

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	HCS12X
Core Size	16-Bit
Speed	80MHz
Connectivity	CANbus, EBI/EMI, I ² C, IrDA, LINbus, SCI, SPI
Peripherals	LVD, POR, PWM, WDT
Number of I/O	59
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	16К х 8
Voltage - Supply (Vcc/Vdd)	2.35V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	80-QFP
Supplier Device Package	80-QFP (14x14)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mc9s12xdt256vaa

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- 10-bit resolution
- External and internal conversion trigger capabilityFiveFourTwo 1M bit per second, CAN 2.0 A, B software compatible modules
- Five receive and three transmit buffers
- Flexible identifier filter programmable as 2 x 32 bit, 4 x 16 bit, or 8 x 8 bit
- Four separate interrupt channels for Rx, Tx, error, and wake-up
- Low-pass filter wake-up function
- Loop-back for self-test operation
- ECT (enhanced capture timer)
 - 16-bit main counter with 7-bit prescaler
 - 8 programmable input capture or output compare channels
 - Four 8-bit or two 16-bit pulse accumulators
- 8 PWM (pulse-width modulator) channels
 - Programmable period and duty cycle
 - 8-bit 8-channel or 16-bit 4-channel
 - Separate control for each pulse width and duty cycle
 - Center-aligned or left-aligned outputs
 - Programmable clock select logic with a wide range of frequencies
 - Fast emergency shutdown input
- Serial interfaces
 - SixFourTwo asynchronous serial communication interfaces (SCI) with additional LIN support and selectable IrDA 1.4 return-to-zero-inverted (RZI) format with programmable pulse width
 - ThreeTwo Synchronous Serial Peripheral Interfaces (SPI)
- TwoOne IIC (Inter-IC bus) Modules
 - Compatible with IIC bus standard
 - Multi-master operation
 - Software programmable for one of 256 different serial clock frequencies
- On-Chip Voltage Regulator
 - Two parallel, linear voltage regulators with bandgap reference
 - Low-voltage detect (LVD) with low-voltage interrupt (LVI)
 - Power-on reset (POR) circuit
 - 3.3-V–5.5-V operation
 - Low-voltage reset (LVR)
 - Ultra low-power wake-up timer
- 144-pin LQFP, 112-pin LQFP, and 80-pin QFP packages
 - I/O lines with 5-V input and drive capability
 - Input threshold on external bus interface inputs switchable for 3.3-V or 5-V operation
 - 5-V A/D converter inputs
 - Operation at 80 MHz equivalent to 40-MHz bus speed

R

Device	RAMSIZE/	EEPROMSIZE/	FLASHSIZE/
	RAM_LOW	EEPROM_LOW	FLASH_LOW
9S12XDP512	32K	4K	512K
	0x0F_8000	0x13_F000	0x78_0000
9S12XDT512	20K	4K	512K
	0x0F_B000	0x13_F000	0x78_0000
9S12XA512	32K	4K	512K
	0x0F_8000	0x13_F000	0x78_0000
9S12XDG128	12K	2K	128K
	0x0F_D000	0x13_F800	7E_0000
3S12XDG128	12K	2K	128K
	0x0F_D000	0x13_F800	7E_0000
9S12XD128	8K	2K	128K
	0x0F_E000	0x13_F800	7E_0000
9S12XD64	4K	1K	64K
	0x0F_F000	0x13_FC00	7F_0000
9S12XB128	6K	1K	128K
	0x0F_E800	0x13_FC00	7E_0000
9S12XA128	12K	2K	128K
	0x0F_D000	0x13_F800	7E_0000

Table 1-2. Device Internal Resources (see Figure 1-3)

1.2.2 Signal Properties Summary

Table 1-7 summarizes the pin functionality of the MC9S12XDP512. For available modules on other parts of the S12XD, S12XB and S12XA family please refer to Appendix E Derivative Differences.

