Byte CXINF

Table 19-42. CXINF Field Descriptions

Field Description

7
CREE

CPU Free Cycle Indicator — This bit indicates if the stored CPU address corresponds to a free cycle. This bit
only contains valid information when tracing the XGATE accesses in detail mode.
0 Stored information corresponds to free cycle
1 Stored information does not correspond to free cycle

6
CSZ

Access Type Indicator — This bit indicates if the access was a byte or word size access.This bit only contains
valid information when tracing CPU activity in detail mode.
0 Word Access
1 Byte Access

5
CRW

Read Write Indicator — This bit indicates if the corresponding stored address corresponds to a read or write
access. This bit only contains valid information when tracing CPU activity in detail mode.
0 Write Access
1 Read Access

4
COCF

CPU Opcode Fetch Indicator — This bit indicates if the stored address corresponds to an opcode fetch cycle.
This bit only contains valid information when tracing the XGATE accesses in detail mode.
0 Stored information does not correspond to opcode fetch cycle
1 Stored information corresponds to opcode fetch cycle

3
XACK

XGATE Access Indicator — This bit indicates if the stored XGATE address corresponds to a free cycle. This
bit only contains valid information when tracing the CPU accesses in detail mode.
0 Stored information corresponds to free cycle
1 Stored information does not correspond to free cycle

2
XSZ

Access Type Indicator — This bit indicates if the access was a byte or word size access. This bit only contains
valid information when tracing XGATE activity in detail mode.
0 Word Access
1 Byte Access

Chapter 19 S12X Debug (S12XDBGV2) Module

MC9S12XDP512 Data Sheet, Rev. 2.21

Freescale Semiconductor 727

19.4.5.3.2 Reading Data from Trace Buffer

The data stored in the trace buffer can be read using either the background debug module (BDM) module
or the CPU provided the DBG module is not armed, is configured for tracing (at least one TSOURCE bit
is set) and the system not secured. When the ARM bit is written to 1 the trace buffer is locked to prevent
reading. The trace buffer can only be unlocked for reading by a single aligned word write to DBGTB when
the module is disarmed. Multiple writes to the DBGTB are not allowed since they increment the pointer.

The trace buffer can only be read through the DBGTB register using aligned word reads, any byte or
misaligned reads return 0 and do not cause the trace buffer pointer to increment to the next trace buffer
address. The trace buffer data is read out first-in first-out. By reading CNT in DBGCNT the number of
valid 64-bit lines can be determined. DBGCNT will not decrement as data is read.

Whilst reading an internal pointer is used to determine the next line to be read. After a tracing session, the
pointer points to the oldest data entry, thus if no overflow has occurred, the pointer points to line0,
otherwise it points to the line with the oldest entry. The pointer is initialized by each aligned write to
DBGTBH to point to the oldest data again. This enables an interrupted trace buffer read sequence to be
easily restarted from the oldest data entry.

The least significant word of each 64-bit wide array line is read out first. This corresponds to the bytes 1
and 0 of Table 19-39. The bytes containing invalid information (shaded in Table 19-39) are also read out.

Reading the trace buffer while the DBG module is armed will return invalid data and no shifting of the
RAM pointer will occur. Reading the trace buffer is not possible if both TSOURCE bits are cleared.

1
XRW

Read Write Indicator — This bit indicates if the corresponding stored address corresponds to a read or write
access. This bit only contains valid information when tracing XGATE activity in detail mode.
0 Read/Write Access
1 Access

0
XOCF

XGATE Opcode Fetch Indicator — This bit indicates if the stored address corresponds to an opcode fetch
cycle.This bit only contains valid information when tracing the CPU accesses in detail mode.
0 Stored information does not correspond to opcode fetch cycle
1 Stored information corresponds to opcode fetch cycle

Table 19-42. CXINF Field Descriptions (continued)

Field Description

Chapter 19 S12X Debug (S12XDBGV2) Module

MC9S12XDP512 Data Sheet, Rev. 2.21

740 Freescale Semiconductor

Chapter 21 External Bus Interface (S12XEBIV2)

MC9S12XDP512 Data Sheet, Rev. 2.21

Freescale Semiconductor 799

Stretched accesses are controlled by:

1. EXSTR[2:0] bits in the EBICTL1 register configuring fixed amount of stretch cycles

2. Activation of the external wait feature by EWAITE in EBICTL1 register

3. Assertion of the external EWAIT signal when EWAITE = 1

The EXSTR[2:0] control bits can be programmed for generation of a fixed number of 1 to 8 stretch cycles.
If the external wait feature is enabled, the minimum number of additional stretch cycles is 2. An arbitrary
amount of stretch cycles can be added using the EWAIT input.

