

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	20
Program Memory Size	3KB (2K x 12)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	72 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f57-e-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams

Name	Function	Input Type	Output Type	Description
RA0	RA0	TTL	CMOS	Bidirectional I/O pin
RA1	RA1	TTL	CMOS	Bidirectional I/O pin
RA2	RA2	TTL	CMOS	Bidirectional I/O pin
RA3	RA3	TTL	CMOS	Bidirectional I/O pin
RB0	RB0	TTL	CMOS	Bidirectional I/O pin
RB1	RB1	TTL	CMOS	Bidirectional I/O pin
RB2	RB2	TTL	CMOS	Bidirectional I/O pin
RB3	RB3	TTL	CMOS	Bidirectional I/O pin
RB4	RB4	TTL	CMOS	Bidirectional I/O pin
RB5	RB5	TTL	CMOS	Bidirectional I/O pin
RB6/ICSPCLK	RB6	TTL	CMOS	Bidirectional I/O pin
	ICSPCLK	ST	—	Serial Programming Clock
RB7/ICSPDAT	RB7	TTL	CMOS	Bidirectional I/O pin
	ICSPDAT	ST	CMOS	Serial Programming I/O
тоскі	TOCKI	ST	_	Clock input to Timer0. Must be tied to Vss or VDD, if not in use, to reduce current consumption.
MCLR/VPP	MCLR	ST	_	Active-low Reset to device. Voltage on the MCLR/VPP pin must not exceed VDD to avoid unintended entering of Programming mode.
	Vpp	ΗV	—	Programming voltage input
OSC1/CLKIN	OSC1	XTAL	—	Oscillator crystal input
	CLKIN	ST	—	External clock source input
OSC2/CLKOUT	OSC2	—	XTAL	Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode.
	CLKOUT	—	CMOS	In RC mode, OSC2 pin can output CLKOUT, which has 1/4 the frequency of OSC1.
Vdd	Vdd	Power	—	Positive supply for logic and I/O pins
Vss	Vss	Power	—	Ground reference for logic and I/O pins
Legend: I = O = ST =	input output Schmitt Trig	ger input	I/O — TT	= input/outputCMOS= CMOS output= Not UsedXTAL= Crystal input/outputL= TTL inputHV= High Voltage

TABLE 2-1: PIC16F54 PINOUT DESCRIPTION

3.0 MEMORY ORGANIZATION

PIC16F5X memory is organized into program memory and data memory. For the PIC16F57 and PIC16F59, which have more than 512 words of program memory, a paging scheme is used. Program memory pages are accessed using one or two STATUS register bits. For the PIC16F57 and PIC16F59, which have a data memory register file of more than 32 registers, a banking scheme is used. Data memory banks are accessed using the File Selection Register (FSR).

3.1 Program Memory Organization

The PIC16F54 has a 9-bit Program Counter (PC) capable of addressing a 512 x 12 program memory space (Figure 3-1). The PIC16F57 and PIC16F59 have an 11-bit Program Counter capable of addressing a 2K x 12 program memory space (Figure 3-2). Accessing a location above the physically implemented address will cause a wraparound.

A NOP at the Reset vector location will cause a restart at location 000h. The Reset vector for the PIC16F54 is at 1FFh. The Reset vector for the PIC16F57 and PIC16F59 is at 7FFh. See **Section 3.5 "Program Counter"** for additional information using CALL and GOTO instructions.

FIGURE 3-2:

PIC16F57/PIC16F59 PROGRAM MEMORY MAP AND STACK

3.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers (SFR) are registers used by the CPU and peripheral functions to control the operation of the device (Table 3-1).

The Special Function Registers can be classified into two sets. The Special Function Registers associated with the "core" functions are described in this section. Those related to the operation of the peripheral features are described in the section for each peripheral feature.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Details on Page
N/A	TRIS	I/O Cor	trol Reg	isters (T	RISA, T	RISB, TI	RISC, TF	RISD, TI	RISE)	1111 1111	29
N/A	OPTION	Contair prescal	Contains control bits to configure Timer0 and Timer0/WDT11 1111 prescaler								18
00h	INDF	Uses co register	Jses contents of FSR to address data memory (not a physical xxxx xxxx egister)							20	
01h	TMR0	Timer0	Timer0 Module Register							xxxx xxxx	34
02h	PCL ⁽¹⁾	Low or	der 8 bits	of PC						1111 1111	19
03h	STATUS	PA2	PA1	PA0	TO	PD	Z	DC	С	0001 1xxx	17
04h	FSR ⁽³⁾	Indirect	data me	mory Ac	dress F	ointer				111x xxxx	20
04h	FSR ⁽⁴⁾	Indirect	data me	mory Ac	ldress F	ointer				1xxx xxxx	20
04h	FSR ⁽⁵⁾	Indirect	data me	mory Ac	ldress F	Pointer				xxxx xxxx	20
05h	PORTA ⁽⁶⁾		—			RA3	RA2	RA1	RA0	xxxx	29
06h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx xxxx	29
07h	PORTC ⁽²⁾	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	xxxx xxxx	29
08h	PORTD ⁽⁷⁾	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	xxxx xxxx	29
09h	PORTE ^{(6), (7)}	RE7	RE6	RE5	RE4	_	—	_	—	xxxx	29

TABLE 3-1:	SPECIAL FUNCTION REGISTER	SUMMARY

Legend: Shaded cells = unimplemented or unused, - = unimplemented, read as '0' (if applicable), x = unknown, u = unchanged

Note 1: The upper byte of the Program Counter is not directly accessible. See **Section 3.5 "Program Counter"** for an explanation of how to access these bits.

- 2: File address 07h is a General Purpose Register on the PIC16F54.
- **3:** PIC16F54 only.
- 4: PIC16F57 only.
- 5: PIC16F59 only.
- 6: Unimplemented bits are read as '0's.
- 7: File address 08h and 09h are General Purpose Registers on the PIC16F54 and PIC16F57.

3.3 **STATUS Register**

bi

bi

This register contains the arithmetic status of the ALU, the Reset status and the page preselect bits for program memories larger than 512 words.

The STATUS register can be the destination for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS will clear the upper three bits and set the Z bit. This leaves the STATUS register as 000u uluu (where u = unchanged).

Therefore, it is recommended that only BCF, BSF, MOVWF and SWAPF instructions be used to alter the STATUS register because these instructions do not affect the Z, DC or C bits from the STATUS register. For other instructions which do affect Status bits, see Section 9.0 "Instruction Set Summary".

