

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	12
Program Memory Size	768B (512 x 12)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	25 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	18-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f54-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2002

Trademarks

The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KEELOQ, KEELOQ logo, microID, MPLAB, PIC, PICmicro, PICSTART, PRO MATE, PowerSmart, rfPIC, and SmartShunt are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AmpLab, FilterLab, Linear Active Thermistor, Migratable Memory, MXDEV, MXLAB, PS logo, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, PICkit, PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal, PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB, rfPICDEM, Select Mode, Smart Serial, SmartTel, Total Endurance, UNI/O, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2007, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona, Gresham, Oregon and Mountain View, California. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

PIC16F5X

Flash-Based, 8-Bit CMOS Microcontroller Series

High-Performance RISC CPU:

- Only 33 single-word instructions to learn
- All instructions are single cycle except for program branches which are two-cycle
- Two-level deep hardware stack
- Direct, Indirect and Relative Addressing modes for data and instructions
- · Operating speed:
 - DC 20 MHz clock speed
 - DC 200 ns instruction cycle time
- On-chip Flash program memory:
 - 512 x 12 on PIC16F54
 - 2048 x 12 on PIC16F57
 - 2048 x 12 on PIC16F59
- General Purpose Registers (SRAM):
 - 25 x 8 on PIC16F54
 - 72 x 8 on PIC16F57
 - 134 x 8 on PIC16F59

Special Microcontroller Features:

- Power-on Reset (POR)
- Device Reset Timer (DRT)
- Watchdog Timer (WDT) with its own on-chip RC oscillator for reliable operation
- Programmable Code Protection
- Power-Saving Sleep mode
- In-Circuit Serial Programming[™] (ICSP[™])
- Selectable oscillator options:
 - RC: Low-cost RC oscillator
 - XT: Standard crystal/resonator
 - HS: High-speed crystal/resonator
 - LP: Power-saving, low-frequency crystal
- Packages:
 - 18-pin PDIP and SOIC for PIC16F54
 - 20-pin SSOP for PIC16F54
 - 28-pin PDIP, SOIC and SSOP for PIC16F57
 - 40-pin PDIP for PIC16F59
 - 44-pin TQFP for PIC16F59

Low-Power Features:

- Operating Current:
 - 170 μA @ 2V, 4 MHz, typical
 - 15 μA @ 2V, 32 kHz, typical
- Standby Current:
 - 500 nA @ 2V, typical

Peripheral Features:

- 12/20/32 I/O pins:
 - Individual direction control
 - High current source/sink
- 8-bit real-time clock/counter (TMR0) with 8-bit programmable prescaler

CMOS Technology:

- Wide operating voltage range:
 - Industrial: 2.0V to 5.5V
 - Extended: 2.0V to 5.5V
- Wide temperature range:
 - Industrial: -40°C to 85°C
 - Extended: -40°C to 125°C
- High-endurance Flash:
 - 100K write/erase cycles
 - > 40-year retention

Device	Program Memory	Data Memory	1/0	Timers	
Device	Flash (words) SRAM (bytes)		1/0	8-bit	
PIC16F54	512	25	12	1	
PIC16F57	2048	72	20	1	
PIC16F59	2048	134	32	1	