Pin	Pin Pin Pin Pin Pin Powe		Power	Internal Resist	Pull or	Description		
Function 1	Function 2	Function 3	Function 4	Function 5	Supply	CTRL	Reset State	Description
EXTAL	_				V _{DDPLL}	NA	NA	Oscillator pins
XTAL					V _{DDPLL} NA NA			
RESET				_	V _{DDR}	PULLU	JP	External reset
TEST				_	N.A.	RESET pin	DOWN	Test input
VREGEN	_	—	—	—	V _{DDX}	PUCR	Up	Voltage regulator enable Input
XFC		_	_	_	V _{DDPLL}	NA	NA	PLL loop filter
BKGD	MODC	_	—	_	V _{DDX}	Always on	Up	Background debug
PAD[23:08]	AN[23:8]	_	_	_	V _{DDA}	PER0/ PER1	Disabled	Port AD I/O, Port AD inputs of ATD1 and analog inputs of ATD1
PAD[07:00]	AN[7:0]	—	—	—	V _{DDA}	PER1	Disabled	Port AD I/O, Port AD inputs of ATD0 and analog inputs of ATD0
PA[7:0]	—	_	_	_	V _{DDR}	PUCR	Disabled	Port A I/O
PB[7:0]	—				V _{DDR}	PUCR	Disabled	Port BI/O
PA[7:0]	ADDR[15:8]	IVD[15:8]	_	_	V _{DDR}	PUCR	Disabled	Port A I/O, address bus, internal visibility data
PB[7:1]	ADDR[7:1]	IVD[7:0]	—	_	- V _{DDR} PUCR Disabled Port B I/C		Port B I/O, address bus, internal visibility data	
PB0	ADDR0	UDS	JDS V _{DDR} PUCR Disabled Port B upper of		Port B I/O, address bus, upper data strobe			
PC[7:0]	DATA[15:8]				V _{DDR}	PUCR	Disabled	Port C I/O, data bus
PD[7:0]	DATA[7:0]				V _{DDR}	PUCR	Disabled	Port D I/O, data bus
PE7	ECLKX2	XCLKS	_	_	V _{DDR}	PUCR	Up	Port E I/O, system clock output, clock select
PE6	TAGHI	MODB	—	_	V _{DDR}	While RE pin is low:	SET down	Port E I/O, tag high, mode input
PE5	RE	MODA	TAGLO	_	V _{DDR}	While RE pin is low:	SET down	Port E I/O, read enable, mode input, tag low input
PE4	ECLK	_	_		V _{DDR}	PUCR	Up	Port E I/O, bus clock output
PE3	LSTRB	LDS	EROMCTL	_	V _{DDR}	PUCR	Up	Port E I/O, low byte data strobe, EROMON control
PE2	R/W	WE			V _{DDR}	PUCR	Up	Port E I/O, read/write
PE1	ĪRQ				V _{DDR}	PUCR	Up	Port E Input, maskable interrupt

Table 1-7. Signal Properties Summary (Sheet 1 of 4)

MC9S12XDP512 Data Sheet, Rev. 2.21

Figure 4-2. ATD Register Summary (continued)

4.3.2.1 ATD Control Register 0 (ATDCTL0)

⁴ Analog-to-Digital Converter (ATD10B16CV4) Block Description

Writes to this register will abort current conversion sequence but will not start a new sequence.

Figure 4-3. ATD Control Register 0 (ATDCTL0)

Read: Anytime

Write: Anytime

Table 4-2. ATDCTL0 Field Descriptions

Field	Description
3:0 WRAP[3:0]	Wrap Around Channel Select Bits — These bits determine the channel for wrap around when doing multi-channel conversions. The coding is summarized in Table 4-3.

Bit Test Immediate 8 bit Constant (Low Byte)

Operation

RD.L & IMM8 \Rightarrow NONE

Performs a bit wise logical AND between the low byte of register RD and an immediate 8 bit constant. Only the condition code flags get updated, but no result is written back.

CCR Effects

NZVC

 Δ Δ 0 -

- N: Set if bit 7 of the result is set; cleared otherwise.
- Z: Set if the 8 bit result is \$00; cleared otherwise.
- V: 0; cleared.
- C: Not affected.