REGISTER 3-1: STATUS REGISTER (ADDRESS: 03h)

	R/W-0	R/W-0	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x		
	PA2	PA1	PA0	TO	PD	Z	DC	С		
	bit 7	·						bit 0		
bit 7	PA2 : Reserv Use of the Pa compatibility	ved, do not us A2 bit as a ge v with future p	se neral purpos roducts.	e read/write I	oit is not re	commended, sin	ce this may af	fect upward		
bit 6-5	PA<1:0>: Pr 00 = Page 0 01 = Page 1 10 = Page 2 11 = Page 3 Each page is not use them future produ	rogram Page) (000h-1FFh) (200h-3FFh) 2 (400h-5FFh) 3 (600h-7FFh) s 512 words. n for program cts.	Preselect bi))) Using the PA page presel	ts (PIC16F57 A<1:0> bits as ect is not reco	/PIC16F5 s general p ommended	9) burpose read/writ d. This may affect	e bits in devic upward comp	es which do batibility with		
bit 4	TO : Time-Ou 1 = After pov 0 = A WDT 1	ut bit wer-up, CLRW time-out occu	DT instructio	on or SLEEP	nstruction					
bit 3	PD : Power-I 1 = After pov 0 = By exect	Down bit wer-up or by t ution of the s	the CLRWDT LEEP instruc	instruction ction						
bit 2	Z : Zero bit 1 = The resu 0 = The resu	ult of an arithr ult of an arithr	netic or logio	c operation is c operation is	zero not zero					
bit 1	DC: Digit Ca <u>ADDWF</u> 1 = A carry t 0 = A carry f <u>SUBWF</u> 1 = A borrow 0 = A borrow	arry/Borrow bi to the 4th low from the 4th lo v to the 4th lo v from the 4th	t (for ADDWF order bit of ow order bit w order bit h low order bit	and SUBWF the result occ of the result of the result c it of the resu	instruction curred did not occ id not occ It occurred	s) cur ur				
bit 0	C : Carry/Boo <u>ADDWF</u> 1 = A carry o 0 = A carry o	rrow bit (for A occurred did not occur	DDWF, SUBW <u>SUBWI</u> 1 = A bo 0 = A bo	F and RRF, R 	LF instruc E occur L ed	tions) <u>RRF or RLF</u> .oaded with LSb	or MSb, resp	ectively		
	Legend:									
	R = Readab	le bit	W = W	ritable bit	U = U	nimplemented bi	t, read as '0'			
	- n = Value a	at POR	'1' = B	it is set	'0' = E	Bit is cleared	x = Bit is un	iknown		

3.5 Program Counter

As a program instruction is executed, the Program Counter (PC) will contain the address of the next program instruction to be executed. The PC value is increased by one, every instruction cycle, unless an instruction changes the PC.

For a GOTO instruction, bits 8:0 of the PC are provided by the GOTO instruction word. The PC Latch (PCL) is mapped to PC<7:0> (Figure 3-6 and Figure 3-7).

For the PIC16F57 and PIC16F59, a page number must be supplied as well. Bit 5 and bit 6 of the STATUS register provide page information to bit 9 and bit 10 of the PC (Figure 3-6 and Figure 3-7).

For a CALL instruction, or any instruction where the PCL is the destination, bits 7:0 of the PC again are provided by the instruction word. However, PC<8> does not come from the instruction word, but is always cleared (Figure 3-6 and Figure 3-7).

Instructions where the PCL is the destination or modify PCL instructions, include <code>MOVWF PCL</code>, <code>ADDWF PCL</code>, and <code>BSF PCL</code>, <code>5</code>.

For the PIC16F57 and PIC16F59, a page number again must be supplied. Bit 5 and bit 6 of the STATUS register provide page information to bit 9 and bit 10 of the PC (Figure 3-6 and Figure 3-7).

Note:	Because PC<8> is cleared in the CALL
	instruction or any modified PCL instruc-
	tion, all subroutine calls or computed
	jumps are limited to the first 256 locations
	of any program memory page (512 words
	long).

FIGURE 3-6:

LOADING OF PC BRANCH INSTRUCTIONS-PIC16F54

FIGURE 3-7:

LOADING OF PC BRANCH INSTRUCTIONS-PIC16F57 AND PIC16F59

3.5.1 PAGING CONSIDERATIONS PIC16F57 AND PIC16F59

If the PC is pointing to the last address of a selected memory page, when it increments, it will cause the program to continue in the next higher page. However, the page preselect bits in the STATUS register will not be updated. Therefore, the next GOTO, CALL or MODIFY PCL instruction will send the program to the page specified by the page preselect bits (PA0 or PA<1:0>).

For example, a NOP at location 1FFh (page 0) increments the PC to 200h (page 1). A GOTO xxx at 200h will return the program to address xxh on page 0 (assuming that PA<1:0> are clear).

To prevent this, the page preselect bits must be updated under program control.

3.5.2 EFFECTS OF RESET

The PC is set upon a Reset, which means that the PC addresses the last location in the last page (i.e., the Reset vector).

The STATUS register page preselect bits are cleared upon a Reset, which means that page 0 is preselected.

Therefore, upon a Reset, a GOTO instruction at the Reset vector location will automatically cause the program to jump to page 0.

NOTES:

6.0 I/O PORTS

As with any other register, the I/O registers can be written and read under program control. However, read instructions (e.g., MOVF PORTB, W) always read the I/O pins independent of the pin's Input/Output modes. On Reset, all I/O ports are defined as input (inputs are at high-impedance), since the I/O control registers (TRISA, TRISB, TRISC, TRISD and TRISE) are all set.

6.1 PORTA

PORTA is a 4-bit I/O register. Only the low order 4 bits are used (PORTA<3:0>). The high order 4 bits (PORTA<7:4>) are unimplemented and read as '0's.

6.2 PORTB

PORTB is an 8-bit I/O register (PORTB<7:0>).

6.3 PORTC

PORTC is an 8-bit I/O register (PORTC<7:0>) for the PIC16F57 and PIC16F59.

PORTC is a General Purpose Register for the PIC16F54.

6.4 PORTD

PORTD is an 8-bit I/O register (PORTD<7:0>) for the PIC16F59.

PORTD is a General Purpose Register for the PIC16F54 and PIC16F57.

6.5 PORTE

PORTE is an 4-bit I/O register for the PIC16F59. Only the high order 4 bits are used (PORTE<7:4>). The low order 4 bits (PORTE<3:0>) are unimplemented and read as '0's.

PORTE is a General Purpose Register for the PIC16F54 and PIC16F57.

6.6 TRIS Registers

The output driver control registers are loaded with the contents of the W register by executing the TRIS f instruction. A '1' from a TRIS register bit puts the corresponding output driver in a High-Impedance (Input) mode. A '0' puts the contents of the output data latch on the selected pins, enabling the output buffer.