EWAIT needs to be asserted at least for a minimal specified time window within an external access cycle
for the internal logic to detect it and add a cycle (refer to electrical characteristics). Holding it for additional
cycles will cause the external bus access to be stretched accordingly.

Write accesses are stretched by holding the initiator in its current state for additional cycles as programmed
and controlled by external wait after the data have been driven out on the external bus. This results in an
extension of time the bus signals and the related control signals are valid externally.

Read data are not captured by the system in normal expanded mode until the specified setup time before
the RE rising edge.

Read data are not captured in emulation expanded mode until the specified setup time before the falling
edge of ECLK.

In emulation expanded mode, accesses to the internal flash or the emulation memory (determined by
EROMON and ROMON bits; see S12X_MMC section for details) always take 1 cycle and stretching is
not supported. In case the internal flash is taken out of the map in user applications, accesses are stretched
as programmed and controlled by external wait.

21.4.5 Data Select and Data Direction Signals

The S12X_EBI supports byte and word accesses at any valid external address. The big endian system of
the MCU is extended to the external bus; however, word accesses are restricted to even aligned addresses.
The only exception is the visibility of misaligned word accesses to addresses in the internal RAM as this
module exclusively supports these kind of accesses in a single cycle.

With the above restriction, a fixed relationship is implied between the address parity and the dedicated bus
halves where the data are accessed: DATA[15:8] is related to even addresses and DATA[7:0] is related to
odd addresses.

In expanded modes the data access type is externally determined by a set of control signals, i.e., data select
and data direction signals, as described below. The data select signals are not available if using the external
bus interface with an 8-bit data bus.

21.4.5.1 Normal Expanded Mode

In normal expanded mode, the external signals RE, WE, UDS, LDS indicate the access type (read/write),
data size and alignment of an external bus access (Table 21-17).

Chapter 22 DP512 Port Integration Module (S12XDP512PIMV2)

MC9S12XDP512 Data Sheet, Rev. 2.21

874 Freescale Semiconductor

22.3.2.63 Port AD0 Data Direction Register 1 (DDR1AD0)

Read: Anytime.

Write: Anytime.

This register configures pins PAD[07:00] as either input or output.

7 6 5 4 3 2 1 0

R
DDR1AD07 DDR1AD06 DDR1AD05 DDR1AD04 DDR1AD03 DDR1AD02 DDR1AD01 DDR1AD00

W

Reset 0 0 0 0 0 0 0 0

Figure 22-65. Port AD0 Data Direction Register 1 (DDR1AD0)

Table 22-58. DDR1AD0 Field Descriptions

Field Description

7–0
DDR1AD0[7:0]

Data Direction Port AD0 Register 1
0 Associated pin is configured as input.
1 Associated pin is configured as output.
Note: Due to internal synchronization circuits, it can take up to 2 bus clock cycles until the correct value is

read on PTAD01 register, when changing the DDR1AD0 register.
Note: To use the digital input function on port AD0 the ATD0 digital input enable register (ATD0DIEN) has to

be set to logic level “1”.

Chapter 23 DQ256 Port Integration Module (S12XDQ256PIMV2)

MC9S12XDP512 Data Sheet, Rev. 2.21
926 Freescale Semiconductor

23.0.5.11 S12X_EBI Ports, BKGD, VREGEN Pin Pull-up Control Register (PUCR)

Read: Anytime in single-chip modes.

Write: Anytime, except BKPUE which is writable in special test mode only.

This register is used to enable pull-up devices for the associated ports A, B, C, D, E, and K. Pull-up devices
are assigned on a per-port basis and apply to any pin in the corresponding port currently configured as an
input.

