

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	12
Program Memory Size	768B (512 x 12)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	25 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f54t-e-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

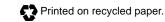
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2002

Trademarks

The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KEELOQ, KEELOQ logo, microID, MPLAB, PIC, PICmicro, PICSTART, PRO MATE, PowerSmart, rfPIC, and SmartShunt are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.


AmpLab, FilterLab, Linear Active Thermistor, Migratable Memory, MXDEV, MXLAB, PS logo, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, PICkit, PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal, PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB, rfPICDEM, Select Mode, Smart Serial, SmartTel, Total Endurance, UNI/O, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2007, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona, Gresham, Oregon and Mountain View, California. The Company's quality system processes and procedures are for its PIC[®] MCUs and dsPIC[®] DSCs, KEELOO[®] code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified. NOTES:

Name	Function	Input Type	Output Type	Description		
RA0	RA0	TTL	CMOS	Bidirectional I/O pin		
RA1	RA1	TTL	CMOS	Bidirectional I/O pin		
RA2	RA2	TTL	CMOS	Bidirectional I/O pin		
RA3	RA3	TTL	CMOS	Bidirectional I/O pin		
RB0	RB0	TTL	CMOS	Bidirectional I/O pin		
RB1	RB1	TTL	CMOS	Bidirectional I/O pin		
RB2	RB2	TTL	CMOS	Bidirectional I/O pin		
RB3	RB3	TTL	CMOS	Bidirectional I/O pin		
RB4	RB4	TTL	CMOS	Bidirectional I/O pin		
RB5	RB5	TTL	CMOS	Bidirectional I/O pin		
RB6/ICSPCLK	RB6	TTL	CMOS	Bidirectional I/O pin		
	ICSPCLK	ST	_	Serial Programming Clock		
RB7/ICSPDAT	RB7	TTL	CMOS	Bidirectional I/O pin		
	ICSPDAT	ST	CMOS	Serial Programming I/O		
TOCKI	TOCKI	ST	—	Clock input to Timer0. Must be tied to Vss or VDD, if not in use, to reduce current consumption.		
MCLR/Vpp	MCLR	ST	—	Active-low Reset to device. Voltage on the MCLR/VPP pin must not exceed VDD to avoid unintended entering of Programming mode.		
	Vpp	ΗV	_	Programming voltage input		
OSC1/CLKIN	OSC1	XTAL	—	Oscillator crystal input		
	CLKIN	ST	_	External clock source input		
OSC2/CLKOUT	OSC2	—	XTAL	Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode.		
	CLKOUT	—	CMOS	In RC mode, OSC2 pin can output CLKOUT, which has 1/4 the frequency of OSC1.		
Vdd	Vdd	Power		Positive supply for logic and I/O pins		
Vss	Vss	Power		Ground reference for logic and I/O pins		
O =	input output Schmitt Trig	ger input	I/O — TT	= input/outputCMOS= CMOS output= Not UsedXTAL= Crystal input/outputL= TTL inputHV= High Voltage		

TABLE 2-1: PIC16F54 PINOUT DESCRIPTION

3.3 **STATUS Register**

This register contains the arithmetic status of the ALU, the Reset status and the page preselect bits for program memories larger than 512 words.

The STATUS register can be the destination for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS will clear the upper three bits and set the Z bit. This leaves the STATUS register as 000u uluu (where u = unchanged).

Therefore, it is recommended that only BCF, BSF, MOVWF and SWAPF instructions be used to alter the STATUS register because these instructions do not affect the Z, DC or C bits from the STATUS register. For other instructions which do affect Status bits, see Section 9.0 "Instruction Set Summary".

REGISTER 3-1: STATUS REGISTER (ADDRESS: 03h)

	R/W-0	R/W-0	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x
	PA2	PA1	PA0	TO	PD	Z	DC	С
	bit 7							bit 0
bit 7	Use of the P	ved, do not us A2 bit as a ge / with future p	neral purpos	e read/write I	oit is not rec	ommended, sin	ce this may af	fect upward
bit 6-5	00 = Page 0 01 = Page 1 10 = Page 2 11 = Page 3 Each page i	n for program))) Using the P/	\ \<1:0> bits a:	s general pu) urpose read/writ This may affect		
bit 4		ut bit wer-up, CLRM time-out occu		on or SLEEP	instruction			
bit 3		Down bit wer-up or by ution of the S						
bit 2		ult of an arith ult of an arith						
bit 1	ADDWF 1 = A carry 1 0 = A carry 1 SUBWF 1 = A borrow	arry/Borrow b to the 4th low from the 4th l w to the 4th lc w from the 4th	order bit of ow order bit ow order bit	the result occ of the result of the result c	curred did not occu lid not occu	ır		
bit 0	1 = A carry	rrow bit (for A occurred did not occur	<u>SUBWI</u> 1 = A b		occur Lo	ons) <u>RF or RLF</u> paded with LSb	or MSb, resp	ectively
	Legend:							
	R = Readab	ole bit	W = W	/ritable bit	U = Un	implemented bi	t, read as '0'	
	- n = Value a	at POR	'1' = B	it is set	'0' = Bit	t is cleared	x = Bit is un	known