Pin Diagrams

FIGURE 2-1: PIC16F5X SERIES BLOCK DIAGRAM

TADLE 2-2.			DESCIVI			
Name	Function	Input Type	Output Type	Description		
RA0	RA0	TTL	CMOS	Bidirectional I/O pin		
RA1	RA1	TTL	CMOS	Bidirectional I/O pin		
RA2	RA2	TTL	CMOS	Bidirectional I/O pin		
RA3	RA3	TTL	CMOS	Bidirectional I/O pin		
RB0	RB0	TTL	CMOS	Bidirectional I/O pin		
RB1	RB1	TTL	CMOS	Bidirectional I/O pin		
RB2	RB2	TTL	CMOS	Bidirectional I/O pin		
RB3	RB3	TTL	CMOS	Bidirectional I/O pin		
RB4	RB4	TTL	CMOS	Bidirectional I/O pin		
RB5	RB5	TTL	CMOS	Bidirectional I/O pin		
RB6/ICSPCLK	RB6	TTL	CMOS	Bidirectional I/O pin		
	ICSPCLK	ST	—	Serial programming clock		
RB7/ICSPDAT	RB7	TTL	CMOS	Bidirectional I/O pin		
	ICSPDAT	ST	CMOS	Serial programming I/O		
RC0	RC0	TTL	CMOS	Bidirectional I/O pin		
RC1	RC1	TTL	CMOS	Bidirectional I/O pin		
RC2	RC2	TTL	CMOS	Bidirectional I/O pin		
RC3	RC3	TTL	CMOS	Bidirectional I/O pin		
RC4	RC4	TTL	CMOS	Bidirectional I/O pin		
RC5	RC5	TTL	CMOS	Bidirectional I/O pin		
RC6	RC6	TTL	CMOS	Bidirectional I/O pin		
RC7	RC7	TTL	CMOS	Bidirectional I/O pin		
TOCKI	TOCKI	ST	_	Clock input to Timer0. Must be tied to Vss or VDD, if not in use, to reduce current consumption.		
MCLR/VPP	MCLR	ST	_	Active-low Reset to device. Voltage on the MCLR/VPP pin must not exceed VDD to avoid unintended entering of Programming mode.		
	Vpp	ΗV	_	Programming voltage input		
OSC1/CLKIN	OSC1	XTAL	—	Oscillator crystal input		
	CLKIN	ST	—	External clock source input		
OSC2/CLKOUT	OSC2	—	XTAL	Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode.		
	CLKOUT	—	CMOS	In RC mode, OSC2 pin outputs CLKOUT, which has 1/4 the frequency of OSC1.		
Vdd	Vdd	Power	—	Positive supply for logic and I/O pins		
Vss	Vss	Power	—	Ground reference for logic and I/O pins		
N/C	N/C	_	_	Unused, do not connect		
Legend: I = input O = output ST = Schmitt Trigger input		I/O = — = TTL =	input/outputCMOS= CMOS outputNot UsedXTAL= Crystal input/outputTTL inputHV= High Voltage			

TABLE 2-2: PIC16F57 PINOUT DESCRIPTION

3.6 Stack

The PIC16F54 device has a 9-bit wide, two-level hardware PUSH/POP stack. The PIC16F57 and PIC16F59 devices have an 11-bit wide, two-level hardware PUSH/POP stack.

A CALL instruction will PUSH the current value of stack 1 into stack 2 and then PUSH the current program counter value, incremented by one, into stack level 1. If more than two sequential CALL's are executed, only the most recent two return addresses are stored.

A RETLW instruction will POP the contents of stack level 1 into the program counter and then copy stack level 2 contents into level 1. If more than two sequential RETLW's are executed, the stack will be filled with the address previously stored in level 2.

Note:	The W register will be loaded with the
	literal value specified in the instruction.
	This is particularly useful for the
	implementation of data look-up tables
	within the program memory.

For the RETLW instruction, the PC is loaded with the Top-of-Stack (TOS) contents. All of the devices covered in this data sheet have a two-level stack. The stack has the same bit width as the device PC, therefore, paging is not an issue when returning from a subroutine.

3.7 Indirect Data Addressing; INDF and FSR Registers

The INDF register is not a physical register. Addressing INDF actually addresses the register whose address is contained in the FSR Register (FSR is a *pointer*). This is indirect addressing.

EXAMPLE 3-1: INDIRECT ADDRESSING

- Register file 08 contains the value 10h
- Register file 09 contains the value 0Ah
- Load the value 08 into the FSR register
- A read of the INDF register will return the value of 10h
- Increment the value of the FSR register by one (FSR = 09h)
- A read of the INDF register now will return the value of 0Ah.

Reading INDF itself indirectly (FSR = 0) will produce 00h. Writing to the INDF register indirectly results in a no-operation (although Status bits may be affected).

A simple program to clear RAM locations 10h-1Fh using indirect addressing is shown in Example 3-2.