Code and CPU Cycles

Source Form	Address Mode						Machin	e Code	Cycles
BITL RD, #IMM8	IMM8	1	0	0	1	0	RD	IMM8	Р

Chapter 7 Enhanced Capture Timer (S12ECT16B8CV2)

Figure 7-67. Detailed Timer Block Diagram in Queue Mode when PRNT = 0

MC9S12XDP512 Data Sheet, Rev. 2.21

11 Serial Communication Interface (S12SCIV5)

11.4.6.6.1 Idle Input line Wakeup (WAKE = 0)

In this wakeup method, an idle condition on the RXD pin clears the RWU bit and wakes up the SCI. The initial frame or frames of every message contain addressing information. All receivers evaluate the addressing information, and receivers for which the message is addressed process the frames that follow. Any receiver for which a message is not addressed can set its RWU bit and return to the standby state. The RWU bit remains set and the receiver remains on standby until another idle character appears on the RXD pin.

Idle line wakeup requires that messages be separated by at least one idle character and that no message contains idle characters.

The idle character that wakes a receiver does not set the receiver idle bit, IDLE, or the receive data register full flag, RDRF.

The idle line type bit, ILT, determines whether the receiver begins counting logic 1s as idle character bits after the start bit or after the stop bit. ILT is in SCI control register 1 (SCICR1).

11.4.6.6.2 Address Mark Wakeup (WAKE = 1)

In this wakeup method, a logic 1 in the most significant bit (MSB) position of a frame clears the RWU bit and wakes up the SCI. The logic 1 in the MSB position marks a frame as an address frame that contains addressing information. All receivers evaluate the addressing information, and the receivers for which the message is addressed process the frames that follow. Any receiver for which a message is not addressed can set its RWU bit and return to the standby state. The RWU bit remains set and the receiver remains on standby until another address frame appears on the RXD pin.

The logic 1 MSB of an address frame clears the receiver's RWU bit before the stop bit is received and sets the RDRF flag.

Address mark wakeup allows messages to contain idle characters but requires that the MSB be reserved for use in address frames.

NOTE

With the WAKE bit clear, setting the RWU bit after the RXD pin has been idle can cause the receiver to wake up immediately.

11.4.7 Single-Wire Operation

Normally, the SCI uses two pins for transmitting and receiving. In single-wire operation, the RXD pin is disconnected from the SCI. The SCI uses the TXD pin for both receiving and transmitting.

Figure 11-30. Single-Wire Operation (LOOPS = 1, RSRC = 1)

12.4.1 Master Mode

The SPI operates in master mode when the MSTR bit is set. Only a master SPI module can initiate transmissions. A transmission begins by writing to the master SPI data register. If the shift register is empty, the byte immediately transfers to the shift register. The byte begins shifting out on the MOSI pin under the control of the serial clock.

Serial clock

The SPR2, SPR1, and SPR0 baud rate selection bits, in conjunction with the SPPR2, SPPR1, and SPPR0 baud rate preselection bits in the SPI baud rate register, control the baud rate generator and determine the speed of the transmission. The SCK pin is the SPI clock output. Through the SCK pin, the baud rate generator of the master controls the shift register of the slave peripheral.

• MOSI, MISO pin

In master mode, the function of the serial data output pin (MOSI) and the serial data input pin (MISO) is determined by the SPC0 and BIDIROE control bits.

• \overline{SS} pin

If MODFEN and SSOE are set, the \overline{SS} pin is configured as slave select output. The \overline{SS} output becomes low during each transmission and is high when the SPI is in idle state.

If MODFEN is set and SSOE is cleared, the \overline{SS} pin is configured as input for detecting mode fault error. If the \overline{SS} input becomes low this indicates a mode fault error where another master tries to drive the MOSI and SCK lines. In this case, the SPI immediately switches to slave mode, by clearing the MSTR bit and also disables the slave output buffer MISO (or SISO in bidirectional mode). So the result is that all outputs are disabled and SCK, MOSI, and MISO are inputs. If a transmission is in progress when the mode fault occurs, the transmission is aborted and the SPI is forced into idle state.

