



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Obsolete                                                                |
|----------------------------|-------------------------------------------------------------------------|
| Core Processor             | HCS12X                                                                  |
| Core Size                  | 16-Bit                                                                  |
| Speed                      | 80MHz                                                                   |
| Connectivity               | CANbus, EBI/EMI, I <sup>2</sup> C, IrDA, LINbus, SCI, SPI               |
| Peripherals                | LVD, POR, PWM, WDT                                                      |
| Number of I/O              | 59                                                                      |
| Program Memory Size        | 512KB (512K x 8)                                                        |
| Program Memory Type        | FLASH                                                                   |
| EEPROM Size                | 4K x 8                                                                  |
| RAM Size                   | 20К х 8                                                                 |
| Voltage - Supply (Vcc/Vdd) | 2.35V ~ 5.5V                                                            |
| Data Converters            | A/D 8x10b                                                               |
| Oscillator Type            | External                                                                |
| Operating Temperature      | -40°C ~ 105°C (TA)                                                      |
| Mounting Type              | Surface Mount                                                           |
| Package / Case             | 80-QFP                                                                  |
| Supplier Device Package    | 80-QFP (14x14)                                                          |
| Purchase URL               | https://www.e-xfl.com/product-detail/nxp-semiconductors/mc9s12xdt512vaa |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



| Sec | ction Number         | Title      | Page |
|-----|----------------------|------------|------|
| E.7 | Pinout explanations: |            |      |
|     |                      | Appendix F |      |

Ordering Information

Appendix G Detailed Register Map



be configured as master output (during master mode) or slave input pin (during slave mode) MOSI of the serial peripheral interface 2 (SPI2).

# 1.2.3.55 PP4 / KWP4 / PWM4 / MISO2 — Port P I/O Pin 4

PP4 is a general-purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit stop or wait mode. It can be configured as pulse width modulator (PWM) channel 4 output. It can be configured as master input (during master mode) or slave output (during slave mode) pin MISO of the serial peripheral interface 2 (SPI2).

# 1.2.3.56 PP3 / KWP3 / PWM3 / SS1 — Port P I/O Pin 3

PP3 is a general-purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit stop or wait mode. It can be configured as pulse width modulator (PWM) channel 3 output. It can be configured as slave select pin  $\overline{SS}$  of the serial peripheral interface 1 (SPI1).

# 1.2.3.57 PP2 / KWP2 / PWM2 / SCK1 — Port P I/O Pin 2

PP2 is a general-purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit stop or wait mode. It can be configured as pulse width modulator (PWM) channel 2 output. It can be configured as serial clock pin SCK of the serial peripheral interface 1 (SPI1).

# 1.2.3.58 PP1 / KWP1 / PWM1 / MOSI1 — Port P I/O Pin 1

PP1 is a general-purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit stop or wait mode. It can be configured as pulse width modulator (PWM) channel 1 output. It can be configured as master output (during master mode) or slave input pin (during slave mode) MOSI of the serial peripheral interface 1 (SPI1).

# 1.2.3.59 PP0 / KWP0 / PWM0 / MISO1 — Port P I/O Pin 0

PP0 is a general-purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit stop or wait mode. It can be configured as pulse width modulator (PWM) channel 0 output. It can be configured as master input (during master mode) or slave output (during slave mode) pin MISO of the serial peripheral interface 1 (SPI1).

# 1.2.3.60 PS7 / SS0 — Port S I/O Pin 7

PS7 is a general-purpose input or output pin. It can be configured as the slave select pin  $\overline{SS}$  of the serial peripheral interface 0 (SPI0).

# 1.2.3.61 PS6 / SCK0 — Port S I/O Pin 6

PS6 is a general-purpose input or output pin. It can be configured as the serial clock pin SCK of the serial peripheral interface 0 (SPI0).



# 4.3.2 Register Descriptions

This section describes in address order all the ATD10B16C registers and their individual bits.

| Register<br>Name   |            | Bit 7    | 6          | 5            | 4           | 3        | 2            | 1        | Bit 0    |
|--------------------|------------|----------|------------|--------------|-------------|----------|--------------|----------|----------|
| 0x0000             | R          | 0        | 0          | 0            | 0           | WRAP3    | WRAP2        | WRAP1    | WRAP0    |
| AIDCILU            | W          |          |            |              |             |          |              |          |          |
| 0x0001             | R          |          | 0          | 0            | 0           |          |              |          |          |
| ATDCTL1            | w          | ETRIGSEL |            |              |             | ETRIGCH3 | ETRIGCH2     | ETRIGCH1 | ETRIGCH0 |
| 0x0002             | R          |          | AFEC       | 0)0/01       |             | ETRICO   | ETRICE       |          | ASCIF    |
| ATDCTL2            | w          | ADPU     | AFFC       | AVVAI        | ETRIGLE     | ETRIGP   | ETRIGE       | ASCIE    |          |
| 0x0003             | R          | 0        | S8C        | S4C          | S2C         | S1C      | FIFO         | FRZ1     | FRZ0     |
| AIDCIL3            | W          |          |            |              |             |          |              |          |          |
| 0x0004<br>ATDCTL4  | R<br>W     | SRES8    | SMP1       | SMP0         | PRS4        | PRS3     | PRS2         | PRS1     | PRS0     |
| 0.0005             | ןיי<br>ה   |          |            |              |             |          |              |          |          |
| ATDCTL5            | к<br>W     | DJM      | DSGN       | SCAN         | MULT        | CD       | CC           | СВ       | CA       |
| 0x0006             | R          | 0.05     | 0          | FTODE        |             | CC3      | CC2          | CC1      | CC0      |
| ATDSTAT0           | w          | SCF      |            | ETORF        | FIFOR       |          |              |          |          |
| 0x0007             | R          |          |            |              |             |          |              |          |          |
| Unimplemented      | W          |          |            |              |             |          |              |          |          |
| 0x0008             | R          |          |            |              | Unimple     | emented  |              |          |          |
| AIDIESIU           | W          |          |            |              |             |          |              |          |          |
| 0x0009<br>ATDTEST1 | R          |          |            | U            | nimplemente | ed       |              |          | SC       |
|                    | vv         |          |            |              |             |          |              |          |          |
| 0x000A<br>ATDSTAT2 | R          | CCF15    | CCF14      | CCF13        | CCF12       | CCF11    | CCF10        | CCF9     | CCF8     |
| _                  | ••[        |          |            |              |             |          |              |          |          |
| 0x000B<br>ATDSTAT1 | R          | CCF7     | CCF6       | CCF5         | CCF4        | CCF3     | CCF2         | CCF1     | CCF0     |
| 0.0000             | ~~ <br>~ ' |          |            |              |             |          |              |          |          |
| 0x000C<br>ATDDIEN0 | R<br>W     | IEN15    | IEN14      | IEN13        | IEN12       | IEN11    | IEN10        | IEN9     | IEN8     |
|                    | [          |          | = Unimplem | ented or Res | served      |          | u = Unaffect | ed       |          |