4.0 OSCILLATOR CONFIGURATIONS

4.1 Oscillator Types

The PIC16F5X devices can be operated in four different oscillator modes. The user can program two Configuration bits (FOSC1:FOSC0) to select one of these four modes:

- LP: Low-power Crystal
- XT: Crystal/Resonator
- HS: High-speed Crystal/Resonator
- RC: Resistor/Capacitor

4.2 Crystal Oscillator/Ceramic Resonators

In XT, LP or HS modes, a crystal or ceramic resonator is connected to the OSC1/CLKIN and OSC2/CLKOUT pins to establish oscillation (Figure 4-1). The PIC16F5X oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may give a frequency outside of the crystal manufacturers specifications. When in XT, LP or HS modes, the device can have an external clock source drive the OSC1/CLKIN pin (Figure 4-2).

FIGURE 4-1: CRYSTAL/CERAMIC RESONATOR OPERATION (HS, XT OR LP OSC CONFIGURATION)

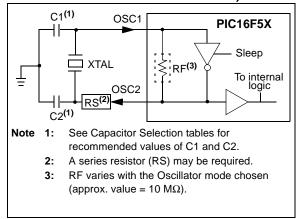
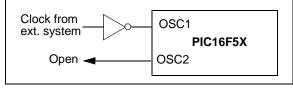



FIGURE 4-2: EXTERNAL CLOCK INPUT OPERATION (HS, XT OR LP OSC CONFIGURATION)

TABLE 4-1:CAPACITOR SELECTION FOR
CERAMIC RESONATORS

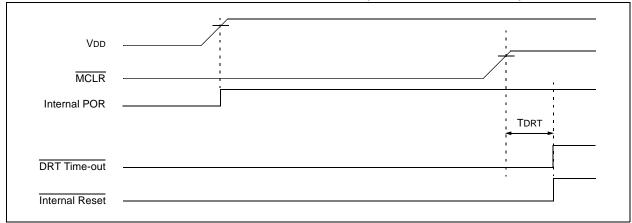
Osc Type	Resonator Freq.	Cap. Range C1	Cap. Range C2
XT	455 kHz	68-100 pF	68-100 pF
	2.0 MHz	15-33 pF	15-33 pF
	4.0 MHz	10-22 pF	10-22 pF
HS	8.0 MHz	10-22 pF	10-22 pF
	16.0 MHz	10 pF	10 pF

These values are for design guidance only. Since each resonator has its own characteristics, the user should consult the resonator manufacturer for appropriate values of external components.

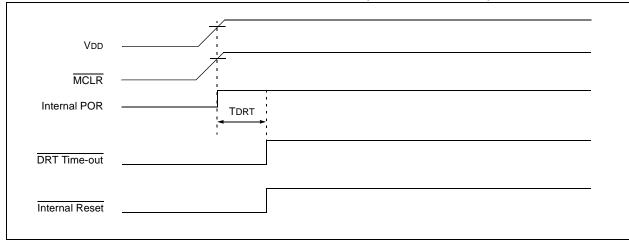
TABLE 4-2: CAPACITOR SELECTION FOR CRYSTAL OSCILLATOR

Crystal Freq.	Cap.Range C1	Cap. Range C2
32 kHz ⁽¹⁾	15 pF	15 pF
100 kHz	15-30 pF	200-300 pF
200 kHz	15-30 pF	100-200 pF
455 kHz	15-30 pF	15-100 pF
1 MHz	15-30 pF	15-30 pF
2 MHz	15 pF	15 pF
4 MHz	15 pF	15 pF
4 MHz	15 pF	15 pF
8 MHz	15 pF	15 pF
20 MHz	15 pF	15 pF
	Freq. 32 kHz ⁽¹⁾ 100 kHz 200 kHz 455 kHz 1 MHz 2 MHz 4 MHz 4 MHz 8 MHz	Freq. C1 32 kHz ⁽¹⁾ 15 pF 100 kHz 15-30 pF 200 kHz 15-30 pF 455 kHz 15-30 pF 1 MHz 15-30 pF 2 MHz 15 pF 4 MHz 15 pF 4 MHz 15 pF 8 MHz 15 pF

Note 1: For VDD > 4.5V, C1 = C2 \approx 30 pF is recommended.


These values are for design guidance only. Rs may be required in HS mode, as well as XT mode, to avoid overdriving crystals with low drive level specifications. Since each crystal has its own characteristics, the user should consult the crystal manufacturer for appropriate values of external components.

2: The user should verify that the device oscillator starts and performs as expected. Adjusting the loading capacitor values and/or the Oscillator mode may be required.