Note:	A read of the ports reads the pins, not the					
	output data latches. That is, if an output					
	driver on a pin is enabled and driven high,					
	but the external system is holding it low, a					
	read of the port will indicate that the pin is					
	low.					

The TRIS registers are "write-only" and are set (output drivers disabled) upon Reset.

6.7 I/O Interfacing

The equivalent circuit for an I/O port pin is shown in Figure 6-1. All ports may be used for both input and output operation. For input operations, these ports are non-latching. Any input must be present until read by an input instruction (e.g., MOVF PORTB, W). The outputs are latched and remain unchanged until the output latch is rewritten. To use a port pin as output, the corresponding direction control bit (in TRISA, TRISB, TRISC, TRISD and TRISE) must be cleared (= 0). For use as an input, the corresponding TRIS bit must be set. Any I/O pin can be programmed individually as input or output.

FIGURE 6-1:

EQUIVALENT CIRCUIT FOR A SINGLE I/O PIN

6.8 I/O Programming Considerations

6.8.1 BIDIRECTIONAL I/O PORTS

Some instructions operate internally as read followed by write operations. The BCF and BSF instructions, for example, read the entire port into the CPU, execute the bit operation and re-write the result. Caution must be used when these instructions are applied to a port where one or more pins are used as input/outputs. For example, a BSF operation on bit 5 of PORTB will cause all eight bits of PORTB to be read into the CPU, bit 5 to be set and the PORTB value to be written to the output latches. If another bit of PORTB is used as a bidirectional I/O pin (say bit '0'), and it is defined as an input at this time, the input signal present on the pin itself would be read into the CPU and rewritten to the data latch of this particular pin, overwriting the previous content. As long as the pin stays in the Input mode, no problem occurs. However, if bit '0' is switched into Output mode later on, the content of the data latch may now be unknown

Example 6-1 shows the effect of two sequential read-modify-write instructions (e.g., ${\tt BCF}, \ {\tt BSF}, \mbox{etc.})$ on an I/O port.

A pin actively outputting a high or a low should not be driven from external devices at the same time in order to change the level on this pin ("wired-or", "wired-and"). The resulting high output currents may damage the chip.

EXAMPLE 6-1: READ-MODIFY-WRITE INSTRUCTIONS ON AN I/O PORT

<pre>;Initial PORT Settings ;PORTB<7:4> Inputs ;PORTB<3:0> Outputs ;PORTB<7:6> have external pull-ups and are ;not connected to other circuitry</pre>						
; ; PORT latch PORT pins						
; BCF PORTB, 7 ;01pp pppp 11pp pppp						
MOVLW H'3F' ; TRIS PORTE :10pp pppp 10pp pppp						
; ; ;Note that the user may have expected the						
pin ;values to be 00pp pppp. The 2nd BCF caused ;RB7 to be latched as the pin value (High).						

6.8.2 SUCCESSIVE OPERATIONS ON I/O PORTS

The actual write to an I/O port happens at the end of an instruction cycle, whereas for reading, the data must be valid at the beginning of the instruction cycle (see Figure 6-2). Therefore, care must be exercised if a write followed by a read operation is carried out on the same I/O port. The sequence of instructions should allow the pin voltage to stabilize (load dependent) before the next instruction, which causes that file to be read into the CPU, is executed. Otherwise, the previous state of that pin may be read into the CPU rather than the new state. When in doubt, it is better to separate these instructions with a NOP or another instruction not accessing this I/O port.

© 2007 Microchip Technology Inc.

8.0 SPECIAL FEATURES OF THE CPU

What sets a microcontroller apart from other processors are special circuits that deal with the needs of realtime applications. The PIC16F5X family of microcontrollers have a host of such features intended to maximize system reliability, minimize cost through elimination of external components, provide powersaving operating modes and offer code protection. These features are:

- Oscillator Selection
- Reset
- Power-on Reset
- Device Reset Timer
- Watchdog Timer (WDT)
- Sleep
- Code protection
- User ID locations
- In-Circuit Serial Programming[™] (ICSP[™])

The PIC16F5X family has a Watchdog Timer which can be shut off only through Configuration bit WDTE. It runs off of its own RC oscillator for added reliability. There is an 18 ms delay provided by the Device Reset Timer (DRT), intended to keep the chip in Reset until the crystal oscillator is stable. With this timer on-chip, most applications need no external Reset circuitry.

REGISTER 8-1: CONFIGURATION WORD FOR PIC16F5X

_		_	_	_	_	_	_	CP	WDTE	FOSC1	FOSC0
bit 11											bit 0
bit 11-4:	Unimple	mented:	Read as ':	1'							
bit 3:	CP: Code	e Protectio	on bit.								
	1 = Code	e protectio	on off								
	0 = Code	e protectio	on on								
bit 2:	WDTE: V	Vatchdog	Timer En	able bit							
	1 = WDT	[enabled									
	0 = WDI	disabled									
bit 1-0:	FOSC1:F	:0SC0 : 0	scillator S	Selection b	oits						
	00 = LP c	oscillator									
	01 = XI(0)	oscillator									
	11 = RC	oscillator									
	Note 1	: Refert	o the PIC	16F54. PI	C16F57 ar	nd PIC16F	59 Progra	mmina Sc	ecification	ns to deter	mine how
	to access the Configuration Word. These documents can be found on the Microchip web site at										
		www.microchip.com.									
	Legend:										
	R = Read	able bit	V	N = Writak	ole bit	U =	Unimplen	nented bit	. read as '	0'	
	-n = Value	e at POR	،	1' = bit is :	set	'O' =	= bit is clea	ared	x = bi	t is unknov	wn

The Sleep mode is designed to offer a very low-current Power-down mode. The user can wake-up from Sleep through external Reset or through a Watchdog Timer time-out. Several oscillator options are also made available to allow the part to fit the application. The RC oscillator option saves system cost, while the LP crystal option saves power. A set of Configuration bits are used to select various options.

8.1 Configuration Bits

Configuration bits can be programmed to select various device configurations. Two bits are for the selection of the oscillator type; one bit is the Watchdog Timer enable bit; one bit is for code protection for the PIC16F5X devices (Register 8-1).