This mode fault error also sets the mode fault (MODF) flag in the SPI status register (SPISR). If the SPI interrupt enable bit (SPIE) is set when the MODF flag becomes set, then an SPI interrupt sequence is also requested.

When a write to the SPI data register in the master occurs, there is a half SCK-cycle delay. After the delay, SCK is started within the master. The rest of the transfer operation differs slightly, depending on the clock format specified by the SPI clock phase bit, CPHA, in SPI control register 1 (see Section 12.4.3, "Transmission Formats").

NOTE

A change of the bits CPOL, CPHA, SSOE, LSBFE, MODFEN, SPC0, or BIDIROE with SPC0 set, SPPR2-SPPR0 and SPR2-SPR0 in master mode will abort a transmission in progress and force the SPI into idle state. The remote slave cannot detect this, therefore the master must ensure that the remote slave is returned to idle state.

MC9S12XDP512 Data Sheet, Rev. 2.21

I

21.3.2.1 External Bus Interface Control Register 0 (EBICTL0)

	7	6	5	4	3	2	1	0
R	ITHRS	0	HDBE	ASIZ4	ASIZ3	ASIZ2	ASIZ1	ASIZ0
W								
Reset	0	0	1	1	1	1	1	1
[]= Unimplemer	nted or Reserve	ed				

Figure 21-3. External Bus Interface Control Register 0 (EBICTL0)

Read: Anytime. In emulation modes, read operations will return the data from the external bus, in all other modes, the data are read from this register.

Write: Anytime. In emulation modes, write operations will also be directed to the external bus.

This register controls input pin threshold level and determines the external address and data bus sizes in normal expanded mode. If not in use with the external bus interface, the related pins can be used for alternative functions.

External bus is available as programmed in normal expanded mode and always full-sized in emulation modes and special test mode; function not available in single-chip modes.

Table 21-2. EBICTL0 Field Descriptions

Field	Description
7 ITHRS	Reduced Input Threshold — This bit selects reduced input threshold on external data bus pins and specific control input signals which are in use with the external bus interface in order to adapt to external devices with a 3.3 V, 5 V tolerant I/O.
	The reduced input threshold level takes effect depending on ITHRS, the operating mode and the related enable signals of the EBI pin function as summarized in Table 21-3. 0 Input threshold is at standard level on all pins 1 Reduced input threshold level enabled on pins in use with the external bus interface
5 HDBE	High Data Byte Enable — This bit enables the higher half of the 16-bit data bus. If disabled, only the lower 8-bit data bus can be used with the external bus interface. In this case the unused data pins and the data select signals (UDS and LDS) are free to be used for alternative functions. 0 DATA[15:8], UDS, and LDS disabled 1 DATA[15:8], UDS, and LDS enabled
4–0 ASIZ[4:0]	External Address Bus Size — These bits allow scalability of the external address bus. The programmed value corresponds to the number of available low-aligned address lines (refer to Table 21-4). All address lines ADDR[22:0] start up as outputs after reset in expanded modes. This needs to be taken into consideration when using alternative functions on relevant pins in applications which utilize a reduced external address bus.

Figure 22-24. Port T Polarity Select Register (PPST)

Read: Anytime.

Write: Anytime.

This register selects whether a pull-down or a pull-up device is connected to the pin.

Table	22-26.	PPST	Field	Descri	otions
Table	22-20.		I ICIU	Deseri	puons

Field	Description
7–0	Pull Select Port T
PPST[7:0]	 0 A pull-up device is connected to the associated port T pin, if enabled by the associated bit in register PERT and if the port is used as input. 1 A pull-down device is connected to the associated port T pin, if enabled by the associated bit in register PERT and if the port is used as input.

22.3.2.23 Port S Data Register (PTS)

	7	6	5	4	3	2	1	0
R W	PTS7	PTS6	PTS5	PTS4	PTS3	PTS2	PTS1	PTS0
SCI/SPI	SSO	SCK0	MOSI0	MISO0	TXD1	RXD1	TXD0	RXD0
Reset	0	0	0	0	0	0	0	0

Figure 22-25. Port S Data Register (PTS)

Read: Anytime.