Note 1: This device has been designed to perform to the parameters of its data sheet. It has been tested to an electrical specification designed to determine its conformance with these parameters. Due to process differences in the manufacture of this device, this device may have different performance characteristics than its earlier version. These differences may cause this device to perform differently in your application than the earlier version of this device.

PIC16F5X

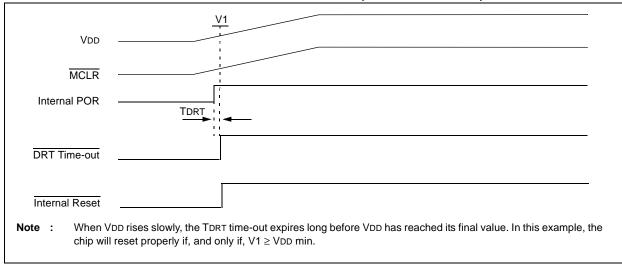


FIGURE 5-4: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD): FAST VDD RISE TIME

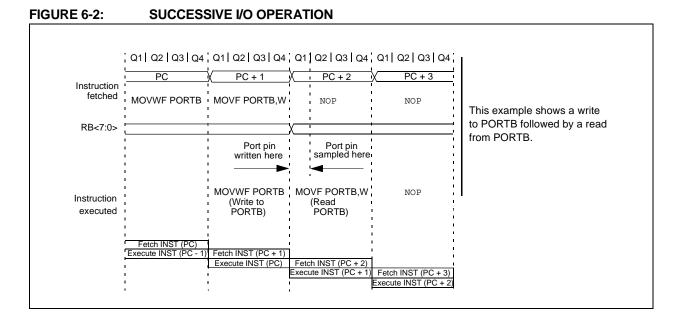
FIGURE 5-5: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD): SLOW VDD RISE TIME

6.8 I/O Programming Considerations

6.8.1 BIDIRECTIONAL I/O PORTS

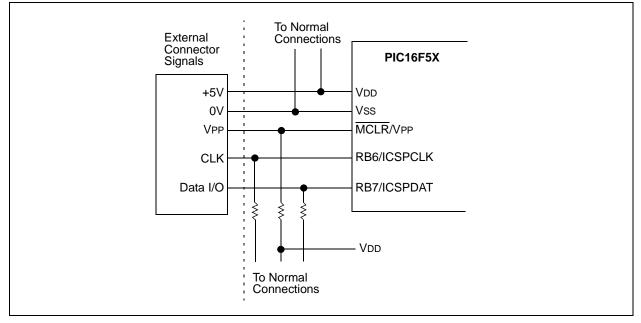
Some instructions operate internally as read followed by write operations. The BCF and BSF instructions, for example, read the entire port into the CPU, execute the bit operation and re-write the result. Caution must be used when these instructions are applied to a port where one or more pins are used as input/outputs. For example, a BSF operation on bit 5 of PORTB will cause all eight bits of PORTB to be read into the CPU, bit 5 to be set and the PORTB value to be written to the output latches. If another bit of PORTB is used as a bidirectional I/O pin (say bit '0'), and it is defined as an input at this time, the input signal present on the pin itself would be read into the CPU and rewritten to the data latch of this particular pin, overwriting the previous content. As long as the pin stays in the Input mode, no problem occurs. However, if bit '0' is switched into Output mode later on, the content of the data latch may now be unknown

Example 6-1 shows the effect of two sequential read-modify-write instructions (e.g., ${\tt BCF}, \ {\tt BSF}, \mbox{etc.})$ on an I/O port.


A pin actively outputting a high or a low should not be driven from external devices at the same time in order to change the level on this pin ("wired-or", "wired-and"). The resulting high output currents may damage the chip.

EXAMPLE 6-1: READ-MODIFY-WRITE INSTRUCTIONS ON AN I/O PORT

;Initial PORT Settings ;PORTB<7:4> Inputs
-
;PORTB<3:0> Outputs
;PORTB<7:6> have external pull-ups and are
;not connected to other circuitry
;
; PORT latch PORT pins
;
BCF PORTB, 7 ;01pp pppp 11pp pppp
BCF PORTB, 6 ;10pp pppp 11pp pppp
MOVLW H'3F' ;
TRIS PORTB ;10pp pppp 10pp pppp
;
;Note that the user may have expected the
pin
;values to be 00pp pppp. The 2nd BCF caused
;RB7 to be latched as the pin value (High).
pin ;values to be 00pp pppp. The 2nd BCF caused


6.8.2 SUCCESSIVE OPERATIONS ON I/O PORTS

The actual write to an I/O port happens at the end of an instruction cycle, whereas for reading, the data must be valid at the beginning of the instruction cycle (see Figure 6-2). Therefore, care must be exercised if a write followed by a read operation is carried out on the same I/O port. The sequence of instructions should allow the pin voltage to stabilize (load dependent) before the next instruction, which causes that file to be read into the CPU, is executed. Otherwise, the previous state of that pin may be read into the CPU rather than the new state. When in doubt, it is better to separate these instructions with a NOP or another instruction not accessing this I/O port.