TABLE 9-2:	INSTRUCTION SET	SUMMARY
------------	-----------------	---------

Operands Description Cycles MSb LSb Affected Notes ADDWF f, d AND W with f 1 0001 11df fffff Z 2, 4 CLRF f Clear f 1 0000 0101 fffff Z 4, 4 CLRW — Clear W 1 0000 0100 0000 Z 4 CLRW — Clear W 1 0000 0101 fffff Z 4 DECF f, d Decrement f 1 0010 11df fffff Z 2, 4 INCFS f, d Increment f, Skip if 0 1(2) 0011 11df fffff Z 2, 4 INCFS f, d Increment f, Skip if 0 11 0010 0df fffff Z 2, 4 MOVF f, d Move f 1 0010 0df fffff Z 2, 4 MOVF f, d Rotate ight fhrough Carry	Mnem	onic,	Description	Cycles	12-	12-Bit Opcode			Nataa
ADDWF f, d Add W and f 1 0001 11df fffff C,DC,Z 1,2,4 ANDWF f, d AND W with f 1 0000 01df fffff Z 2,4 CLRF f Clear W 1 0000 0101 fffff Z 4 CLRW — Clear W 1 0000 0101 fffff Z 4 DECF f, d Decrement f 1 0010 11df fffff Z 2,4 INCFS f, d Increment f, Skip if 0 1(2) 0011 11df fffff Z 2,4 INCFS f, d Increment f, Skip if 0 1(2) 0011 11df ffff Z 2,4 MOVF f, d Move f 1 0010 0df ffff Z 2,4 MOVF f, d Rotate ight fhough Carry 1 0010 0df ffff Z 2,4 SUBWF f, d	Opera	ands	Description	Cycles	MSb		LSb	Affected	Notes
ANDWF f, d AND With f 1 0001 01df ffff Z 2,4 CLRF f Clear f 1 0000 011f ffff Z 4 CLRW 1 0000 011df fffff Z 4 COMF f, d Decrement f 1 0010 01df fffff Z 2,4 DECFSZ f, d Increment f, Skip if 0 1(2) 0011 11df ffff Z 2,4 INCF f, d Increment f, Skip if 0 1(2) 0011 11df ffff Z 2,4 INCFSZ f, d Increment f, Skip if 0 1(2) 0011 11df ffff Z 2,4 MOVF f, d Move f 1 0010 00df ffff Z 2,4 MOVF f, d Rotate right fitrough Carry 1 0011 01df ffff None 2,4 SUBWF f, d Subtract W from f	ADDWF	f, d	Add W and f	1	0001	11df	ffff	C,DC,Z	1, 2, 4
CLRF f Clear f 1 0000 011f fffff Z 4 CLRW — Clear W 1 0000 0100 0000 Z C COMF f, d Decrement f 1 0010 11df fffff Z 2, 4 DECF f, d Decrement f, Skip if 0 1(2) 0010 11df fffff Z 2, 4 NCF f, d Increment f, Skip if 0 1(2) 0011 11df ffff Z 2, 4 INCFSZ f, d Increment f, Skip if 0 1(2) 0011 11df ffff Z 2, 4 INCFSZ f, d Increment f, Skip if 0 1(2) 0011 10df ffff Z 2, 4 MOVF f, d Move f 1 0000 000f ffff Z 2, 4 MOVF f, d Rotate left fthrough Carry 1 0011 01df ffff Z 2, 4 SUBWF <td>ANDWF</td> <td>f, d</td> <td>AND W with f</td> <td>1</td> <td>0001</td> <td>01df</td> <td>ffff</td> <td>Z</td> <td>2, 4</td>	ANDWF	f, d	AND W with f	1	0001	01df	ffff	Z	2, 4
CLRW — Clear W 1 0000 0100 0000 Z COMF f, d Complement f 1 0010 01df fffff Z DECF f, d Decrement f, Skip if 0 1 0000 11df fffff Z 2, 4 INCF f, d Increment f, Skip if 0 1 0010 10df fffff Z 2, 4 INCFS f, d Increment f, Skip if 0 1 0010 10df fffff Z 2, 4 MOVF f, d Increment f, Skip if 0 1 0010 00df fffff Z 2, 4 MOVF f, d Move f 1 0010 0df fffff Z 2, 4 MOVF f, d Rotate left fthrough Carry 1 0011 0df fffff C 2, 4 SUBWF f, d Rotate right fthrough Carry 1 0011 0df fffff C.Z 2, 4 SUBWF f, d	CLRF	f	Clear f	1	0000	011f	ffff	Z	4
COMF f, d Complement f 1 0010 01df ffff Z DECF f, d Decrement f, Skip if 0 1(2) 0010 11df fffff Nore 2, 4 NCF f, d Increment f, Skip if 0 1(2) 0010 11df fffff Z 2, 4 INCFSZ f, d Increment f, Skip if 0 1(2) 0011 11df fffff Z 2, 4 INCF f, d Increment f, Skip if 0 1 0010 00df fffff Z 2, 4 INCF f, d Increment f, Skip if 0 1 0010 00df fffff Z 2, 4 MOVF f Move f 1 0010 00df fffff Z 2, 4 NOP No Operation 1 0010 0011 fffff C 2, 4 SUBWF f, d Subtract Wfrom f 1 0011 0ddf fffff C 2, 4 BT-ORIENTED FLE REGISTER OPERATIONS I 0010 bbbf	CLRW	_	Clear W	1	0000	0100	0000	Z	
DECF f, d Decrement f, Skip if 0 1 0000 11df ffff Z 2, 4 NCF f, d Increment f, Skip if 0 1 0010 11df fffff Z, 4 INCF SZ f, d Increment f, Skip if 0 1 0010 10df fffff Z 2, 4 INCFSZ f, d Inclusive OR W with f 1 0010 00df fffff Z 2, 4 MOVF f, d Move f 1 0010 00df fffff Z 2, 4 MOVF f, d Move f 1 0010 00df fffff Z 2, 4 MOVF f, d Move f 1 0010 00df fffff Z 2, 4 MOVF f, d Rotate left fthrough Carry 1 0011 01df fffff C 2, 4 SUBWF f, d Swap f 1 0011 10df fffff None 2, 4 BT-ORIENTED FILE	COMF	f, d	Complement f	1	0010	01df	ffff	Z	
DECFSZ f, d Decrement f, Skip if 0 1(2) 0010 11df ffff None 2, 4 INCF f, d Increment f 1 0010 10df fffff Z 2, 4 INCFSZ f, d Increment f, Skip if 0 1(2) 0011 11df fffff Z 2, 4 IORWF f, d Inclusive OR W with f 1 0001 00df fffff Z 2, 4 MOVF f, d Move f 1 0001 00df fffff Z 2, 4 MOVF f, d Move f 1 0000 0000 0000 None 1, 4 NOP - No Operation 1 0011 01df fffff C 2, 4 SUBWF f, d Subtract W from f 1 0011 01df fffff C, DC, Z 1, 2, 4 SUBWF f, d Subtract W from f 1 0011 10df fffff None 2, 4	DECF	f, d	Decrement f	1	0000	11df	ffff	Z	2, 4
INCF f, d Increment f, Skip if 0 1 0010 10df ffff Z 2, 4 INCFSZ f, d Incurement f, Skip if 0 1 0011 11df ffff None 2, 4 IORWF f, d Move OR W with f 1 0001 00df fffff Z 2, 4 MOVF f, d Move f 1 0001 00df fffff Z 2, 4 MOVF f, d Move V to f 1 0000 0000 0000 None 1, 4 NOP - No Operation 1 0011 01df fffff C 2, 4 SUBWF f, d Rotate right f through Carry 1 0011 01df fffff C 2, 4 SUBWF f, d Subtract W from f 1 0011 10df fffff None 2, 4 SUBWF f, d Swap f 1 0101 bbf fffff None 2, 4	DECFSZ	f, d	Decrement f, Skip if 0	1 ⁽²⁾	0010	11df	ffff	None	2, 4