Write: Anytime.

Port S pins 7–4 are associated with the SPI0. The SPI0 pin configuration is determined by several status bits in the SPI0 module. *Refer to SPI section for details*. When not used with the SPI0, these pins can be used as general purpose I/O.

Port S bits 3–0 are associated with the SCI1 and SCI0. The SCI ports associated with transmit pins 3 and 1 are configured as outputs if the transmitter is enabled. The SCI ports associated with receive pins 2 and 0 are configured as inputs if the receiver is enabled. *Refer to SCI section for details*. When not used with the SCI, these pins can be used as general purpose I/O.

If the data direction bits of the associated I/O pins are set to logic level "1", a read returns the value of the port register, otherwise the buffered pin input state is read.

22 DP512 Port Integration Module (S12XDP512PIMV2)

22.3.2.26 Port S Reduced Drive Register (RDRS)

Read: Anytime.

Write: Anytime.

This register configures the drive strength of each port S output pin as either full or reduced. If the port is used as input this bit is ignored.

Table 22-28. RDRS Field Descriptions

Field	Description
7–0 RDRS[7:0]	 Reduced Drive Port S 0 Full drive strength at output. 1 Associated pin drives at about 1/6 of the full drive strength.

22.3.2.27 Port S Pull Device Enable Register (PERS)

Figure 22-29. Port S Pull Device Enable Register (PERS)

Read: Anytime.

Write: Anytime.

This register configures whether a pull-up or a pull-down device is activated, if the port is used as input or as output in wired-OR (open drain) mode. This bit has no effect if the port is used as push-pull output. Out of reset a pull-up device is enabled.

Table 22-29.	PERS Field	Descriptions
--------------	------------	--------------

Field	Description
7–0	Pull Device Enable Port S
PERS[7:0]	0 Pull-up or pull-down device is disabled.
	1 Either a pull-up or pull-down device is enabled.

Table 23-40. RDRP Field Descriptions

Field	Description
7–0 RDRP[7:0]	 Reduced Drive Port P 0 Full drive strength at output. 1 Associated pin drives at about 1/6 of the full drive strength.

23.0.5.42 Port P Pull Device Enable Register (PERP)

Figure 23-44. Port P Pull Device Enable Register (PERP)

Read: Anytime.

Write: Anytime.

This register configures whether a pull-up or a pull-down device is activated, if the port is used as input. This bit has no effect if the port is used as output. Out of reset no pull device is enabled.

Table 23-41. PERP Field Descriptions

Field	Description
7–0	Pull Device Enable Port P
PERP[7:0]	0 Pull-up or pull-down device is disabled.
	1 Either a pull-up or pull-down device is enabled.

23.0.5.43 Port P Polarity Select Register (PPSP)

	7	6	5	4	3	2	1	0
R W	PPSP7	PPSP6	PPSP5	PPSP4	PPSP3	PPSP2	PPSP1	PPSP0
Reset	0	0	0	0	0	0	0	0

Figure 23-45. Port P Polarity Select Register (PPSP)

Read: Anytime.

Write: Anytime.

This register serves a dual purpose by selecting the polarity of the active interrupt edge as well as selecting a pull-up or pull-down device if enabled.

Field	Description
7–0 PK[7,5:0]	Port K — Port K pins 7–0 can be used as general-purpose I/O. If the data direction bits of the associated I/O pins are set to logic level "1", a read returns the value of the port register, otherwise the buffered pin input state is read except for bit 6 which reads "0".

Table 24-15. PORTK Field Descriptions

24.0.5.12 Port K Data Direction Register (DDRK)

Figure 24-14. Port K Data Direction Register (DDRK)

Read: Anytime.

Write: Anytime.

This register controls the data direction for port K. DDRK determines whether each pin (except PK6) is an input or output. A logic level "1" causes the associated port pin to be an output and a logic level "0" causes the associated pin to be a high-impedance input.