EXAMPLE 3-2: HOW TO CLEAR RAM USING INDIRECT ADDRESSING

NEXT	MOVLW MOVWF CLRF INCF	H'10' FSR INDF FSR,F	;initialize pointer ;to RAM ;clear INDF Register ;inc pointer
	BTFSC	FSR,4	;all done?
	GOTO	NEXT	;NO, clear next
CONTINUE			
	:		;YES, continue

The FSR is either a 5-bit (PIC16F54), 7-bit (PIC16F57) or 8-bit (PIC16F59) wide register. It is used in conjunction with the INDF register to indirectly address the data memory area.

The FSR<4:0> bits are used to select data memory addresses 00h to 1Fh.

PIC16F54: This does not use banking. FSR<7:5> bits are unimplemented and read as '1's.

PIC16F57: FSR<7> bit is unimplemented and read as '1'. FSR<6:5> are the bank select bits and are used to select the bank to be addressed (00 = Bank 0, 01 = Bank 1, 10 = Bank 2, 11 = Bank 3).

PIC16F59: FSR<7:5> are the bank select bits and are used to select the bank to be addressed (000 = Bank 0, 001 = Bank 1, 010 = Bank 2,

011 = Bank 3, 100 = Bank 4, 101 = Bank 5, 110 = Bank 6, 111 = Bank 7).

Note: A CLRF FSR instruction may not result in an FSR value of 00h if there are unimplemented bits present in the FSR.

4.0 OSCILLATOR CONFIGURATIONS

4.1 Oscillator Types

The PIC16F5X devices can be operated in four different oscillator modes. The user can program two Configuration bits (FOSC1:FOSC0) to select one of these four modes:

- LP: Low-power Crystal
- XT: Crystal/Resonator
- HS: High-speed Crystal/Resonator
- RC: Resistor/Capacitor

4.2 Crystal Oscillator/Ceramic Resonators

In XT, LP or HS modes, a crystal or ceramic resonator is connected to the OSC1/CLKIN and OSC2/CLKOUT pins to establish oscillation (Figure 4-1). The PIC16F5X oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may give a frequency outside of the crystal manufacturers specifications. When in XT, LP or HS modes, the device can have an external clock source drive the OSC1/CLKIN pin (Figure 4-2).

FIGURE 4-1: CRYSTAL/CERAMIC RESONATOR OPERATION (HS, XT OR LP OSC CONFIGURATION)

FIGURE 4-2: EXTERNAL CLOCK INPUT OPERATION (HS, XT OR LP OSC CONFIGURATION)

TABLE 4-1:CAPACITOR SELECTION FOR
CERAMIC RESONATORS

Osc Type	Resonator Freq.	Cap. Range C1	Cap. Range C2
XT	455 kHz	68-100 pF	68-100 pF
	2.0 MHz	15-33 pF	15-33 pF
	4.0 MHz	10-22 pF	10-22 pF
HS	8.0 MHz	10-22 pF	10-22 pF
	16.0 MHz	10 pF	10 pF

These values are for design guidance only. Since each resonator has its own characteristics, the user should consult the resonator manufacturer for appropriate values of external components.

TABLE 4-2: CAPACITOR SELECTION FOR CRYSTAL OSCILLATOR

Osc Type	Crystal Freq.	Cap.Range C1	Cap. Range C2
LP	32 kHz ⁽¹⁾	15 pF	15 pF
XT	100 kHz	15-30 pF	200-300 pF
	200 kHz	15-30 pF	100-200 pF
	455 kHz	15-30 pF	15-100 pF
	1 MHz	15-30 pF	15-30 pF
	2 MHz	15 pF	15 pF
	4 MHz	15 pF	15 pF
HS	4 MHz	15 pF	15 pF
	8 MHz	15 pF	15 pF
	20 MHz	15 pF	15 pF

Note 1: For VDD > 4.5V, C1 = C2 \approx 30 pF is recommended.

These values are for design guidance only. Rs may be required in HS mode, as well as XT mode, to avoid overdriving crystals with low drive level specifications. Since each crystal has its own characteristics, the user should consult the crystal manufacturer for appropriate values of external components.

2: The user should verify that the device oscillator starts and performs as expected. Adjusting the loading capacitor values and/or the Oscillator mode may be required.

Note 1: This device has been designed to perform to the parameters of its data sheet. It has been tested to an electrical specification designed to determine its conformance with these parameters. Due to process differences in the manufacture of this device, this device may have different performance characteristics than its earlier version. These differences may cause this device to perform differently in your application than the earlier version of this device.