© 2007 Microchip Technology Inc.

FIGURE 8-1: TYPICAL IN-CIRCUIT SERIAL PROGRAMMING[™] CONNECTION

TABLE 9-2:	INSTRUCTION SET	SUMMARY
-------------------	-----------------	---------

Mnemonic, Description C		Cycles	12-1	Bit Opc	ode	Status	Notes	
Opera	nds	Description	Cycles	MSb		LSb	Affected	Notes
ADDWF	f, d	Add W and f	1	0001	11df	ffff	C,DC,Z	1, 2, 4
ANDWF	f, d	AND W with f	1	0001	01df	ffff	Z	2, 4
CLRF	f	Clear f	1	0000	011f	ffff	Z	4
CLRW	—	Clear W	1	0000	0100	0000	Z	
COMF	f, d	Complement f	1	0010	01df	ffff	Z	
DECF	f, d	Decrement f	1	0000	11df	ffff	Z	2, 4
DECFSZ	f, d	Decrement f, Skip if 0	1 ⁽²⁾	0010	11df	ffff	None	2, 4
INCF	f, d	Increment f	1	0010	10df	ffff	Z	2, 4
INCFSZ	f, d	Increment f, Skip if 0	1 ⁽²⁾	0011	11df	ffff	None	2, 4
IORWF	f, d	Inclusive OR W with f	1	0001	00df	ffff	Z	2, 4
MOVF	f, d	Move f	1	0010	00df	ffff	Z	2, 4
MOVWF	f	Move W to f	1	0000	001f	ffff	None	1, 4
NOP	_	No Operation	1	0000	0000	0000	None	
RLF	f, d	Rotate left f through Carry	1	0011	01df	ffff	С	2, 4
RRF	f, d	Rotate right f through Carry	1	0011	00df	ffff	С	2,4
SUBWF	f, d	Subtract W from f	1	0000	10df	ffff	C,DC,Z	1, 2, 4
SWAPF	f, d	Swap f	1	0011	10df	ffff	None	2, 4
XORWF	f, d	Exclusive OR W with f	1	0001	10df	ffff	Z	2, 4
BIT-ORIEN	TED FIL	E REGISTER OPERATIONS	-	-				-
BCF	f, b	Bit Clear f	1	0100	bbbf	ffff	None	2, 4
BSF	f, b	Bit Set f	1	0101	bbbf	ffff	None	2, 4
BTFSC	f, b	Bit Test f, Skip if Clear	1 ⁽²⁾	0110	bbbf	ffff	None	
BTFSS	f, b	Bit Test f, Skip if Set	1 ⁽²⁾	0111	bbbf	ffff	None	
LITERAL A		ITROL OPERATIONS	-	-				
ANDLW	k	AND literal with W	1	1110	kkkk	kkkk	Z	
CALL	k	Subroutine Call	2	1001	kkkk	kkkk	None	1
CLRWDT	—	Clear Watchdog Timer	1	0000	0000	0100	TO, PD	
GOTO	k	Unconditional branch	2	101k	kkkk	kkkk	None	
IORLW	k	Inclusive OR Literal with W	1	1101	kkkk	kkkk	Z	
MOVLW	k	Move Literal to W	1	1100	kkkk	kkkk	None	
OPTION	—	Load OPTION register	1	0000	0000	0010	None	
RETLW	k	Return, place Literal in W	2	1000	kkkk	kkkk	None	
SLEEP	—	Go into Standby mode	1	0000	0000	0011	TO, PD	
TRIS	f	Load TRIS register	1	0000	0000	Offf	None	3
XORLW	k	Exclusive OR Literal to W	1	1111	kkkk	kkkk	Z	
Note 1:	The 9th h	it of the program counter will be forced to a '0	' hy any i	nstructio	on that y	writes to	the PC ex	cont for

Note 1: The 9th bit of the program counter will be forced to a '0' by any instruction that writes to the PC except for GOTO (see Section 3.5 "Program Counter" for more on program counter).

2: When an I/O register is modified as a function of itself (e.g., MOVF PORTB, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

3: The instruction TRIS f, where f = 5, 6 or 7 causes the contents of the W register to be written to the tri-state latches of PORTA, B or C, respectively. A '1' forces the pin to a high-impedance state and disables the output buffers.

4: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared (if assigned to TMR0).