Figure 4-2. ATD Register Summary

MC9S12XDP512 Data Sheet, Rev. 2.21

| ETRIGLE | ETRIGP | External Trigger Sensitivity |
|---------|--------|------------------------------|
| 0       | 0      | Falling Edge                 |
| 0       | 1      | Ring Edge                    |
| 1       | 0      | Low Level                    |
| 1       | 1      | High Level                   |

### Table 4-7. External Trigger Configurations

| Prescale Value | Total Divisor<br>Value | Max. Bus Clock <sup>1</sup> | Min. Bus Clock <sup>2</sup> |
|----------------|------------------------|-----------------------------|-----------------------------|
| 00000          | Divide by 2            | 4 MHz                       | 1 MHz                       |
| 00001          | Divide by 4            | 8 MHz                       | 2 MHz                       |
| 00010          | Divide by 6            | 12 MHz                      | 3 MHz                       |
| 00011          | Divide by 8            | 16 MHz                      | 4 MHz                       |
| 00100          | Divide by 10           | 20 MHz                      | 5 MHz                       |
| 00101          | Divide by 12           | 24 MHz                      | 6 MHz                       |
| 00110          | Divide by 14           | 28 MHz                      | 7 MHz                       |
| 00111          | Divide by 16           | 32 MHz                      | 8 MHz                       |
| 01000          | Divide by 18           | 36 MHz                      | 9 MHz                       |
| 01001          | Divide by 20           | 40 MHz                      | 10 MHz                      |
| 01010          | Divide by 22           | 44 MHz                      | 11 MHz                      |
| 01011          | Divide by 24           | 48 MHz                      | 12 MHz                      |
| 01100          | Divide by 26           | 52 MHz                      | 13 MHz                      |
| 01101          | Divide by 28           | 56 MHz                      | 14 MHz                      |
| 01110          | Divide by 30           | 60 MHz                      | 15 MHz                      |
| 01111          | Divide by 32           | 64 MHz                      | 16 MHz                      |
| 10000          | Divide by 34           | 68 MHz                      | 17 MHz                      |
| 10001          | Divide by 36           | 72 MHz                      | 18 MHz                      |
| 10010          | Divide by 38           | 76 MHz                      | 19 MHz                      |
| 10011          | Divide by 40           | 80 MHz                      | 20 MHz                      |
| 10100          | Divide by 42           | 84 MHz                      | 21 MHz                      |
| 10101          | Divide by 44           | 88 MHz                      | 22 MHz                      |
| 10110          | Divide by 46           | 92 MHz                      | 23 MHz                      |
| 10111          | Divide by 48           | 96 MHz                      | 24 MHz                      |
| 11000          | Divide by 50           | 100 MHz                     | 25 MHz                      |
| 11001          | Divide by 52           | 104 MHz                     | 26 MHz                      |
| 11010          | Divide by 54           | 108 MHz                     | 27 MHz                      |
| 11011          | Divide by 56           | 112 MHz                     | 28 MHz                      |
| 11100          | Divide by 58           | 116 MHz                     | 29 MHz                      |
| 11101          | Divide by 60           | 120 MHz                     | 30 MHz                      |
| 11110          | Divide by 62           | 124 MHz                     | 31 MHz                      |
| 11111          | Divide by 64           | 128 MHz                     | 32 MHz                      |

#### Table 5-12. Clock Prescaler Values

<sup>1</sup> Maximum ATD conversion clock frequency is 2 MHz. The maximum allowed bus clock frequency is shown in this column.

<sup>2</sup> Minimum ATD conversion clock frequency is 500 kHz. The minimum allowed bus clock frequency is shown in this column.





Add Immediate 8 bit Constant (High Byte)



## Operation

RD + IMM8:\$00  $\Rightarrow RD$ 

Adds the content of high byte of register RD and a signed immediate 8 bit constant using binary addition and stores the result in the high byte of the destination register RD. This instruction can be used after an ADDL for a 16 bit immediate addition.

Example:

| ADDL | R2,#LOWBYTE  |   |    |   |    |   |    |     |           |
|------|--------------|---|----|---|----|---|----|-----|-----------|
| ADDH | R2,#HIGHBYTE | ; | R2 | = | R2 | + | 16 | bit | immediate |

# **CCR Effects**

| Ν | Ζ | V | С |
|---|---|---|---|
|   |   |   |   |

| $\Delta \mid \Delta \mid \Delta \mid \Delta$ |  |
|----------------------------------------------|--|
|----------------------------------------------|--|

- N: Set if bit 15 of the result is set; cleared otherwise.
- Z: Set if the result is \$0000; cleared otherwise.
- V: Set if a two's complement overflow resulted from the operation; cleared otherwise. RD[15]<sub>old</sub> & IMM8[7] & RD[15]<sub>new</sub> | RD[15]<sub>old</sub> & IMM8[7] & RD[15]<sub>new</sub>
- C: Set if there is a carry from the bit 15 of the result; cleared otherwise. RD[15]<sub>old</sub> & IMM8[7] | RD[15]<sub>old</sub> & RD[15]<sub>new</sub> | IMM8[7] & RD[15]<sub>new</sub>