PIC16F5X

FIGURE 5-4: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD): FAST VDD RISE TIME

FIGURE 5-5: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD): SLOW VDD RISE TIME

7.0 TIMER0 MODULE AND TMR0 REGISTER

The Timer0 module has the following features:

- 8-bit Timer/Counter register, TMR0
 - Readable and writable
- 8-bit software programmable prescaler
- Internal or external clock select
 - Edge select for external clock

Figure 7-1 is a simplified block diagram of the Timer0 module.

Timer mode is selected by clearing the T0CS bit (OPTION<5>). In Timer mode, the Timer0 module will increment every instruction cycle (without prescaler). If TMR0 register is written, the increment is inhibited for the following two cycles (Figure 7-2 and Figure 7-3). The user can work around this by writing an adjusted value to the TMR0 register.

Counter mode is selected by setting the T0CS bit (OPTION<5>). In this mode, Timer0 will increment either on every rising or falling edge of pin T0CKI. The incrementing edge is determined by the source edge select bit T0SE (OPTION<4>). Clearing the T0SE bit selects the rising edge. Restrictions on the external clock input are discussed in detail in **Section 7.1** "Using Timer0 with an External Clock".

Note: The prescaler may be used by either the Timer0 module or the Watchdog Timer, but not both.

The prescaler assignment is controlled in software by the control bit PSA (OPTION<3>). Clearing the PSA bit will assign the prescaler to Timer0. The prescaler is not readable or writable. When the prescaler is assigned to the Timer0 module, prescale values of 1:2, 1:4,..., 1:256 are selectable. **Section 7.2 "Prescaler**" details the operation of the prescaler.

A summary of registers associated with the Timer0 module is found in Table 7-1.

PC (Program	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4
Counter)	(PC - 1	PC	(PC + 1)	PC + 2	PC + 3	PC + 4	PC + 5	PC + 6
Instruction Fetch		MOVWF TMR0	MOVF TMR0,W					
								1 1
Timer0	Τ0 χ	Τ0 + 1 χ	Τ0 + 2 χ	NTO X	NTO X	ΝΤΟ Χ	NT0 + 1 X	NT0 + 2
Instruction Executed			Write TMR0 executed	Read TMR0 reads NT0	Read TMR0 reads NT0	Read TMR0 reads NT0	Read TMR0 reads NT0 + 1	Read TMR0 reads NT0 + 2

© 2007 Microchip Technology Inc.

FIGURE 7-3: TIMER0 TIMING: INTERNAL CLOCK/PRESCALER 1:2

PC (Program	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4
Counter)	(PC - 1	Y PC	PC + 1	PC + 2	PC + 3	PC + 4	PC + 5	PC + 6
Instruction Fetch		MOVWF TMR0	MOVF TMR0,W					
Timer0	<u>το</u> χ	T0 + 1			NT0		X_	NT0 + 1
Instruction Execute	1 1 1 1	1 1 1 1	Write TMR0 executed	Read TMR0 reads NT0 + 1				

TABLE 7-1:REGISTERS ASSOCIATED WITH TIMER0

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	<u>Value</u> on MCLR and WDT Reset
01h	TMR0	Timer0	Timer0 - 8-bit real-time clock/counter							xxxx xxxx	uuuu uuuu
N/A	OPTION	—	_	TOCS	T0SE	PSA	PS2	PS1	PS0	11 1111	11 1111

Legend: Shaded cells not used by Timer0, - = unimplemented, x = unknown, u = unchanged.

7.2.1 SWITCHING PRESCALER ASSIGNMENT

The prescaler assignment is fully under software control (i.e., it can be changed "on-the-fly" during program execution). To avoid an unintended device Reset, the following instruction sequence (Example 7-1) must be executed when changing the prescaler assignment from Timer0 to the WDT.