INCFSZ f, d Increment f, Skip if 0 1 ⁽²⁾ 0011 11df ffff None 2, 4 IORWF f, d Inclusive OR W with f 1 0001 00df ffff Z 2, 4 MOVF f, d Move f 1 0010 00df ffff Z 2, 4 MOVF f, d Move W to f 1 0000 0001 ffff Z 2, 4 NOP — No Operation 1 0000 0000 None 1, 4 NOP — No Operation 1 0011 01df ffff C 2, 4 SUBWF f, d Rotate right fhrough Carry 1 0011 10df ffff C 2, 4 SUBWF f, d Subtract W from f 1 0011 10df ffff None 2, 4 SUBWF f, d Exclusive OR W with f 1 0101 bbf ffff None 2, 4 BTFORIE	INCF	f, d	Increment f	1	0010	10df	ffff	Z	2, 4
IORWF f, d Inclusive OR W with f 1 0001 00df ffff Z 2, 4 MOVF f, d Move f 1 0010 00df ffff Z 2, 4 MOVF f, d Move f 1 0010 00df ffff Z 2, 4 MOVF f, d Move W to f 1 0000 0000 0000 None 1, 4 MOP — No Operation 1 0011 01df ffff C 2, 4 RRF f, d Subtract W from f 1 0011 10df fffff C, DC,Z 1, 2, 4 SUBWF f, d Swap f 1 0101 10df fffff None 2, 4 SURDENTED FILE REGISTER OPERATIONS 1 0101 bbbf ffff None 2, 4 BTFSC f, b Bit Set f 1 0101 bbbf ffff None 2, 4 CALL K Sub	INCFSZ	f, d	Increment f, Skip if 0	1 ⁽²⁾	0011	11df	ffff	None	2, 4
MOVF f, d Move f I 0010 00df ffff Z 2, 4 MOVWF f Move W to f 1 0000 0000 None 1, 4 NOP No Operation 1 0010 0011 ffff C 2, 4 NOP No Operation 1 0011 01df fffff C 2, 4 RFF f, d Rotate left fthrough Carry 1 0011 01df fffff C 2, 4 SUBWF f, d Subtract W from f 1 0011 10df fffff C,DC,Z 1, 2, 4 SWAPF f, d Exclusive OR W with f 1 0011 10df fffff Z, 4 ADRWF f, d Exclusive OR W with f 1 0100 bbbf fffff None 2, 4 BCF f, b Bit Clear f 1 0100 bbbf ffff None 2, 4 BTFSC f, b Bit	IORWF	f, d	Inclusive OR W with f	1	0001	00df	ffff	Z	2, 4
MOVWF f Move W to f 1 0000 001f ffff None 1, 4 NOP — No Operation 1 0000 0000 0000 None 1 RLF f, d Rotate left f through Carry 1 0011 01df ffff C 2, 4 RRF f, d Subtract W from f 1 0000 10df fffff C 2, 4 SUBWF f, d Swap f 1 0011 10df fffff None 2, 4 SUBWF f, d Exclusive OR W with f 1 0011 10df fffff None 2, 4 SUBUF f, d Exclusive OR W with f 1 0100 bbbf fffff None 2, 4 BT-ORIENTED FILE EGISTER OPERATIONS 1 0101 bbbf fffff None 2, 4 BTFSC f, b Bit Test f, Skip if Clear 1(2) 0110 bbbf ffff None 1 1	MOVF	f, d	Move f	1	0010	00df	ffff	Z	2, 4
NOP — No Operation 1 0000 0000 0000 None RLF f, d Rotate left f through Carry 1 0011 01df ffff C 2, 4 RRF f, d Rotate right f through Carry 1 0011 00df ffff C 2, 4 SUBWF f, d Subtract W from f 1 0011 10df fffff C 2, 4 SWAPF f, d Swap f 1 0011 10df fffff None 2, 4 XORWF f, d Exclusive OR W with f 1 0101 10df fffff None 2, 4 BTORIENTED FILE REGISTER OPERATIONS Bit Clear f 1 0101 bbbf fffff None 2, 4 BSF f, b Bit Test f, Skip if Clear 1(2) 0110 bbbf fffff None 2, 4 LITERAL AND CONTROL OPERATIONS Interal with W 1 1110 kkkk kkkk Z 2 1001	MOVWF	f	Move W to f	1	0000	001f	ffff	None	1, 4
RLF f, d Rotate left f through Carry 1 0011 01df ffff C 2, 4 RRF f, d Rotate right f through Carry 1 0011 00df ffff C 2, 4 SUBWF f, d Subtract W from f 1 0001 10df ffff C,DC,Z 1, 2, 4 XORWF f, d Exclusive OR W with f 1 0011 10df ffff Z, 2, 4 BIT-ORIENTED FILE REGISTER OPERATIONS Bit Clear f 1 0101 bbbf ffff None 2, 4 BSF f, b Bit Set f 1 0101 bbbf ffff None 2, 4 BTFSC f, b Bit Test f, Skip if Clear 1 0101 bbbf ffff None 2, 4 LITERAL AND CONTROL OPERATIONS 1 110 bbbf ffff None 1 1 1 0.000 0.000 1 1 1 1 1 1 1 1 1	NOP	_	No Operation	1	0000	0000	0000	None	
RRF f, d Rotate right f through Carry 1 0011 00df ffff C 2,4 SUBWF f, d Subtract W from f 1 0000 10df ffff C,DC,Z 1, 2, 4 SWAPF f, d Swap f 1 0011 10df ffff None 2, 4 XORWF f, d Exclusive OR W with f 1 0001 10df ffff Z 2, 4 BT-ORIENTED FILE REGISTER OPERATIONS I 0100 bbbf ffff None 2, 4 BCF f, b Bit Clear f 1 0100 bbbf ffff None 2, 4 BTFSC f, b Bit Test f, Skip if Clear 1(2) 0110 bbbf ffff None 2, 4 ITERAL AND CONTROL OPERATIONS 1 1110 kkkk kkkk Z None 1 1001 bbbf ffff None 1 1 1 0.000 0.000 1 1 1 1	RLF	f, d	Rotate left f through Carry	1	0011	01df	ffff	С	2, 4
SUBWFf, dSubtract W from f1000010dfffffC,DC,Z1, 2, 4SWAPFf, dSwap f1001110dfffffNone2, 4XORWFf, dExclusive OR W with f1000110dfffffZ2, 4BIT-ORIENTED FILE REGISTER OPERATIONSBCFf, bBit Clear f10100bbbfffffNone2, 4BSFf, bBit Clear f10101bbbfffffNone2, 4BTFSCf, bBit Test f, Skip if Clear1(2)0110bbbfffffNone2, 4BTFSSf, bBit Test f, Skip if Set1(2)0110bbbfffffNone2, 4LITERAL AND CONTROL OPERATIONSANDLWkAND literal with W11110kkkkkkkkZCALLkSubroutine Call21001kkkkKkkkNone1CLRWDT-Clear Watchdog Timer1000000000100TO, PDTO, PDGOTOkUnconditional branch2101kkkkk kkkkNoneNoneIORLWkInclusive OR Literal with W11100kkkk kkkkNoneOPTIONLoad OPTION register1000000000101TO, PDRETLWkReturn, place Literal in W21000kkkk kkkkNoneSLEEP-Go into Standby mode1000	RRF	f, d	Rotate right f through Carry	1	0011	00df	ffff	С	2,4