# Code and CPU Cycles

| Source Form    | Address<br>Mode |   |   |   |   |   | Machin | e Code | Cycles |
|----------------|-----------------|---|---|---|---|---|--------|--------|--------|
| ADDH RD, #IMM8 | IMM8            | 1 | 1 | 1 | 0 | 1 | RD     | IMM8   | Р      |



Chapter 6 XGATE (S12XGATEV2)

**Bit Field Insert and XNOR** 

BFINSX

# Operation

 $!(RS1[w:0] \land RD[w+0:0]) \Rightarrow RD[w+0:0];$  w = (RS2[7:4])o = (RS2[3:0])

Extracts w+1 bits from register RS1 starting at position 0, performs an XNOR with RD[w+0:0] and writes the bits back io RD. The remaining bits in RD are not affected. If (o+w) > 15 the upper bits are ignored. Using R0 as a RS1, this command can be used to toggle bits.



# **CCR Effects**

N Z V C

 $\Delta$   $\Delta$  0 —

- N: Set if bit 15 of the result is set; cleared otherwise.
- Z: Set if the result is \$0000; cleared otherwise.
- V: 0; cleared.
- C: Not affected.

# **Code and CPU Cycles**

| Source Form         | Address<br>Mode |   |   |   |   |   | Machin | e Code |     |   |   | Cycles |
|---------------------|-----------------|---|---|---|---|---|--------|--------|-----|---|---|--------|
| BFINSX RD, RS1, RS2 | TRI             | 0 | 1 | 1 | 1 | 1 | RD     | RS1    | RS2 | 1 | 1 | Р      |



# Logical Exclusive NOR Immediate 8 bit Constant (Low Byte)



# **XNORL**

## Operation

 $\sim$ (RD.L  $^{\wedge}$  IMM8)  $\Rightarrow$  RD.L

Performs a bit wise logical exclusive NOR between the low byte of register RD and an immediate 8 bit constant and stores the result in the destination register RD.L. The high byte of RD is not affected.

## **CCR Effects**

| N Z V C |  |
|---------|--|
|---------|--|

 $\Delta$   $\Delta$  0 —

- N: Set if bit 7 of the result is set; cleared otherwise.
- Z: Set if the 8 bit result is \$00; cleared otherwise.
- V: 0; cleared.
- C: Not affected.

# Code and CPU Cycles

| Source Form     | Address<br>Mode |   |   |   |   |   | Machin | e Code | Cycles |
|-----------------|-----------------|---|---|---|---|---|--------|--------|--------|
| XNORL RD, #IMM8 | IMM8            | 1 | 0 | 1 | 1 | 0 | RD     | IMM8   | Р      |





# 7.3.2.2 Timer Compare Force Register (CFORC)

|       | 7    | 6    | 5    | 4    | 3    | 2    | 1    | 0    |
|-------|------|------|------|------|------|------|------|------|
| R     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| W     | FOC7 | FOC6 | FOC5 | FOC4 | FOC3 | FOC2 | FOC1 | FOC0 |
| Reset | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |

#### Figure 7-4. Timer Compare Force Register (CFORC)

Read or write: Anytime but reads will always return 0x0000 (1 state is transient).

All bits reset to zero.

| Table | 7-3. | CFORC | Field | Descriptions |
|-------|------|-------|-------|--------------|
|-------|------|-------|-------|--------------|

| Field           | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7:0<br>FOC[7:0] | <ul> <li>Force Output Compare Action for Channel 7:0 — A write to this register with the corresponding data bit(s) set causes the action which is programmed for output compare "x" to occur immediately. The action taken is the same as if a successful comparison had just taken place with the TCx register except the interrupt flag does not get set.</li> <li>Note: A successful channel 7 output compare overrides any channel 6:0 compares. If a forced output compare on any channel occurs at the same time as the successful output compare, then the forced output compare action will take precedence and the interrupt flag will not get set.</li> </ul> |

# 7.3.2.3 Output Compare 7 Mask Register (OC7M)

| _      | 7     | 6     | 5     | 4     | 3     | 2     | 1     | 0     |
|--------|-------|-------|-------|-------|-------|-------|-------|-------|
| R<br>W | OC7M7 | OC7M6 | OC7M5 | OC7M4 | OC7M3 | OC7M2 | OC7M1 | OC7M0 |
| Reset  | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |

Figure 7-5. Output Compare 7 Mask Register (OC7M)

Read or write: Anytime

All bits reset to zero.

#### Table 7-4. OC7M Field Descriptions

| Field            | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7:0<br>OC7M[7:0] | <ul> <li>Output Compare Mask Action for Channel 7:0</li> <li>0 The corresponding OC7Dx bit in the output compare 7 data register will not be transferred to the timer port on a successful channel 7 output compare, even if the corresponding pin is setup for output compare.</li> <li>1 The corresponding OC7Dx bit in the output compare 7 data register will be transferred to the timer port on a successful channel 7 output compare.</li> <li>Note: The corresponding channel must also be setup for output compare (IOSx = 1) for data to be transferred from the output compare 7 data register to the timer port.</li> </ul> |

| MCPR1 | MCPR0 | Prescaler Division |
|-------|-------|--------------------|
| 0     | 0     | 1                  |
| 0     | 1     | 4                  |
| 1     | 0     | 8                  |
| 1     | 1     | 16                 |

Table 7-23. Modulus Counter Prescaler Select

# 7.3.2.20 16-Bit Modulus Down-Counter FLAG Register (MCFLG)





Read: Anytime

Write only used in the flag clearing mechanism for bit 7. Writing a one to bit 7 clears the flag. Writing a zero will not affect the current status of the bit.