CALL	Subroutine Call						
Syntax:	[<i>label</i>] CALL k						
Operands:	$0 \le k \le 255$						
Operation:	$\begin{array}{l} (\text{PC}) + 1 \rightarrow \text{TOS}; \\ k \rightarrow \text{PC}{<}7:0{>}; \\ (\text{Status}{<}6:5{>}) \rightarrow \text{PC}{<}10:9{>}; \\ 0 \rightarrow \text{PC}{<}8{>} \end{array}$						
Status Affected:	fected: None						
Encoding:	1001 kkkk kkkk						
Description:	Subroutine call. First, return address (PC + 1) is pushed onto the stack. The eight-bit immediate address is loaded into PC bits <7:0>. The upper bits PC<10:9> are loaded from STATUS<6:5>, PC<8> is cleared. CALL is a two-cycle instruction.						
Words:	1						
Cycles:	2						
Example:	HERE CALL THERE						
Before Instruction PC = address (HERE) After Instruction PC = address (THERE) TOS = address (HERE + 1)							

CLRW	Clear W			
Syntax:	[label]	CLRW		
Operands:	None			
Operation:	$\begin{array}{c} 00h \rightarrow (V \\ 1 \rightarrow Z \end{array}$	V);		
Status Affected:	Z			
Encoding:	0000	0100	0000	
Description:	Description: The W register is cleared. Zero bit			
	(Z) is set			
Words:	1			
Cycles:	1			
Example:	CLRW			
Before Instru	ction			
W =	0x5A			
After Instruct	ion			
W =	0x00			
Z =	1			

CLRF Clear f

-			
Syntax:	[label]	CLRF f	
Operands:	$0 \le f \le 3^{2}$	1	
Operation:	$\begin{array}{c} 00h \rightarrow (f \\ 1 \rightarrow Z \end{array}$);	
Status Affected:	Z		
Encoding:	0000	011f	ffff
Description:		ents of re and the Z	gister 'f' are bit is set.
Words:	1		
Cycles:	1		
Example:	CLRF	FLAG_RE	IG
Before Instru FLAG_RI After Instruct FLAG_RI Z	EG = ion	0x5A 0x00 1	

CLRWDT	Clear Wa	tchdog	Timer				
Syntax:	[label] CLRWDT						
Operands:	None						
Operation:	$\begin{array}{l} 00h \rightarrow W\\ 0 \rightarrow WDT\\ 1 \rightarrow \overline{TO};\\ 1 \rightarrow \overline{PD} \end{array}$		er (if assi	gned);			
Status Affected:	TO, PD						
Encoding:	0000	0000	0100				
Description:	The CLR WDT. It a the presc WDT and TO and P	lso resets aler is as I not Time	s the pres signed to er0. Statu	caler if the			
Words:	1						
Cycles:	1						
Example:	CLRWDT						
Before Instru WDT con After Instruct WDT con <u>WD</u> T pre <u>TO</u> PD	unter = tion	? 0x00 0 1 1					

PIC16F5X

COMF	Complement f			
Syntax:	[<i>label</i>] COMF f, d			
Operands:	$\begin{array}{l} 0\leq f\leq 31\\ d\in \ [0,1] \end{array}$			
Operation:	$(\overline{f}) \rightarrow (dest)$			
Status Affected:	Z			
Encoding:	0010 01df ffff			
Description:	The contents of register 'f' are complemented. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.			
Words:	1			
Cycles:	1			
Example:	COMF REG1,0			
Before Instru REG1 After Instruct REG1 W	= 0x13			

DECF	Decrement f			
Syntax:	[label] DECF f, d			
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in \ [0,1] \end{array}$			
Operation:	$(f) - 1 \rightarrow (dest)$			
Status Affected:	Z			
Encoding:	0000 11df ffff			
Description:	Decrement register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.			
Words:	1			
Cycles:	1			
Example:	DECF CNT, 1			
Before Instru CNT Z After Instruct	= 0x01 = 0			
CNT Z	= 0x00 = 1			

DECFSZ	Decrement f, Skip if 0
Syntax:	[label] DECFSZ f, d
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in \left[0,1\right] \end{array}$
Operation:	$(f) - 1 \rightarrow d;$ skip if result = 0
Status Affected:	None
Encoding:	0010 11df ffff
Description:	The contents of register 'f' are decremented. If 'd' is '0', the result is placed in the W register. If 'd' is '1'. the result is placed back in register 'f'. If the result is '0', the next instruction, which is already fetched, is discarded and a NOP is executed instead making it a two-cycle instruction.
Words:	1
Cycles:	1(2)
Example:	HERE DECFSZ CNT, 1 GOTO LOOP CONTINUE • •
Before Instru PC After Instruc	= address (HERE)
CNT if CNT PC if CNT PC	<pre>= CNT - 1; = 0, = address (CONTINUE); ≠ 0, = address (HERE+1)</pre>

10.11 PICSTART Plus Development Programmer

The PICSTART Plus Development Programmer is an easy-to-use, low-cost, prototype programmer. It connects to the PC via a COM (RS-232) port. MPLAB Integrated Development Environment software makes using the programmer simple and efficient. The PICSTART Plus Development Programmer supports most PIC devices in DIP packages up to 40 pins. Larger pin count devices, such as the PIC16C92X and PIC17C76X, may be supported with an adapter socket. The PICSTART Plus Development Programmer is CE compliant.