EXAMPLE 7-1: CHANGING PRESCALER (TIMER0 \rightarrow WDT)

CLRWDT		;Clear WDT
CLRF	TMR0	;Clear TMR0 & ;Prescaler
MOVLW	B'00xx1111'	;Last 3 instructions
		;in this example
OPTION		;are required only if
		;desired
CLRWDT		;PS<2:0> are 000 or 001
MOVLW	B'00xx1xxx′	;Set Prescaler to
OPTION		;desired WDT rate
1		

To change prescaler from the WDT to the Timer0 module, use the sequence shown in Example 7-2. This sequence must be used even if the WDT is disabled. A CLRWDT instruction should be executed before switching the prescaler.

EXAMPLE 7-2:	CHANGING PRESCALER
	(WDT→TIMER0)

CLRWDT		;Clear WDT and
		;prescaler
MOVLW	B'xxxx0xxx'	;Select TMR0, new
		;prescale value and
		;clock source
OPTION		

FIGURE 7-5: BLOCK DIAGRAM OF THE TIMER0/WDT PRESCALER

MOVWF	Move W to f					
Syntax:	[label]	MOVWF	f			
Operands:	$0 \le f \le 31$					
Operation:	$(W) \rightarrow (f)$)				
Status Affected:	None					
Encoding:	0000	001f	ffff			
Description: Move data from the W register register 'f'.						
Words:	1					
Cycles:	1					
Example:	MOVWF	TEMP_RE	G			
Before Instruc TEMP_R W After Instructi TEMP_R W	ction EG = on EG = =	0xFF 0x4F 0x4F 0x4F 0x4F				

No Operation

NOP

Syntax:	[label]	NOP	
Operands:	None		
Operation:	No opera	ation	
Status Affected:	None		
Encoding:	0000	0000	0000
Description:	No opera	ation.	
Words:	1		
Cycles:	1		
Example:	NOP		

OPTION	Load OPTION Register					
Syntax:	[label]	OPTIO	N			
Operands:	None					
Operation:	$(W) \rightarrow C$	OPTION				
Status Affected:	None					
Encoding:	0000	0000	0010			
Description:	The content of the W register is					
	loaded i	nto the O	ption register.			
Words:	1					
Cycles:	1					
Example:	OPTION					
Before Instruction						
W	= 0x	:07				
After Instructi	on					
OPTION	= 0x	:07				

RETLW	Return with Literal in W							
Syntax:	[<i>label</i>] RETLW k							
Operands:	$0 \le k \le 255$							
Operation:	$k \rightarrow (W);$ TOS \rightarrow PC							
Status Affected:	None							
Encoding:	1000 kkkk kkkk							
Description:	The W register is loaded with the eight-bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a two-cycle instruction.							
Words:	1							
Cycles:	2							
Example:	CALL TABLE;W contains ;table offset ;value. • ;W now has table • :value.							
TABLE	•							
	ADDWF PC ;W = offset RETLW k1 ;Begin table RETLW k2 ; • •							
	RETLW kn ; End of table							
Before Instru W	uction = 0x07							
After Instruc	tion – value of k8							
TABLE Before Instru W After Instruc W	<pre>,value. ,value. ADDWF PC ;W = offset RETLW k1 ;Begin table RETLW k2 ; RETLW kn ; End of table uction = 0x07 tion = value of k8</pre>							

DC CHARACTERISTICS			Standard Operating Conditions (unless otherwise specified)Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended				
Param No.	Sym. Characteristic/Device		Min.	Тур†	Max.	Units	Conditions
D001	Vdd	Supply Voltage	2.0		5.5	V	
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾	—	1.5*	_	V	Device in Sleep mode
D003	Vpor	VDD Start Voltage to ensure Power-on Reset	—	Vss	_	V	See Section 5.1 "Power-on Reset (POR)" for details on Power-on Reset
D004	Svdd	VDD Rise Rate to ensure Power-on Reset	0.05*	_	_	V/ms	See Section 5.1 "Power-on Reset (POR)" for details on Power-on Reset
D010	Idd	Supply Current ⁽²⁾					
			—	170	450	μΑ	Fosc = 4 MHz, VDD = 2.0V, XT or RC mode ⁽³⁾
			—	0.4	2.0	mA	Fosc = 10 MHz, VDD = 3.0V, HS mode
			—	1.7	7.0	mA	FOSC = 20 MHz, $VDD = 5.0V$, HS mode
			—	15	40	μA	Fosc = 32 kHz, VDD = 2.0V, LP mode, WDT disabled
D020	Ipd	Power-down Current ⁽²⁾					
			_	1.0	15.0	μA	VDD = 2.0V, WDT enabled
			—	0.5	8.0	μA	VDD = 2.0V, WDT disabled

11.2 DC Characteristics: PIC16F5X (Extended)

* These parameters are characterized but not tested.