#### NOTE

When TFFCA = 1, the flag cannot be cleared via the normal flag clearing mechanism (writing a one to the flag). Reference Section 7.3.2.6, "Timer System Control Register 1 (TSCR1)".

All bits reset to zero.

#### Table 7-24. MCFLG Field Descriptions

| Field     | Description                                                                                                                                                                                                                                                                         |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7         | Modulus Counter Underflow Flag — The flag is set when the modulus down-counter reaches 0x0000.                                                                                                                                                                                      |
| MCZF      | The flag indicates when interrupt conditions have occurred. The flag can be cleared via the normal flag clearing mechanism (writing a one to the flag) or via the fast flag clearing mechanism (Reference TFFCA bit in Section 7.3.2.6, "Timer System Control Register 1 (TSCR1)"). |
| 3:0       | First Input Capture Polarity Status — These are read only bits. Writes to these bits have no effect.                                                                                                                                                                                |
| POLF[3:0] | Each status bit gives the polarity of the first edge which has caused an input capture to occur after capture latch has been read.                                                                                                                                                  |
|           | Each POLFx corresponds to a timer PORTx input.<br>0 The first input capture has been caused by a falling edge.<br>1 The first input capture has been caused by a rising edge.                                                                                                       |



# 7.4.1 Enhanced Capture Timer Modes of Operation

The enhanced capture timer has 8 input capture, output compare (IC/OC) channels, same as on the HC12 standard timer (timer channels TC0 to TC7). When channels are selected as input capture by selecting the IOSx bit in TIOS register, they are called input capture (IC) channels.

Four IC channels (channels 7–4) are the same as on the standard timer with one capture register each that memorizes the timer value captured by an action on the associated input pin.

Four other IC channels (channels 3–0), in addition to the capture register, also have one buffer each called a holding register. This allows two different timer values to be saved without generating any interrupts.

Four 8-bit pulse accumulators are associated with the four buffered IC channels (channels 3–0). Each pulse accumulator has a holding register to memorize their value by an action on its external input. Each pair of pulse accumulators can be used as a 16-bit pulse accumulator.

The 16-bit modulus down-counter can control the transfer of the IC registers and the pulse accumulators contents to the respective holding registers for a given period, every time the count reaches zero.

The modulus down-counter can also be used as a stand-alone time base with periodic interrupt capability.

# 7.4.1.1 IC Channels

The IC channels are composed of four standard IC registers and four buffered IC channels.

- An IC register is empty when it has been read or latched into the holding register.
- A holding register is empty when it has been read.

# 7.4.1.1.1 Non-Buffered IC Channels

The main timer value is memorized in the IC register by a valid input pin transition. If the corresponding NOVWx bit of the ICOVW register is cleared, with a new occurrence of a capture, the contents of IC register are overwritten by the new value. If the corresponding NOVWx bit of the ICOVW register is set, the capture register cannot be written unless it is empty. This will prevent the captured value from being overwritten until it is read.

# 7.4.1.1.2 Buffered IC Channels

There are two modes of operations for the buffered IC channels:

1. IC latch mode (LATQ = 1)

The main timer value is memorized in the IC register by a valid input pin transition (see Figure 7-65 and Figure 7-66).

The value of the buffered IC register is latched to its holding register by the modulus counter for a given period when the count reaches zero, by a write 0x0000 to the modulus counter or by a write to ICLAT in the MCCTL register.

If the corresponding NOVWx bit of the ICOVW register is cleared, with a new occurrence of a capture, the contents of IC register are overwritten by the new value. In case of latching, the contents of its holding register are overwritten.

8 Pulse-Width Modulator (S12PWM8B8CV1)

| Register<br>Name |        | Bit 7 | 6            | 5              | 4      | 3 | 2      | 1       | Bit 0   |
|------------------|--------|-------|--------------|----------------|--------|---|--------|---------|---------|
| PWMPER7          | R<br>W | Bit 7 | 6            | 5              | 4      | 3 | 2      | 1       | Bit 0   |
| PWMDTY0          | R<br>W | Bit 7 | 6            | 5              | 4      | 3 | 2      | 1       | Bit 0   |
| PWMDTY1          | R<br>W | Bit 7 | 6            | 5              | 4      | 3 | 2      | 1       | Bit 0   |
| PWMDTY2          | R<br>W | Bit 7 | 6            | 5              | 4      | 3 | 2      | 1       | Bit 0   |
| PWMDTY3          | R<br>W | Bit 7 | 6            | 5              | 4      | 3 | 2      | 1       | Bit 0   |
| PWMDTY4          | R<br>W | Bit 7 | 6            | 5              | 4      | 3 | 2      | 1       | Bit 0   |
| PWMDTY5          | R<br>W | Bit 7 | 6            | 5              | 4      | 3 | 2      | 1       | Bit 0   |
| PWMDTY6          | R<br>W | Bit 7 | 6            | 5              | 4      | 3 | 2      | 1       | Bit 0   |
| PWMDTY7          | R<br>W | Bit 7 | 6            | 5              | 4      | 3 | 2      | 1       | Bit 0   |
| PWMSDN           | R<br>W | PWMIF | PWMIE        | 0<br>PWMRSTRT  | PWMLVL | 0 | PWM7IN | PWM7INL | PWM7ENA |
|                  | ſ      |       | ] = Unimplem | ented or Reser | ved    |   |        |         |         |

#### Figure 8-2. PWM Register Summary (Sheet 3 of 3)

<sup>1</sup> Intended for factory test purposes only.

# 8.3.2.1 PWM Enable Register (PWME)

Each PWM channel has an enable bit (PWMEx) to start its waveform output. When any of the PWMEx bits are set (PWMEx = 1), the associated PWM output is enabled immediately. However, the actual PWM waveform is not available on the associated PWM output until its clock source begins its next cycle due to the synchronization of PWMEx and the clock source.

## NOTE

The first PWM cycle after enabling the channel can be irregular.