7 6 5 4 3 2 1 0

R
PUPKE BKPUE

0
PUPEE PUPDE PUPCE PUPBE PUPAE

W

Reset 1 1 0 1 0 0 0 0

= Unimplemented or Reserved

Figure 23-13. S12X_EBI Ports, BKGD, VREGEN Pin Pull-up Control Register (PUCR)

Table 23-14. PUCR Field Descriptions

Field Description

7
PUPKE

Pull-up Port K Enable
0 Port K pull-up devices are disabled.
1 Enable pull-up devices for Port K input pins.

6
BKPUE

BKGD and VREGEN Pin Pull-up Enable
0 BKGD and VREGEN pull-up devices are disabled.
1 Enable pull-up devices on BKGD and VREGEN pins.

4
PUPEE

Pull-up Port E Enable
0 Port E pull-up devices on bit 7, 4–0 are disabled.
1 Enable pull-up devices for Port E input pins bits 7, 4–0.
Note: Bits 5 and 6 of Port E have pull-down devices which are only enabled during reset. This bit has no effect

on these pins.

3
PUPDE

Pull-up Port D Enable
0 Port D pull-up devices are disabled.
1 Enable pull-up devices for all Port D input pins.

2
PUPCE

Pull-up Port C Enable
0 Port C pull-up devices are disabled.
1 Enable pull-up devices for all Port C input pins.

1
PUPBE

Pull-up Port B Enable
0 Port B pull-up devices are disabled.
1 Enable pull-up devices for all Port B input pins.

0
PUPAE

Pull-up Port A Enable
0 Port A pull-up devices are disabled.
1 Enable pull-up devices for all Port A input pins.

Chapter 26 4 Kbyte EEPROM Module (S12XEETX4KV2)

MC9S12XDP512 Data Sheet, Rev. 2.21

Freescale Semiconductor 1099

26.4.2.5 Sector Erase Abort Command

The sector erase abort operation will terminate the active sector erase or sector modify operation so that
other sectors in an EEPROM block are available for read and program operations without waiting for the
sector erase or sector modify operation to complete.

An example flow to execute the sector erase abort operation is shown in Figure 26-22. The sector erase
abort command write sequence is as follows:

1. Write to any EEPROM memory address to start the command write sequence for the sector erase
abort command. The address and data written are ignored.

2. Write the sector erase abort command, 0x47, to the ECMD register.

3. Clear the CBEIF flag in the ESTAT register by writing a 1 to CBEIF to launch the sector erase abort
command.

If the sector erase abort command is launched resulting in the early termination of an active sector erase
or sector modify operation, the ACCERR flag will set once the operation completes as indicated by the
CCIF flag being set. The ACCERR flag sets to inform the user that the EEPROM sector may not be fully
erased and a new sector erase or sector modify command must be launched before programming any
location in that specific sector. If the sector erase abort command is launched but the active sector erase or
sector modify operation completes normally, the ACCERR flag will not set upon completion of the
operation as indicated by the CCIF flag being set. If the sector erase abort command is launched after the
sector modify operation has completed the sector erase step, the program step will be allowed to complete.
The maximum number of cycles required to abort a sector erase or sector modify operation is equal to four
EECLK periods (see Section 26.4.1.1, “Writing the ECLKDIV Register”) plus five bus cycles as measured
from the time the CBEIF flag is cleared until the CCIF flag is set.

NOTE
Since the ACCERR bit in the ESTAT register may be set at the completion
of the sector erase abort operation, a command write sequence is not
allowed to be buffered behind a sector erase abort command write sequence.
The CBEIF flag will not set after launching the sector erase abort command
to indicate that a command should not be buffered behind it. If an attempt is
made to start a new command write sequence with a sector erase abort
operation active, the ACCERR flag in the ESTAT register will be set. A new
command write sequence may be started after clearing the ACCERR flag, if
set.

NOTE
The sector erase abort command should be used sparingly since a sector
erase operation that is aborted counts as a complete program/erase cycle.

Chapter 27 512 Kbyte Flash Module (S12XFTX512K4V2)

MC9S12XDP512 Data Sheet, Rev. 2.21

1142 Freescale Semiconductor

27.4.2.6 Sector Erase Abort Command

The sector erase abort operation will terminate the active sector erase operation so that other sectors in a
Flash block are available for read and program operations without waiting for the sector erase operation to
complete.

An example flow to execute the sector erase abort operation is shown in Figure 27-31. The sector erase
abort command write sequence is as follows:

1. Write to any Flash block address to start the command write sequence for the sector erase abort
command. The address and data written are ignored.