† Data in "Typ" column is based on characterization results at 25°C. This data is for design guidance only and is not tested.

Note 1: This is the limit to which VDD can be lowered in Sleep mode without losing RAM data.

- 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern and temperature, also have an impact on the current consumption.
 - a) The test conditions for all IDD measurements in Active Operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to Vss, TOCKI = VDD, MCLR = VDD; WDT enabled/ disabled as specified.
 - b) For standby current measurements, the conditions are the same, except that the device is in Sleep mode. The Power-down Current in Sleep mode does not depend on the oscillator type.
- 3: Does not include current through REXT. The current through the resistor can be estimated by the formula: IR = VDD/2REXT (mA) with REXT in k Ω .

11.3 DC Characteristics PIC16F5X

DC CH	ARAC [.]	TERISTICS	Standard Operating Conditions (unless otherwise specified)Operating Temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended					
Param No. Sym. Characteristic			Min.	Тур†	Max.	Units	Conditions	
	VIL	Input Low Voltage						
D030		I/O Ports	Vss	_	0.8V	V	$4.5V < VDD \le 5.5V$	
		I/O Ports	Vss	—	0.15 Vdd	V	$VDD \leq 4.5V$	
		MCLR (Schmitt Trigger)	Vss		0.15 Vdd	V		
		T0CKI (Schmitt Trigger)	Vss	—	0.15 Vdd	V		
		OSC1 (Schmitt Trigger)	Vss	—	0.15 Vdd	V	RC mode ⁽³⁾	
		OSC1	Vss	—	0.3 Vdd	V	HS mode	
			Vss	_	0.3	V	XT mode	
		VSS	_	0.3	V	LP mode		
	Vін	Input High Voltage						
D040		I/O ports	2.0	_	Vdd	V	$4.5V < VDD \le 5.5V$	
		I/O ports	0.25 VDD + 0.8	—	Vdd	V	$VDD \leq 4.5V$	
		MCLR (Schmitt Trigger)	0.85 Vdd		Vdd	V		
		T0CKI (Schmitt Trigger)	0.85 Vdd	—	Vdd	V		
		OSC1 (Schmitt Trigger)	0.85 VDD	—	Vdd	V	RC mode ⁽³⁾	
		OSC1	0.7 VDD	—	Vdd	V	HS mode	
			1.6	_	VDD	V	XT mode	
		,	1.6	—	VDD	V	LP mode	
	lı∟	Input Leakage Current ⁽	1, 2)					
D060		I/O ports	—	_	±1.0	μA	$VSS \leq VPIN \leq VDD,$	
							pin at high-impedance	
		MCLR	—	—	±5.0	μA	$VSS \leq VPIN \leq VDD$	
		TOCKI	—	—	±5.0	μA	$VSS \leq VPIN \leq VDD$	
		OSC1	—		±5.0	μA	$VSS \leq VPIN \leq VDD$,	
							XI, HS and LP modes	
	Vol	Output Low Voltage		-	1	-		
D080		I/O ports	—	—	0.6	V	IOL = 8.5 mA, VDD = 4.5V	
D083		OSC2/CLKOUT	—	—	0.6	V	IOL = 1.6 mA, VDD = 4.5V	
		(RC mode)						
	Vон	Output High Voltage ⁽²⁾						
D090		I/O ports ⁽²⁾	Vdd - 0.7	_		V	IOH = -3.0 mA, VDD = 4.5V	
D092		OSC2/CLKOUT	Vdd - 0.7	—	—	V	IOH = -1.3 mA, VDD = 4.5V	
		(RC mode)						

* These parameters are characterized but not tested.

† Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.

Note 1: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltage.

2: Negative current is defined as coming out of the pin.

3: For the RC mode, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16F5X be driven with external clock in RC mode.