An exception to this is when channels are concatenated. Once concatenated mode is enabled (CONxx bits set in PWMCTL register), enabling/disabling the corresponding 16-bit PWM channel is controlled by the

| Field                      | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1<br>SLPRQ⁵                | Sleep Mode Request — This bit requests the MSCAN to enter sleep mode, which is an internal power saving mode (see Section 10.4.5.4, "MSCAN Sleep Mode"). The sleep mode request is serviced when the CAN bus is idle, i.e., the module is not receiving a message and all transmit buffers are empty. The module indicates entry to sleep mode by setting SLPAK = 1 (see Section 10.3.2.2, "MSCAN Control Register 1 (CANCTL1)"). SLPRQ cannot be set while the WUPIF flag is set (see Section 10.3.2.5, "MSCAN Receiver Flag Register (CANRFLG)"). Sleep mode will be active until SLPRQ is cleared by the CPU or, depending on the setting of WUPE, the MSCAN detects activity on the CAN bus and clears SLPRQ itself.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0<br>INITRQ <sup>6,7</sup> | <b>Initialization Mode Request</b> — When this bit is set by the CPU, the MSCAN skips to initialization mode (see Section 10.4.5.5, "MSCAN Initialization Mode"). Any ongoing transmission or reception is aborted and synchronization to the CAN bus is lost. The module indicates entry to initialization mode by setting INITAK = 1 (Section 10.3.2.2, "MSCAN Control Register 1 (CANCTL1)"). The following registers enter their hard reset state and restore their default values: CANCTL0 <sup>8</sup> , CANRFLG <sup>9</sup> , CANRIER <sup>10</sup> , CANTFLG, CANTIER, CANTARQ, CANTAK, and CANTBSEL. The registers CANCTL1, CANBTR0, CANBTR1, CANIDAC, CANIDAR0-7, and CANIDMR0-7 can only be written by the CPU when the MSCAN is in initialization mode. (INITRQ = 1 and INITAK = 1). The values of the error counters are not affected by initialization mode. When this bit is cleared by the CPU, the MSCAN restarts and then tries to synchronize to the CAN bus. If the MSCAN is not in bus-off state, it synchronizes after 11 consecutive recessive bits on the CAN bus; if the MSCAN is in bus-off state, it continues to wait for 128 occurrences of 11 consecutive recessive bits. Writing to other bits in CANCTL0, CANRFLG, CANRIER, CANTFLG, or CANTIER must be done only after initialization mode is exited, which is INITRQ = 0 and INITAK = 0. 0 Normal operation 1 MSCAN in initialization mode |

<sup>1</sup> The MSCAN must be in normal mode for this bit to become set.

- <sup>2</sup> See the Bosch CAN 2.0A/B specification for a detailed definition of transmitter and receiver states.
- <sup>3</sup> In order to protect from accidentally violating the CAN protocol, the TXCAN pin is immediately forced to a recessive state when the CPU enters wait (CSWAI = 1) or stop mode (see Section 10.4.5.2, "Operation in Wait Mode" and Section 10.4.5.3, "Operation in Stop Mode").
- <sup>4</sup> The CPU has to make sure that the WUPE register and the WUPIE wake-up interrupt enable register (see Section 10.3.2.6, "MSCAN Receiver Interrupt Enable Register (CANRIER)) is enabled, if the recovery mechanism from stop or wait is required.
- <sup>5</sup> The CPU cannot clear SLPRQ before the MSCAN has entered sleep mode (SLPRQ = 1 and SLPAK = 1).
- <sup>6</sup> The CPU cannot clear INITRQ before the MSCAN has entered initialization mode (INITRQ = 1 and INITAK = 1).
- <sup>7</sup> In order to protect from accidentally violating the CAN protocol, the TXCAN pin is immediately forced to a recessive state when the initialization mode is requested by the CPU. Thus, the recommended procedure is to bring the MSCAN into sleep mode (SLPRQ = 1 and SLPAK = 1) before requesting initialization mode.
- <sup>8</sup> Not including WUPE, INITRQ, and SLPRQ.
- <sup>9</sup> TSTAT1 and TSTAT0 are not affected by initialization mode.

<sup>10</sup> RSTAT1 and RSTAT0 are not affected by initialization mode.

# 10.3.2.2 MSCAN Control Register 1 (CANCTL1)

The CANCTL1 register provides various control bits and handshake status information of the MSCAN module as described below.



- If there are one or more message buffers scheduled for transmission (TXEx = 0), the MSCAN will continue to transmit until all transmit message buffers are empty (TXEx = 1, transmitted successfully or aborted) and then goes into sleep mode.
- If the MSCAN is receiving, it continues to receive and goes into sleep mode as soon as the CAN bus next becomes idle.
- If the MSCAN is neither transmitting nor receiving, it immediately goes into sleep mode.



Figure 10-45. Sleep Request / Acknowledge Cycle

# NOTE

The application software must avoid setting up a transmission (by clearing one or more TXEx flag(s)) and immediately request sleep mode (by setting SLPRQ). Whether the MSCAN starts transmitting or goes into sleep mode directly depends on the exact sequence of operations.

If sleep mode is active, the SLPRQ and SLPAK bits are set (Figure 10-45). The application software must use SLPAK as a handshake indication for the request (SLPRQ) to go into sleep mode.

When in sleep mode (SLPRQ = 1 and SLPAK = 1), the MSCAN stops its internal clocks. However, clocks that allow register accesses from the CPU side continue to run.

If the MSCAN is in bus-off state, it stops counting the 128 occurrences of 11 consecutive recessive bits due to the stopped clocks. The TXCAN pin remains in a recessive state. If RXF = 1, the message can be read and RXF can be cleared. Shifting a new message into the foreground buffer of the receiver FIFO (RxFG) does not take place while in sleep mode.

It is possible to access the transmit buffers and to clear the associated TXE flags. No message abort takes place while in sleep mode.

If the WUPE bit in CANCTL0 is not asserted, the MSCAN will mask any activity it detects on CAN. The RXCAN pin is therefore held internally in a recessive state. This locks the MSCAN in sleep mode (Figure 10-46). WUPE must be set before entering sleep mode to take effect.