SWAPF XORWFf, dSwap f Exclusive OR W with f1001110dfffff ffffNone Z2, 4BIT-ORIENTED FILE REGISTER OPERATIONSBCFf, bBit Clear f10100bbbffffffNone2, 4BSFf, bBit Clear f10101bbbffffffNone2, 4BTFSCf, bBit Test f, Skip if Clear10101bbbffffffNone2, 4BTFSSf, bBit Test f, Skip if Clear1(2)0110bbbffffffNone2, 4BTFSSf, bBit Test f, Skip if Set1(2)0110bbbffffffNone2, 4LITERAL AND CONTROL OPERATIONS11110kkkkkkkkXNone1ANDLWkAND literal with W11110kkkkkkkkXNone1CALLkSubroutine Call21001kkkkkkkkNone11CLRWDT-Clear Watchdog Timer1000000000100TO, PD1GOTOkUnconditional branch2101kkkkkkkkkZNoneIORLWkInclusive OR Literal with W11100kkkkkkkkNoneOPTION-Load OPTION register1000000000010NoneRETLWkReturn, place Literal in W21000kkkk kkkkNoneSLEEP-Go	SUBWF	f, d	Subtract W from f	1	0000	10df	ffff	C,DC,Z	1, 2, 4
XORWFf, dExclusive OR W with f1000110dfffffZ2, 4BIT-ORIENTED FILE REGISTER OPERATIONSBCFf, bBit Clear f10100bbbfffffNone2, 4BSFf, bBit Set f10101bbbffffffNone2, 4BTFSCf, bBit Test f, Skip if Clear1(2)0110bbbffffffNone2, 4BTFSSf, bBit Test f, Skip if Set1(2)0110bbbffffffNone2, 4LITERAL AND CONTROL OPERATIONSANDLWkAND literal with W11110kkkkkkkkZCALLkSubroutine Call21001kkkkNone1CLRWDTClear Watchdog Timer1000000000100TO, PDGOTOkInconditional branch2101kkkkkkkkkZIORLWkMove Literal to W11100kkkkkkkkZOPTION-Load OPTION register1000000000010NoneRETLWkReturn, place Literal in W21000kkkkkkkkNoneSLEEPGo into Standby mode1000000000011TO, PDTRISfLoad TRIS register1000000000fffNone3XORLWkExclusive OR Literal to W111111kkkkZ </td <td>SWAPF</td> <td>f, d</td> <td>Swap f</td> <td>1</td> <td>0011</td> <td>10df</td> <td>ffff</td> <td>None</td> <td>2, 4</td>	SWAPF	f, d	Swap f	1	0011	10df	ffff	None	2, 4
BIT-ORIENTED FILE REGISTER OPERATIONSBCFf, bBit Clear f10100bbbfffffNone2, 4BSFf, bBit Set f10101bbbfffffNone2, 4BTFSCf, bBit Test f, Skip if Clear1(2)0110bbbffffffNone2, 4BTFSSf, bBit Test f, Skip if Set1(2)0111bbbffffffNone2, 4LITERAL AND CONTROL OPERATIONSANDLWkAND literal with W111110kkkkkkkkZCALLkSubroutine Call21001kkkkNone1CLRWDT-Clear Watchdog Timer1000000000100TO, PDGOTOkUnconditional branch2101kkkkkKkkkZIORLWkInclusive OR Literal with W11100kkkk kkkkZOPTION-Load OPTION register1000000000101RETLWkReturn, place Literal in W21000kkkk kkkkNoneSLEEP-Go into Standby mode1000000000111TO, PDTRISfLoad TRIS register1000000000fffNone3XORLWkExclusive OR Literal to W11111kkkk kkkkZ	XORWF	f, d	Exclusive OR W with f	1	0001	10df	ffff	Z	2, 4
BCFf, bBit Clear f10100bbbfffffNone2, 4BSFf, bBit Set f10101bbbfffffNone2, 4BTFSCf, bBit Test f, Skip if Clear1(2)0110bbbfffffNone2, 4BTFSSf, bBit Test f, Skip if Set1(2)0110bbbfffffNone2, 4LITERAL AND CONTROL OPERATIONS11110kkkkkkkkZ1ANDLWkAND literal with W11110kkkkNone1CLRWDT-Clear Watchdog Timer1000000000100TO, PDGOTOkUnconditional branch2101kkkkkkkkkZIORLWkInclusive OR Literal with W11100kkkkkkkkZMOVLWkMove Literal to W11100kkkkNoneFTO, PDOPTION-Load OPTION register1000000000010NoneRETLWkReturn, place Literal in W21000kkkkkkkkNoneSLEEPGo into Standby mode1000000000011TO, PDTRISfLoad TRIS register1000000000fffNone3XORLWkExclusive OR Literal to W11111kkkkZ3	BIT-ORIEN	NTED FIL	E REGISTER OPERATIONS						-
BSFf, bBit Set f10101bbbfffffNone2, 4BTFSCf, bBit Test f, Skip if Clear1(2)0110bbbfffffNone2, 4BTFSSf, bBit Test f, Skip if Set1(2)0110bbbfffffNone2, 4LITERAL AND CONTROL OPERATIONSANDLWkAND literal with W11110kkkkkkkkZCALLkSubroutine Call21001kkkkNone1CLRWDTClear Watchdog Timer1000000000100TO, PDGOTOkUnconditional branch2101kkkkkkkkkZIORLWkInclusive OR Literal with W11100kkkkKkkkZMOVLWkMove Literal to W11100kkkkNoneNoneOPTIONLoad OPTION register1000000000010NoneRETLWkReturn, place Literal in W21000kkkkkkkkNoneSLEEP—Go into Standby mode1000000000011TO, PDTRISfLoad TRIS register1000000000fffNone3XORLWkExclusive OR Literal to W11111kkkkZ	BCF	f, b	Bit Clear f	1	0100	bbbf	ffff	None	2, 4
BTFSC BTFSSf, bBit Test f, Skip if Clear Bit Test f, Skip if Set1(2)0110bbbfffffNoneLITERAL AND CONTROL OPERATIONSANDLWkAND literal with W11110kkkkkkkkZCALLkSubroutine Call21001kkkkkkkkNone1CLRWDT-Clear Watchdog Timer1000000000100TO, PDGOTOkUnconditional branch21011kkkkkkkkZIORLWkInclusive OR Literal with W11101kkkkkkkkZMOVLWkMove Literal to W11100kkkkKkkkNoneOPTION-Load OPTION register1000000000010NoneRETLWkReturn, place Literal in W21000kkkkkkkkNoneSLEEP-Go into Standby mode1000000000111TO, PDTRISfLoad TRIS register1000000000111TO, PDXORLWkExclusive OR Literal to W11111kkkkXkkkZ	BSF	f, b	Bit Set f	1	0101	bbbf	ffff	None	2, 4