2. Write the sector erase abort command, 0x47, to the FCMD register.

3. Clear the CBEIF flag in the FSTAT register by writing a 1 to CBEIF to launch the sector erase abort
command.

If the sector erase abort command is launched resulting in the early termination of an active sector erase
operation, the ACCERR flag will set once the operation completes as indicated by the CCIF flag being set.
The ACCERR flag sets to inform the user that the Flash sector may not be fully erased and a new sector
erase command must be launched before programming any location in that specific sector. If the sector
erase abort command is launched but the active sector erase operation completes normally, the ACCERR
flag will not set upon completion of the operation as indicated by the CCIF flag being set. Therefore, if the
ACCERR flag is not set after the sector erase abort command has completed, a Flash sector being erased
when the abort command was launched will be fully erased. The maximum number of cycles required to
abort a sector erase operation is equal to four FCLK periods (see Section 27.4.1.1, “Writing the FCLKDIV
Register”) plus five bus cycles as measured from the time the CBEIF flag is cleared until the CCIF flag is
set. If sectors in multiple Flash blocks are being simultaneously erased, the sector erase abort operation
will be applied to all active Flash blocks without writing to each Flash block in the sector erase abort
command write sequence.

NOTE
Since the ACCERR bit in the FSTAT register may be set at the completion
of the sector erase abort operation, a command write sequence is not
allowed to be buffered behind a sector erase abort command write sequence.
The CBEIF flag will not set after launching the sector erase abort command
to indicate that a command should not be buffered behind it. If an attempt is
made to start a new command write sequence with a sector erase abort
operation active, the ACCERR flag in the FSTAT register will be set. A new
command write sequence may be started after clearing the ACCERR flag, if
set.

NOTE
The sector erase abort command should be used sparingly since a sector
erase operation that is aborted counts as a complete program/erase cycle.

Chapter 29 128 Kbyte Flash Module (S12XFTX128K1V1)

MC9S12XDP512 Data Sheet, Rev. 2.21

Freescale Semiconductor 1213

29.4.2.1 Erase Verify Command

The erase verify operation will verify that a Flash block is erased.

An example flow to execute the erase verify operation is shown in Figure 29-23. The erase verify command
write sequence is as follows:

1. Write to a Flash block address to start the command write sequence for the erase verify command.
The address and data written will be ignored.

2. Write the erase verify command, 0x05, to the FCMD register.

3. Clear the CBEIF flag in the FSTAT register by writing a 1 to CBEIF to launch the erase verify
command.

After launching the erase verify command, the CCIF flag in the FSTAT register will set after the operation
has completed unless a new command write sequence has been buffered. The number of bus cycles
required to execute the erase verify operation is equal to the number of addresses in a Flash block plus 14
bus cycles as measured from the time the CBEIF flag is cleared until the CCIF flag is set. Upon completion
of the erase verify operation, the BLANK flag in the FSTAT register will be set if all addresses in the
selected Flash block are verified to be erased. If any address in a selected Flash block is not erased, the
erase verify operation will terminate and the BLANK flag in the FSTAT register will remain clear. The
MRDS bits in the FTSTMOD register will determine the sense-amp margin setting during the erase verify
operation.

Appendix D Using L15Y Silicon

MC9S12XDP512 Data Sheet, Rev. 2.21

Freescale Semiconductor 1299

Appendix D
Using L15Y Silicon
The following items should be considerd when using L15Y Silicon:

• Do not write or read to registers which are marked “Reserved” in Table 1-1.

• Fill the interrupt vector locations which are marked “Reserved” in Table 1-12. according to your
coding policies for unused interrupts

• L15Y Silicon includes two analog to digital converters ATD0 and ATD1. ATD0 channels 7 to 0 are
connected to PAD07 to PAD00 and ATD1 channels 7 to 0 are connected to PAD15 to PAD08.

• L15Y Silicon integrates the S12X_DBG module Version 2. L15Y Silicon integrates the
S12X_MMC module Version 2. This Version doesn’t support the following enhancement which is
available on S12X_MMC Version 3:
— S12XCPU and S12XBDM can access MCU resources which are on different target busses at

the same time. I.E S12XCPU can access XSRAM and S12XBDM can access Register Space
at the same time.