The MSCAN is able to leave sleep mode (wake up) only when:

• CAN bus activity occurs and WUPE = 1



# 20.4.5.3.1 Information Byte Organization

The format of the control information byte for both S12XCPU and XGATE modules is dependent upon the active trace mode and tracing source as described below. In Normal, Loop1, or Pure PC modes tracing of XGATE activity, XINF is used to store control information. In Normal, Loop1, or Pure PC modes tracing of S12XCPU activity, CINF is used to store control information. In Detail Mode, CXINF contains the control information

## XGATE Information Byte

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| XSD   | XSOT  | хсот  | XDV   | 0     | 0     | 0     | 0     |

Figure 20-24. XGATE Information Byte XINF

#### Table 20-40. XINF Field Descriptions

| Field     | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7<br>XSD  | <ul> <li>Source Destination Indicator — This bit indicates if the corresponding stored address is a source or destination address. This is only used in Normal and Loop1 mode tracing.</li> <li>0 Source Address</li> <li>1 Destination Address or Start of Thread or Continuation of Thread</li> </ul>                                                                                                                                                                      |
| 6<br>XSOT | <ul> <li>Source Of Thread Indicator — This bit indicates that the corresponding stored address is a start of thread address. This is only used in Normal and Loop1 mode tracing.</li> <li>NOTE. This bit only has effect on devices where the XGATE module supports multiple interrupt levels.</li> <li>0 Stored address not from a start of thread</li> <li>1 Stored address from a start of thread</li> </ul>                                                              |
| 5<br>XCOT | <ul> <li>Continuation Of Thread Indicator — This bit indicates that the corresponding stored address is the first address following a return from a higher priority thread. This is only used in Normal and Loop1 mode tracing.</li> <li>NOTE. This bit only has effect on devices where the XGATE module supports multiple interrupt levels.</li> <li>0 Stored address not from a continuation of thread</li> <li>1 Stored address from a continuation of thread</li> </ul> |
| 4<br>XDV  | <ul> <li>Data Invalid Indicator — This bit indicates if the trace buffer entry is invalid. It is only used when tracing from both sources in Normal, Loop1 and Pure PC modes, to indicate that the XGATE trace buffer entry is valid.</li> <li>0 Trace buffer entry is invalid</li> <li>1 Trace buffer entry is valid</li> </ul>                                                                                                                                             |

## X12X\_CPU Information Byte

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| CSD   | CVA   | 0     | CDV   | 0     | 0     | 0     | 0     |

Figure 20-25. S12XCPU Information Byte CINF







| Bulao     | Mode                       |            |                                                            |  |  |  |  |
|-----------|----------------------------|------------|------------------------------------------------------------|--|--|--|--|
| Fuise     | STOP                       | Unit       | STOP <sup>1</sup>                                          |  |  |  |  |
| Ignored   | $t_{pulse} \le 3$          | Bus clocks | $t_{pulse} \le t_{pign}$                                   |  |  |  |  |
| Uncertain | 3 < t <sub>pulse</sub> < 4 | Bus clocks | t <sub>pign</sub> < t <sub>pulse</sub> < t <sub>pval</sub> |  |  |  |  |
| Valid     | $t_{pulse} \ge 4$          | Bus clocks | $t_{pulse} \ge t_{pval}$                                   |  |  |  |  |

|  | Table | 23-69. | Pulse | Detection | Criteria |
|--|-------|--------|-------|-----------|----------|
|--|-------|--------|-------|-----------|----------|

1. These values include the spread of the oscillator frequency over temperature, voltage and process.



Figure 23-78. Pulse Illustration

A valid edge on an input is detected if 4 consecutive samples of a passive level are followed by 4 consecutive samples of an active level directly or indirectly.

The filters are continuously clocked by the bus clock in run and wait mode. In stop mode, the clock is generated by an RC-oscillator in the port integration module. To maximize current saving the RC oscillator runs only if the following condition is true on any pin individually:

Sample count  $\leq 4$  and interrupt enabled (PIE = 1) and interrupt flag not set (PIF = 0).

# 23.0.9 Expanded Bus Pin Functions

All peripheral ports T, S, M, P, H, J, AD0, and AD1 start up as general purpose inputs after reset.

Depending on the external mode pin condition, the external bus interface related ports A, B, C, D, E, and K start up as general purpose inputs on reset or are configured for their alternate functions.



Write: Anytime.

This register configures whether a pull-up or a pull-down device is activated, if the port is used as input or as output in wired-OR (open drain) mode. This bit has no effect if the port is used as push-pull output. Out of reset a pull-up device is enabled.

| Table | 24-25. | PERS | Field | Descriptions |
|-------|--------|------|-------|--------------|
|-------|--------|------|-------|--------------|

| Field     | Description                                        |
|-----------|----------------------------------------------------|
| 7–0       | Pull Device Enable Port S                          |
| PERS[7:0] | 0 Pull-up or pull-down device is disabled.         |
|           | 1 Either a pull-up or pull-down device is enabled. |

# 24.0.5.24 Port S Polarity Select Register (PPSS)



Figure 24-26. Port S Polarity Select Register (PPSS)

Read: Anytime.

Write: Anytime.

This register selects whether a pull-down or a pull-up device is connected to the pin.

#### Table 24-26. PPSS Field Descriptions

| Field     | Description                                                                                                                                                                                                                                                                                                                                              |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7–0       | Pull Select Port S                                                                                                                                                                                                                                                                                                                                       |
| PPSS[7:0] | <ul> <li>0 A pull-up device is connected to the associated port S pin, if enabled by the associated bit in register PERS and if the port is used as input or as wired-OR output.</li> <li>1 A pull-down device is connected to the associated port S pin, if enabled by the associated bit in register PERS and if the port is used as input.</li> </ul> |

# 24.0.5.25 Port S Wired-OR Mode Register (WOMS)



Figure 24-27. Port S Wired-OR Mode Register (WOMS)

Read: Anytime.