BTFSSf, bBit Test f, Skip if Set1(2)0111bbbfffffNoneLITERAL AND CONTROL OPERATIONSANDLWkAND literal with W11110kkkkkkkkZCALLkSubroutine Call21001kkkkkkkkNone1CLRWDTClear Watchdog Timer1000000000100TO, PD1GOTOkUnconditional branch2101kkkkkkkkkXone1IORLWkInclusive OR Literal with W11101kkkkkkkkZMOVLWkMove Literal to W11100kkkkNone1OPTIONLoad OPTION register1000000000010NoneRETLWkReturn, place Literal in W21000kkkkkkkkNoneSLEEPGo into Standby mode1000000000111TO, PDTRISfLoad TRIS register1000000000111TO, PDXORLWkExclusive OR Literal to W11111kkkkXkkkZ	BTFSC	f, b	Bit Test f, Skip if Clear	1 ⁽²⁾	0110	bbbf	ffff	None	
LITERAL AND CONTROL OPERATIONSANDLWkAND literal with W11110kkkkkkkkZCALLkSubroutine Call21001kkkkkkkkNone1CLRWDT-Clear Watchdog Timer1000000000100TO, PD1GOTOkUnconditional branch2101kkkkkkkkkNone1IORLWkInclusive OR Literal with W11101kkkkkkkkZMOVLWkMove Literal to W11100kkkkNone1OPTION-Load OPTION register1000000000010NoneRETLWkReturn, place Literal in W21000kkkkkkkkNoneSLEEPGo into Standby mode100000000011TO, PDTRISfLoad TRIS register1000000000fffNone3XORLWkExclusive OR Literal to W11111kkkkkkkkZ	BTFSS	f, b	Bit Test f, Skip if Set	1 ⁽²⁾	0111	bbbf	ffff	None	
ANDLWkAND literal with W11110kkkkkkkkZCALLkSubroutine Call21001kkkkkkkkNone1CLRWDT—Clear Watchdog Timer1000000000100TO, PDGOTOkUnconditional branch2101kkkkkkkkkNoneIORLWkInclusive OR Literal with W11101kkkkkkkkZMOVLWkMove Literal to W11100kkkkkkkkNoneOPTION—Load OPTION register1000000000010NoneRETLWkReturn, place Literal in W21000kkkkkkkkNoneSLEEP—Go into Standby mode1000000000011TO, PDTRISfLoad TRIS register1000000000fffNone3XORLWkExclusive OR Literal to W11111kkkkkkkkZ	LITERAL	AND CON	ITROL OPERATIONS						
CALLkSubroutine Call21001kkkkkkkkNone1CLRWDT—Clear Watchdog Timer1000000000100TO, PD1GOTOkUnconditional branch2101kkkkkkkkkNone1IORLWkInclusive OR Literal with W11101kkkkkkkkZMOVLWkMove Literal to W11100kkkkkkkkNoneOPTION—Load OPTION register1000000000010NoneRETLWkReturn, place Literal in W21000kkkkkkkkNoneSLEEP—Go into Standby mode1000000000011TO, PDTRISfLoad TRIS register1000000000fffNone3XORLWkExclusive OR Literal to W11111kkkkkkkkZ	ANDLW	k	AND literal with W	1	1110	kkkk	kkkk	Z	
CLRWDT—Clear Watchdog Timer1000000000100TO, PDGOTOkUnconditional branch2101kkkkkkkkkNoneIORLWkInclusive OR Literal with W11101kkkkkkkkZMOVLWkMove Literal to W11100kkkkkkkkNoneOPTION—Load OPTION register1000000000010NoneRETLWkReturn, place Literal in W21000kkkkkkkkNoneSLEEP—Go into Standby mode1000000000011TO, PDTRISfLoad TRIS register1000000000fffNone3XORLWkExclusive OR Literal to W11111kkkkkkkkZ	CALL	k	Subroutine Call	2	1001	kkkk	kkkk	None	1
GOTOkUnconditional branch2101kkkkkkkkkNoneIORLWkInclusive OR Literal with W11101kkkkkkkkZMOVLWkMove Literal to W11100kkkkkkkkNoneOPTION—Load OPTION register1000000000010NoneRETLWkReturn, place Literal in W21000kkkkkkkkNoneSLEEP—Go into Standby mode1000000000011TO, PDTRISfLoad TRIS register100000000offfNone3XORLWkExclusive OR Literal to W11111kkkkkkkkZ	CLRWDT	—	Clear Watchdog Timer	1	0000	0000	0100	TO, PD	
IORLWkInclusive OR Literal with W11101kkkkkkkkZMOVLWkMove Literal to W11100kkkkkkkkNoneOPTION—Load OPTION register1000000000010NoneRETLWkReturn, place Literal in W21000kkkkkkkkNoneSLEEP—Go into Standby mode1000000000011TO, PDTRISfLoad TRIS register1000000000fffNone3XORLWkExclusive OR Literal to W11111kkkkkkkkZ	GOTO	k	Unconditional branch	2	101k	kkkk	kkkk	None	
MOVLWkMove Literal to W11100kkkkkkkkNoneOPTIONLoad OPTION register1000000000010NoneRETLWkReturn, place Literal in W21000kkkkkkkkNoneSLEEPGo into Standby mode1000000000011TO, PDTRISfLoad TRIS register1000000000fffNone3XORLWkExclusive OR Literal to W11111kkkkkkkkZ	IORLW	k	Inclusive OR Literal with W	1	1101	kkkk	kkkk	Z	
OPTION — Load OPTION register 1 0000 0000 0010 None RETLW k Return, place Literal in W 2 1000 kkkk kkkk None SLEEP — Go into Standby mode 1 0000 0000 0011 TO, PD TRIS f Load TRIS register 1 0000 0000 0fff None 3 XORLW k Exclusive OR Literal to W 1 1111 kkkk kkkk Z	MOVLW	k	Move Literal to W	1	1100	kkkk	kkkk	None	
RETLWkReturn, place Literal in W21000kkkkkkkkNoneSLEEP—Go into Standby mode1000000000011TO, PDTRISfLoad TRIS register1000000000fffNone3XORLWkExclusive OR Literal to W11111kkkkkkkkZ	OPTION	—	Load OPTION register	1	0000	0000	0010	None	
SLEEP — Go into Standby mode 1 0000 0001 TO, PD TRIS f Load TRIS register 1 0000 0000 0fff None 3 XORLW k Exclusive OR Literal to W 1 1111 kkkk kkkk Z	RETLW	k	Return, place Literal in W	2	1000	kkkk	kkkk	None	
TRIS f Load TRIS register 1 0000 0000 offf None 3 XORLW k Exclusive OR Literal to W 1 1111 kkkk kkkk Z	SLEEP	—	Go into Standby mode	1	0000	0000	0011	TO, PD	
XORLW k Exclusive OR Literal to W 1 1111 kkkk Z	TRIS	f	Load TRIS register	1	0000	0000	Offf	None	3
	XORLW	k	Exclusive OR Literal to W	1	1111	kkkk	kkkk	Z	