FIGURE 11-5: RESET, WATCHDOG TIMER, AND DEVICE RESET TIMER TIMING -- PIC16F5X

TABLE 11-3: RESET, WATCHDOG TIMER AND DEVICE RESET TIMER – PIC16F5X

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
30	TMCL	MCLR Pulse Width (low)	2000*	—	—	ns	Vdd = 5.0V
31	Twdt	Watchdog Timer Time-out Period (No Prescaler)	9.0* 9.0*	18* 18*	30* 40*	ms	VDD = 5.0V (industrial) VDD = 5.0V (extended)
32	Tdrt	Device Reset Timer Period	9.0* 9.0*	18* 18*	30* 40*	ms	VDD = 5.0V (industrial) VDD = 5.0V (extended)
34	Tioz	I/O high-impedance from MCLR	100*	300*	2000*	ns	

* These parameters are characterized but not tested.

† Data in the Typical ("Typ") column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

TABLE 11-4: TIMER0 CLOCK REQUIREMENTS – PIC16F5X

AC CHARACTERISTICS			$\begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise specified)} \\ \mbox{Operating Temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for extended} \end{array}$					
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions	
40	Tt0H	TOCKI High Pulse Width: No Prescaler With Prescaler	0.5 Tcy + 20* 10*			ns ns		
41	TtOL	T0CKI Low Pulse Width: No Prescaler With Prescaler	0.5 Tcy + 20* 10*			ns ns		
42	Tt0P	T0CKI Period	20 or <u>Tcy + 40</u> * N		_	ns	Whichever is greater. N = Prescale Value (1, 2, 4,, 256)	

These parameters are characterized but not tested.

Data in the Typical ("Typ") column is at 5.0V, 25°C unless otherwise stated. These parameters are for † design guidance only and are not tested.

For the most current package drawings, please see the Microchip Packaging Specification located at

28-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]

	Units	MILLIMETERS			
Dimensi	on Limits	MIN	NOM	MAX	
Number of Pins	Ν		28		
Pitch	е		0.65 BSC		
Overall Height	А	-	-	2.00	
Molded Package Thickness	A2	1.65	1.75	1.85	
Standoff	A1	0.05	-	-	
Overall Width	E	7.40	7.80	8.20	
Molded Package Width	E1	5.00	5.30	5.60	
Overall Length	D	9.90	10.20	10.50	
Foot Length	L	0.55	0.75	0.95	
Footprint	L1	1.25 REF			
Lead Thickness	С	0.09	-	0.25	
Foot Angle	φ	0°	4°	8°	
Lead Width	b	0.22	-	0.38	

Note:

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.
- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-073B

APPENDIX A: DATA SHEET REVISION HISTORY

Revision D (04/2007)

Changed PICmicro to PIC; Replaced Dev. Tool Section; Updated Package Marking Information and replaced Package Drawings (Rev. AP)

PIC16F5X

Q

Q cycles	2
----------	---

R

RC Oscillator	
Reader Response	
Read-Modify-Write	
Register File Map	
PIC16F54	14
PIC16F57	14
PIC16F59	
Registers	
Special Function	
Value on Reset	24
Reset	
Reset on Brown-out	27
RETLW	
RLF	
RRF	

S

Sleep	. 37, 39, 50
Software Simulator (MPLAB SIM)	54
Special Features of the CPU	37
Special Function Registers	16
Stack	20
STATUS Register	7, 17
Value on Reset	24
SUBWF	51
SWAPF	51

т

Timer0	
Switching Prescaler Assignment	36
Timer0 (TMR0) Module	33
TMR0 register - Value on Reset	24
TMR0 with External Clock	35
Timing Diagrams and Specifications	
	63
Timing Parameter Symbology and Load Conditions	
	63
TO bit	17, 23
TRIS	51
TRIS Registers	29
Value on Reset	24
w	
W Register	

W Register	
Value on Reset	
Wake-up from Sleep	23, 39
Watchdog Timer (WDT)	37, 38
Period	
Programming Considerations	38
Register Values on Reset	24
WWW Address	83
WWW, On-Line Support	

Х

XORLW	52
XORWF	
7	
L	

Zero (Z) bit	7,	17