Write: Anytime.



# 28.4.2.6 Sector Erase Abort Command

The sector erase abort operation will terminate the active sector erase operation so that other sectors in a Flash block are available for read and program operations without waiting for the sector erase operation to complete.

An example flow to execute the sector erase abort operation is shown in Figure 28-31. The sector erase abort command write sequence is as follows:

- 1. Write to any Flash block address to start the command write sequence for the sector erase abort command. The address and data written are ignored.
- 2. Write the sector erase abort command, 0x47, to the FCMD register.
- 3. Clear the CBEIF flag in the FSTAT register by writing a 1 to CBEIF to launch the sector erase abort command.

If the sector erase abort command is launched resulting in the early termination of an active sector erase operation, the ACCERR flag will set once the operation completes as indicated by the CCIF flag being set. The ACCERR flag sets to inform the user that the Flash sector may not be fully erased and a new sector erase command must be launched before programming any location in that specific sector. If the sector erase abort command is launched but the active sector erase operation completes normally, the ACCERR flag will not set upon completion of the operation as indicated by the CCIF flag being set. Therefore, if the ACCERR flag is not set after the sector erase abort command has completed, a Flash sector being erased when the abort command was launched will be fully erased. The maximum number of cycles required to abort a sector erase operation is equal to four FCLK periods (see Section 28.4.1.1, "Writing the FCLKDIV Register") plus five bus cycles as measured from the time the CBEIF flag is cleared until the CCIF flag is set. If sectors in multiple Flash blocks are being simultaneously erased, the sector erase abort operation will be applied to all active Flash blocks without writing to each Flash block in the sector erase abort command write sequence.

## NOTE

Since the ACCERR bit in the FSTAT register may be set at the completion of the sector erase abort operation, a command write sequence is not allowed to be buffered behind a sector erase abort command write sequence. The CBEIF flag will not set after launching the sector erase abort command to indicate that a command should not be buffered behind it. If an attempt is made to start a new command write sequence with a sector erase abort operation active, the ACCERR flag in the FSTAT register will be set. A new command write sequence may be started after clearing the ACCERR flag, if set.

# NOTE

The sector erase abort command should be used sparingly since a sector erase operation that is aborted counts as a complete program/erase cycle.



# E.4 MC9S12XD/A/B -Family SRAM & EEPROM Configuration

| RAM Page<br>RP[7:0] | DP512<br>A512 | DT512<br>DT384 | DQ256<br>A256 | DG128<br>A128 | D128    | D64     |
|---------------------|---------------|----------------|---------------|---------------|---------|---------|
| 0xF6                |               |                |               |               |         |         |
| 0xF7                |               |                |               |               |         |         |
| 0xF8                |               |                |               |               |         |         |
| 0xF9                |               |                |               |               |         |         |
| 0xFA                |               |                |               |               |         |         |
| 0xFB                | 22K Byto      |                |               |               |         |         |
| 0xFC                | JZK Byle      |                |               |               |         |         |
| 0xFD                |               | 20K Byte       | 16K Byto      |               |         |         |
| 0xFE                |               |                | TON Byle      | 12K Byte      | 8K Byte |         |
| 0xFF                |               |                |               |               | or byte | 4K Byte |

Figure E-2. Available RAM Pages on S12XD-Family<sup>1</sup>

<sup>1</sup> On 9S12XD256 14K byte RAM available pages FF,FE,FD and upper half of page FC On 9S12XB256 10K byte RAM available pages FF, FE upper half of page FD On 9S12XB218 6K byte RAM available pages FF and upper half of page FE

#### Table E-4. Available EEPROM Pages on MC9S12XD-Family

| EEPROM<br>Page<br>EP[7:0] | DP512<br>DT512<br>DT384<br>DQ256<br>A256<br>A512 | DG128<br>D128<br>A128<br>B256 | D64<br>B128 |
|---------------------------|--------------------------------------------------|-------------------------------|-------------|
| 0xFA                      |                                                  |                               |             |
| 0xFB                      |                                                  |                               |             |
| 0xFC                      |                                                  |                               |             |
| 0xFD                      | AK Buto                                          |                               |             |
| 0xFE                      | 4r byte                                          | OK Dute                       |             |
| 0xFF                      |                                                  | Zh Byte                       | 1K Byte     |