10.12 PICkit 2 Development Programmer

The PICkit[™] 2 Development Programmer is a low-cost programmer and selected Flash device debugger with an easy-to-use interface for programming many of Microchip's baseline, mid-range and PIC18F families of Flash memory microcontrollers. The PICkit 2 Starter Kit includes a prototyping development board, twelve sequential lessons, software and HI-TECH's PICC[™] Lite C compiler, and is designed to help get up to speed quickly using PIC[®] microcontrollers. The kit provides everything needed to program, evaluate and develop applications using Microchip's powerful, mid-range Flash memory family of microcontrollers.

10.13 Demonstration, Development and Evaluation Boards

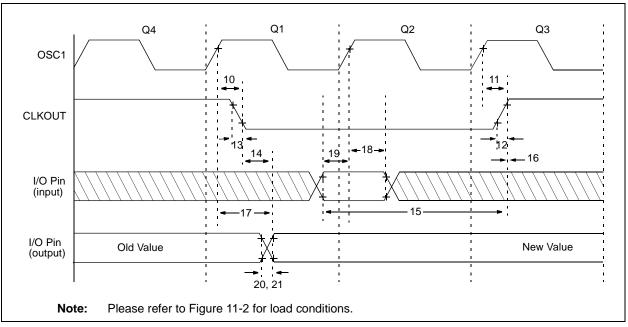
A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart[®] battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Check the Microchip web page (www.microchip.com) and the latest *"Product Selector Guide"* (DS00148) for the complete list of demonstration, development and evaluation kits.


11.0 ELECTRICAL SPECIFICATIONS FOR PIC16F59 (continued)

-	-
Absolute Maximum Ratings ^(†)	
Ambient Temperature under bias	40°C to +125°C
Storage Temperature	65°C to +150°C
Voltage on VDD with respect to Vss	0V to +6.5V
Voltage on MCLR with respect to Vss ⁽¹⁾	0V to +13.5V
Voltage on all other pins with respect to Vss	0.6V to (VDD + 0.6V)
Total power dissipation ⁽²⁾	900 mW
Max. current out of Vss pins	250 mA
Max. current into Vod pins	200 mA
Max. current into an input pin (T0CKI only)	±500 μA
Input clamp current, Iк (Vi < 0 or Vi > Vod)	±20 mA
Output clamp current, IOK (VO < 0 or VO > VDD)	±20 mA
Max. output current sunk by any I/O pin	25 mA
Max. output current sourced by any I/O pin	25 mA
Max. output current sourced by a single I/O port (PORTA, B, C, D or E)	100 mA
Max. output current sunk by a single I/O port (PORTA, B, C, D or E)	100 mA
Note 1. Voltage environmental holes $\sqrt{20}$ of the \overline{MCLP} his inducing surroute greater then S	

- **Note 1:** Voltage spikes below Vss at the MCLR pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50 to 100Ω should be used when applying a "low" level to the MCLR pin rather than pulling this pin directly to Vss.
 - 2: Power Dissipation is calculated as follows: Pdis = VDD x {IDD Σ IOH} + Σ {(VDD VOH) x IOH} + Σ (VOL x IOL)

†NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

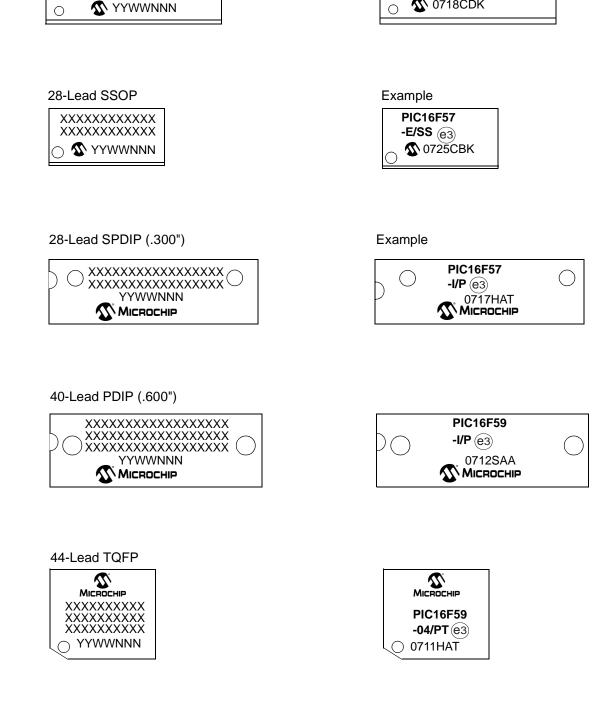
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units
10	TosH2CKL	OSC1↑ to CLKOUT↓ ⁽¹⁾	—	15	30**	ns
11	TosH2CKH	OSC1 [↑] to CLKOUT ^{↑(1)}	—	15	30**	ns
12	TCKR	CLKOUT rise time ⁽¹⁾	—	5.0	15**	ns
13	ТскF	CLKOUT fall time ⁽¹⁾	—	5.0	15**	ns
14	TCKL2IOV	CLKOUT↓ to Port out valid ⁽¹⁾	—	_	40**	ns
15	ТюV2скН	Port in valid before CLKOUT ⁽¹⁾	0.25 TCY+30*	_		ns
16	TCKH2IOI	Port in hold after CLKOUT ⁽¹⁾	0*	_	_	ns
17	TosH2IoV	OSC1 [↑] (Q1 cycle) to Port out valid ⁽²⁾	—	_	100*	ns
18	TosH2iol	OSC1 [↑] (Q2 cycle) to Port input invalid (I/O in hold time)	TBD	—	_	ns
19	TIOV20sH	Port input valid to OSC1↑ (I/O in setup time)	TBD	_	_	ns
20	TIOR	Port output rise time ^(2, 3)	—	10	25**	ns
20	TIOR	Port output rise time ^(2, 4)	—	10	50**	ns
21	TIOF	Port output fall time ^(2, 3) — 10 25**		25**	ns	
21	TIOF	Port output fall time ^(2, 4) — 10 50**		50**	ns	