Table 24-16. DDRK Field Descriptions

Field	Description
7–0	Data Direction Port K
DDRK[7,5:0]	0 Associated pin is configured as input.
	1 Associated pin is configured as output.
	Note: Due to internal synchronization circuits, it can take up to 2 bus clock cycles until the correct value is read
	on PORTK after changing the DDRK register.

24.0.5.13 Port T Data Register (PTT)

Figure 24-15. Port T Data Register (PTT)

Read: Anytime.

Write: Anytime.

27.3.2 Register Descriptions

Register Name		Bit 7	6	5	4	3	2	1	Bit 0
FCLKDIV	R W	FDIVLD	PRDIV8	FDIV5	FDIV4	FDIV3	FDIV2	FDIV1	FDIV0
FSEC	R	KEY	(EN	RNV5	RNV4	RNV3	RNV2	SE	C
	w								
FTSTMOD	R	0	MD	D 0	0	0	0	0	0
	w								
FCNFG	R		0015		0	0	0	0	0
	w	CBEIE	CCIE	KEYACC					
FPROT	R	FPOPEN	RNV6	FPHDIS	FP	HS	FPLDIS	FP	LS
	 [0.015						
FSIAI	R CBEIF	CBEIF	CCIF	PVIOL	ACCERR 0	0	BLANK	0	0
	••[
FCMD	R W	0				CMDB			
FCTL	R	NV7	NV6	NV5	NV4	NV3	NV2	NV1	NV0
	w								
FADDRHI	R				FAD	ORHI			
	w								
FADDRLO	R				FADD	ORLO			
	w								
FDATAHI	R		FDATAHI						
	w								
FDATALO	R		FDATALO						
	w								
RESERVED1	R	0	0	0	0	0	0	0	0
	w								

Figure 27-3. FTX512K4 Register Summary

MC9S12XDP512 Data Sheet, Rev. 2.21

- Security feature to prevent unauthorized access to the Flash memory
- Code integrity check using built-in data compression

28.1.3 Modes of Operation

Program, erase, erase verify, and data compress operations (please refer to Section 28.4.1, "Flash Command Operations" for details).

28.1.4 Block Diagram

A block diagram of the Flash module is shown in Figure 28-1.

Figure 28-1. FTX256K2 Block Diagram

28.2 External Signal Description

The Flash module contains no signals that connect off-chip.

28.3 Memory Map and Register Definition

This section describes the memory map and registers for the Flash module.

28.3.1 Module Memory Map

The Flash memory map is shown in Figure 28-2. The HCS12X architecture places the Flash memory addresses between global addresses 0x78_0000 and 0x7F_FFFF. The FPROT register, described in Section 28.3.2.5, "Flash Protection Register (FPROT)", can be set to protect regions in the Flash memory from accidental program or erase. Three separate memory regions, one growing upward from global address 0x7F_8000 in the Flash memory (called the lower region), one growing downward from global address 0x7F_FFFF in the Flash memory (called the higher region), and the remaining addresses in the Flash memory, can be activated for protection. The Flash memory addresses covered by these protectable regions are shown in the Flash memory map. The higher address region is mainly targeted to hold the boot loader code since it covers the vector space. The lower address region can be used for EEPROM emulation in an MCU without an EEPROM module since it can be left unprotected while the remaining addresses are protected from program or erase. Default protection settings as well as security information that allows the MCU to restrict access to the Flash module are stored in the Flash configuration field as described in Table 28-1.

Global Address	Size (Bytes)	Description
0x7F_FF00 - 0x7F_FF07	8	Backdoor Comparison Key Refer to Section 28.6.1, "Unsecuring the MCU using Backdoor Key Access"
0x7F_FF08 - 0x7F_FF0C	5	Reserved
0x7F_FF0D	1	Flash Protection byte Refer to Section 28.3.2.5, "Flash Protection Register (FPROT)"
0x7F_FF0E	1	Flash Nonvolatile byte Refer to Section 28.3.2.8, "Flash Control Register (FCTL)"
0x7F_FF0F	1	Flash Security byte Refer to Section 28.3.2.2, "Flash Security Register (FSEC)"