# 0x0180–0x01BF Freescale Scalable CAN — MSCAN (CAN1) Map (Sheet 3 of 3)

| Name      |                                           | Bit 7                                               | Bit 6                                                                                         | Bit 5                                                                                                                                 | Bit 4                                                                                                                                                               | Bit 3                                                                                                                                                                                                                                               | Bit 2                                                                                                                                                                                                                                                                                                        | Bit 1                                                                                                                                                                                                                                                                                                                                                                                                                | Bit 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------|-------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CAN1IDMR7 | R<br>W                                    | AM7                                                 | AM6                                                                                           | AM5                                                                                                                                   | AM4                                                                                                                                                                 | AM3                                                                                                                                                                                                                                                 | AM2                                                                                                                                                                                                                                                                                                          | AM1                                                                                                                                                                                                                                                                                                                                                                                                                  | AM0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| CAN1RXFG  | R                                         |                                                     | (See Detaile                                                                                  | FORE<br>ed MSCAN F                                                                                                                    | GROUND R<br>Foreground F                                                                                                                                            | ECEIVE BU<br>Receive and                                                                                                                                                                                                                            | FFER<br>Transmit Bu                                                                                                                                                                                                                                                                                          | ffer Layout)                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|           | W                                         |                                                     |                                                                                               |                                                                                                                                       |                                                                                                                                                                     |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| CAN1TXFG  | R                                         |                                                     | (See Detaile                                                                                  | FORE                                                                                                                                  |                                                                                                                                                                     | RANSMIT BU                                                                                                                                                                                                                                          | JFFER<br>Transmit Bu                                                                                                                                                                                                                                                                                         | ffer Lavout)                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|           | Name<br>CAN1IDMR7<br>CAN1RXFG<br>CAN1TXFG | Name<br>CAN1IDMR7<br>R<br>CAN1RXFG<br>W<br>CAN1TXFG | Name     Bit 7       CAN1IDMR7     R<br>W       CAN1RXFG     R<br>W       CAN1TXFG     R<br>W | Name     Bit 7     Bit 6       CAN1IDMR7     R     AM7     AM6       R     (See Detaile       CAN1TXFG     R       W     (See Detaile | Name     Bit 7     Bit 6     Bit 5       CAN1IDMR7     R     AM7     AM6     AM5       R     CAN1RXFG     R     FORE       CAN1TXFG     R     FORE       W     FORE | Name     Bit 7     Bit 6     Bit 5     Bit 4       CAN1IDMR7     R<br>W     AM7     AM6     AM5     AM4       CAN1RXFG     R<br>W     FOREGROUND R<br>(See Detailed MSCAN Foreground F<br>W       CAN1TXFG     R<br>W     FOREGROUND TF<br>CAN1TXFG | Name     Bit 7     Bit 6     Bit 5     Bit 4     Bit 3       CAN1IDMR7     R     AM7     AM6     AM5     AM4     AM3       R     FOREGROUND RECEIVE BU<br>(See Detailed MSCAN Foreground Receive and<br>W       CAN1TXFG     R     FOREGROUND TRANSMIT BU<br>(See Detailed MSCAN Foreground Receive and<br>W | Name     Bit 7     Bit 6     Bit 5     Bit 4     Bit 3     Bit 2       CAN1IDMR7     R     AM7     AM6     AM5     AM4     AM3     AM2       R     FOREGROUND RECEIVE BUFFER       CAN1RXFG     (See Detailed MSCAN Foreground Receive and Transmit Bu       W     FOREGROUND TRANSMIT BUFFER       CAN1TXFG     R     FOREGROUND TRANSMIT BUFFER       W     (See Detailed MSCAN Foreground Receive and Transmit Bu | Name     Bit 7     Bit 6     Bit 5     Bit 4     Bit 3     Bit 2     Bit 1       CAN1IDMR7     R<br>W     AM7     AM6     AM5     AM4     AM3     AM2     AM1       R     FOREGROUND RECEIVE BUFFER<br>(See Detailed MSCAN Foreground Receive and Transmit Buffer Layout)     Image: Canata Sector |

# 0x01C0–0x01FF Freescale Scalable CAN — MSCAN (CAN2) Map

| Address | Name      |        | Bit 7  | Bit 6  | Bit 5   | Bit 4   | Bit 3   | Bit 2   | Bit 1  | Bit 0  |
|---------|-----------|--------|--------|--------|---------|---------|---------|---------|--------|--------|
| 0x01C0  | CAN2CTL0  | R<br>W | RXFRM  | RXACT  | CSWAI   | SYNCH   | TIME    | WUPE    | SLPRQ  | INITRQ |
| 0x01C1  | CAN2CTL1  | R<br>W | CANE   | CLKSRC | LOOPB   | LISTEN  | BORM    | WUPM    | SLPAK  | INITAK |
| 0x01C2  | CAN2BTR0  | R<br>W | SJW1   | SJW0   | BRP5    | BRP4    | BRP3    | BRP2    | BRP1   | BRP0   |
| 0x01C3  | CAN2BTR1  | R<br>W | SAMP   | TSEG22 | TSEG21  | TSEG20  | TSEG13  | TSEG12  | TSEG11 | TSEG10 |
| 0x01C4  | CAN2RFLG  | R<br>W | WUPIF  | CSCIF  | RSTAT1  | RSTAT0  | TSTAT1  | TSTAT0  | OVRIF  | RXF    |
| 0x01C5  | CAN2RIER  | R<br>W | WUPIE  | CSCIE  | RSTATE1 | RSTATE0 | TSTATE1 | TSTATE0 | OVRIE  | RXFIE  |
| 0x01C6  | CAN2TFLG  | R<br>W | 0      | 0      | 0       | 0       | 0       | TXE2    | TXE1   | TXE0   |
| 0x01C7  | CAN2TIER  | R<br>W | 0      | 0      | 0       | 0       | 0       | TXEIE2  | TXEIE1 | TXEIE0 |
| 0x01C8  | CAN2TARQ  | R<br>W | 0      | 0      | 0       | 0       | 0       | ABTRQ2  | ABTRQ1 | ABTRQ0 |
| 0x01C9  | CAN2TAAK  | R<br>W | 0      | 0      | 0       | 0       | 0       | ABTAK2  | ABTAK1 | ABTAK0 |
| 0x01CA  | CAN2TBSEL | R<br>W | 0      | 0      | 0       | 0       | 0       | TX2     | TX1    | TX0    |
| 0x01CB  | CAN2IDAC  | R<br>W | 0      | 0      | IDAM1   | IDAM0   | 0       | IDHIT2  | IDHIT1 | IDHIT0 |
| 0x01CC  | Reserved  | R<br>W | 0      | 0      | 0       | 0       | 0       | 0       | 0      | 0      |
| 0x01CD  | CAN2MISC  | R<br>W | 0      | 0      | 0       | 0       | 0       | 0       | 0      | BOHOLD |
| 0x01CE  | CAN2RXERR | R<br>W | RXERR7 | RXERR6 | RXERR5  | RXERR4  | RXERR3  | RXERR2  | RXERR1 | RXERR0 |
| 0x01CF  | CAN2TXERR | R<br>W | TXERR7 | TXERR6 | TXERR5  | TXERR4  | TXERR3  | TXERR2  | TXERR1 | TXERR0 |
| 0x01D0  | CAN2IDAR0 | R<br>W | AC7    | AC6    | AC5     | AC4     | AC3     | AC2     | AC1    | AC0    |

#### MC9S12XDP512 Data Sheet, Rev. 2.21