TABLE 11-2: CLKOUT AND I/O TIMING REQUIREMENTS – PIC16F5X

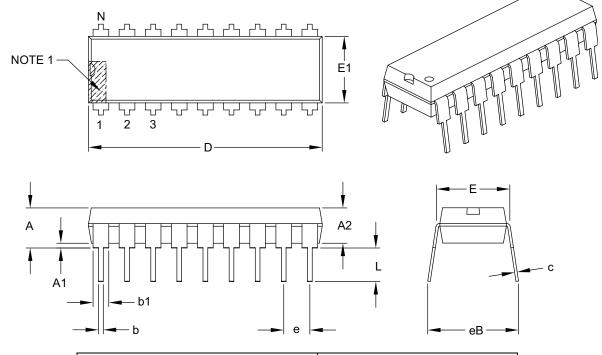
Legend: TBD = To Be Determined.

* These parameters are characterized but not tested.

** These parameters are design targets and are not tested. No characterization data available at this time.


† Data in the Typical ("Typ") column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Measurements are taken in RC mode where CLKOUT output is 4 x Tosc.


2: Please refer to Figure 11-2 for load conditions.

3: PIC16F54/57 only.

4: PIC16F59 only.

28-Lead SOIC

For the most current package drawings, please see the Microchip Packaging Specification located at

18-Lead Plastic Dual In-Line (P) – 300 mil Body [PDIP]

http://www.microchip.com/packaging

INCHES Units **Dimension Limits** MIN NOM MAX Number of Pins 18 Ν Pitch .100 BSC е Top to Seating Plane .210 А _ _ Molded Package Thickness A2 .115 .130 .195 Base to Seating Plane A1 .015 _ Shoulder to Shoulder Width Е .300 .310 .325 Molded Package Width .240 .250 .280 E1 **Overall Length** D .880 .900 .920 .130 Tip to Seating Plane .115 .150 L Lead Thickness .008 .010 .014 С Upper Lead Width b1 .045 .060 .070 Lower Lead Width b .014 .018 .022 Overall Row Spacing § .430 eВ

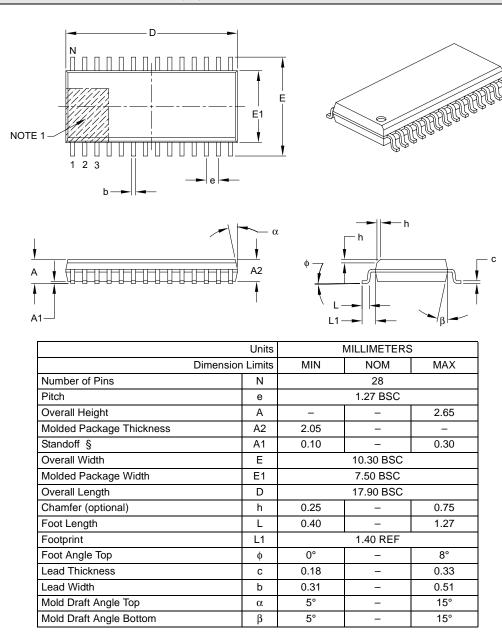
Notes:

Note:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.


4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-007B

28-Lead Plastic Small Outline (SO) – Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

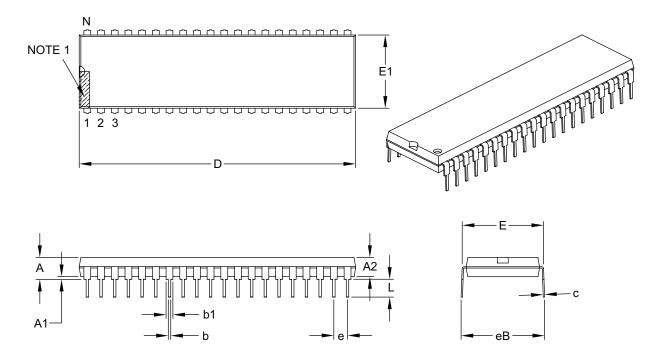
Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M.