Table 28-1. Flash Configuration Field

28.6.1 Unsecuring the MCU using Backdoor Key Access

The MCU may be unsecured by using the backdoor key access feature which requires knowledge of the contents of the backdoor keys (four 16-bit words programmed at addresses 0x7F_FF00–0x7F_FF07). If the KEYEN[1:0] bits are in the enabled state (see Section 28.3.2.2, "Flash Security Register (FSEC)") and the KEYACC bit is set, a write to a backdoor key address in the Flash memory triggers a comparison between the written data and the backdoor key data stored in the Flash memory. If all four words of data are written to the correct addresses in the correct order and the data matches the backdoor keys stored in the Flash memory, the MCU will be unsecured. The data must be written to the backdoor keys sequentially starting with 0x7F_FF00–1 and ending with 0x7F_FF06–7. 0x0000 and 0xFFFF are not permitted as backdoor keys. While the KEYACC bit is set, reads of the Flash memory will return invalid data.

The user code stored in the Flash memory must have a method of receiving the backdoor keys from an external stimulus. This external stimulus would typically be through one of the on-chip serial ports.

If the KEYEN[1:0] bits are in the enabled state (see Section 28.3.2.2, "Flash Security Register (FSEC)"), the MCU can be unsecured by the backdoor key access sequence described below:

- 1. Set the KEYACC bit in the Flash Configuration Register (FCNFG).
- 2. Write the correct four 16-bit words to Flash addresses 0xFF00–0xFF07 sequentially starting with 0x7F_FF00.
- 3. Clear the KEYACC bit. Depending on the user code used to write the backdoor keys, a wait cycle (NOP) may be required before clearing the KEYACC bit.
- 4. If all four 16-bit words match the backdoor keys stored in Flash addresses 0x7F_FF00-0x7F_FF07, the MCU is unsecured and the SEC[1:0] bits in the FSEC register are forced to the unsecure state of 1:0.

The backdoor key access sequence is monitored by an internal security state machine. An illegal operation during the backdoor key access sequence will cause the security state machine to lock, leaving the MCU in the secured state. A reset of the MCU will cause the security state machine to exit the lock state and allow a new backdoor key access sequence to be attempted. The following operations during the backdoor key access sequence will lock the security state machine:

- 1. If any of the four 16-bit words does not match the backdoor keys programmed in the Flash array.
- 2. If the four 16-bit words are written in the wrong sequence.
- 3. If more than four 16-bit words are written.
- 4. If any of the four 16-bit words written are 0x0000 or 0xFFFF.
- 5. If the KEYACC bit does not remain set while the four 16-bit words are written.
- 6. If any two of the four 16-bit words are written on successive MCU clock cycles.

After the backdoor keys have been correctly matched, the MCU will be unsecured. Once the MCU is unsecured, the Flash security byte can be programmed to the unsecure state, if desired.

In the unsecure state, the user has full control of the contents of the backdoor keys by programming addresses 0x7F_FF00–0x7F_FF07 in the Flash Configuration Field.

The security as defined in the Flash security byte $(0x7F_FF0F)$ is not changed by using the backdoor key access sequence to unsecure. The backdoor keys stored in addresses $0x7F_FF00-0x7F_FF07$ are

Interrupt Source	Interrupt Flag	Local Enable	Global (CCR) Mask
Flash Address, Data and Command Buffers empty	CBEIF (FSTAT register)	CBEIE (FCNFG register)	l Bit
All Flash commands completed	CCIF (FSTAT register)	CCIE (FCNFG register)	l Bit

 Table 28-19. Flash Interrupt Sources

NOTE

Vector addresses and their relative interrupt priority are determined at the MCU level.

28.8.1 Description of Flash Interrupt Operation

The logic used for generating interrupts is shown in Figure 28-32.

The Flash module uses the CBEIF and CCIF flags in combination with the CBIE and CCIE enable bits to generate the Flash command interrupt request.

Figure 28-32. Flash Interrupt Implementation

For a detailed description of the register bits, refer to Section 28.3.2.4, "Flash Configuration Register (FCNFG)" and Section 28.3.2.6, "Flash Status Register (FSTAT)".