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-052B

40-Lead Plastic Dual In-Line (P) – 600 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

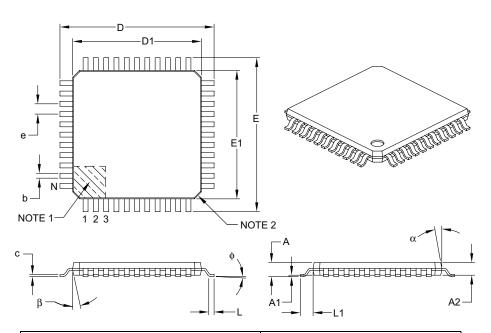
	Units		INCHES		
Dimer	Dimension Limits			MAX	
Number of Pins	N		40		
Pitch	е		.100 BSC		
Top to Seating Plane	Α	-	-	.250	
Molded Package Thickness	A2	.125	-	.195	
Base to Seating Plane	A1	.015	-	-	
Shoulder to Shoulder Width	E	.590	-	.625	
Molded Package Width	E1	.485	-	.580	
Overall Length	D	1.980	-	2.095	
Tip to Seating Plane	L	.115	-	.200	
Lead Thickness	С	.008	-	.015	
Upper Lead Width	b1	.030	-	.070	
Lower Lead Width	b	.014	-	.023	
Overall Row Spacing §	eB	-	-	.700	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.


4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-016B

44-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		;	
	Dimension Limits	MIN	NOM	MAX
Number of Leads	N		44	
Lead Pitch	е		0.80 BSC	
Overall Height	А	-	_	1.20
Molded Package Thickness	A2	0.95	1.00	1.05
Standoff	A1	0.05	-	0.15
Foot Length	L	0.45	0.60	0.75
Footprint	L1		1.00 REF	
Foot Angle	φ	0°	3.5°	7°
Overall Width	E		12.00 BSC	
Overall Length	D		12.00 BSC	
Molded Package Width	E1		10.00 BSC	
Molded Package Length	D1		10.00 BSC	
Lead Thickness	С	0.09	-	0.20
Lead Width	b	0.30	0.37	0.45
Mold Draft Angle Top	α	11°	12°	13°
Mold Draft Angle Bottom	β	11°	12°	13°

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-076B

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	<u>x /xx xxx</u>	Examples:
Device	Temperature Package Pattern Range	 a) PIC16F54–I/P = Industrial temp, PDIP package b) PIC16F54T–I/SSG = Industrial temp, SSOP package (Pb -free), tape and reel c) PIC16F57–E/SP6 = Extended temp, Skinny
Device	PIC16F54 – VDD range 2.0V to 5.5V PIC16F54T ⁽¹⁾ – VDD range 2.0V to 5.5V PIC16F57 – VDD range 2.0V to 5.5V PIC16F57T ⁽¹⁾ – VDD range 2.0V to 5.5V	 d) Plastic DIP package (Pb-free) d) PlC16F57T-E/SS = Extended temp, SSOP package, tape and reel e) PlC16F54-I/SOG = Industrial temp, SOIC package (Pb-free)
Temperature Range	I = -40° C to $+85^{\circ}$ C (Industrial) E = -40° C to $+125^{\circ}$ C (Extended)	
Package	$\begin{array}{rcl} SO & = & SOIC \\ SS & = & SSOP \\ P & = & PDIP \\ SP & = & Skinny \ Plastic \ DIP \ (SPDIP)^{(2)} \\ SOG & = & SOIC \ (Pb-free) \\ SSG & = & SOIC \ (Pb-free) \\ PG & = & SOIC \ (Pb-free) \\ SPG & = & SOIC \ (Pb-free) \end{array}$	Note 1: T = in tape and reel SOIC and SSOP packages only. 2: PIC16F57 only
Pattern	QTP, SQTP, Code or Special Requirements (blank otherwise)	

PART NO.	X Temperature	/XX Package	XXX Pattern			mples:
Device	Range	Гаскауе	Falleni		a) b)	PIC16F59–I/P = Industrial temp, PDIP package (Pb-free). PIC16F59T–I/PT = Industrial temp, TQFP package (Pb-free), tape and reel.
Device	PIC16F59 – PIC16F59T ⁽¹⁾ –	VDD range 2.0 VDD range 2.0	0V to 5.5V 0V to 5.5V			
Temperature Range			(Industrial) (Extended)			
Package	P = PD PT = TQ					
Pattern	QTP, SQTP, Co	de or Special I	Requirements (blank	cotherwise)	Note	• 1: T = in tape and reel TQFP packages only.