Note 1: The 9th bit of the program counter will be forced to a '0' by any instruction that writes to the PC except for GOTO (see Section 3.5 "Program Counter" for more on program counter).

2: When an I/O register is modified as a function of itself (e.g., MOVF PORTB, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

3: The instruction TRIS f, where f = 5, 6 or 7 causes the contents of the W register to be written to the tri-state latches of PORTA, B or C, respectively. A '1' forces the pin to a high-impedance state and disables the output buffers.

4: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared (if assigned to TMR0).

ADDWF	Add W	and f		
Syntax:	[label]A	DDWF	f, d	
Operands:	$\begin{array}{l} 0 \leq f \leq 3^{\prime} \\ d \in [0,1] \end{array}$	l		
Operation:	(W) + (f)	\rightarrow (dest)		
Status Affected:	C, DC, Z			
Encoding:	0001	11df	ffff	
	and regis result is s 'd' is '1', register	ster 'f'. If ' stored in t the result 'f'.	d' is '0', the he W register is stored bac	: If k in
Words:	1			
Cycles:	1			
Example:	ADDWF	TEMP_RE	G, 0	
Before Instru W TEMP_F After Instruc	uction = REG = tion	0x17 0xC2		
TEMP_F	REG =	0xC2		

ANDWF	AND W	with f		
Syntax:	[label]	ANDWF	f, d	
Operands:	$0 \le f \le 31$ $d \in [0,1]$	$0 \le f \le 31$ $d \in [0,1]$		
Operation:	(W) .ANE	D. (f) \rightarrow (c	lest)	
Status Affected:	Z			
Encoding:	0001	01df	ffff	
Description:	AND'ed with the result register.	ents of th with regis t is storec If 'd' is '1' ack in reg	e w register are ter 'f'. If 'd' is 'o', I in the W , the result is ister 'f'.	
Words:	1			
Cycles:	1			
Example:	ANDWF	TEMP_RE	EG, 1	
Before Instruction W = 0x17 TEMP_REG = 0xC2 After Instruction				
W TEMP_	= REG =	0x17 0x02		

ANDLW	AND lite	ral with V	N	
Syntax:	[label]	ANDLW	k	
Operands:	$0 \le k \le 2$	$0 \le k \le 255$		
Operation:	(W).AND. (k) \rightarrow (W)			
Status Affected:	Z			
Encoding:	1110	kkkk	kkkk]
Description:	AND'ed v The resu register.	with the e lt is place	ight-bit lit ad in the \	ster are :eral 'k'. <i>N</i>
Words:	1			
Cycles:	1			
Example:	ANDLW	H'5F'		
Before Instru W = After Instruct W =	iction 0xA3 tion 0x03			

BCF	Bit Clea	rf		
Syntax:	[label]	[<i>label</i>] BCF f, b		
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ 0 \leq b \leq 7 \end{array}$			
Operation:	$0 \rightarrow (f < b >)$			
Status Affected:	None			
Encoding:	0100	bbbf	ffff]
Description:	Bit 'b' in	register 'f	' is cleare	ed.
Words:	1			
Cycles:	1			
Example:	BCF	FLAG_RE	EG, 7	
Before Instru FLAG_R After Instruct	ction REG = ion	0xC7		
FLAG_R	REG =	0x47		

PIC16F5X

BSF	Bit Set f			
Syntax:	[label] BSF f, b			
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ 0 \leq b \leq 7 \end{array}$			
Operation:	$1 \rightarrow (f < b >)$			
Status Affected:	None			
Encoding:	0101	bbbf	ffff	
Description:	Bit 'b' in ı	register 'f	' is set.	
Words:	1			
Cycles:	1			
Example:	BSF	FLAG_RE	EG, 7	
Before Instru FLAG_R After Instruct	uction REG = 0 tion	0x0A		
FLAG_R	REG = 0	X8A		

BTFSC	Bit Test f, Skip if Clear			
Syntax:	[label] BTFSC f, b			
Operands:	$0 \le f \le 31$ $0 \le b \le 7$			
Operation:	skip if (f) = 0			
Status Affected:	None			
Encoding:	0110 bbbf ff	ff		
Description:	If bit 'b' in register 'f' is '0', then the next instruction is skipped. If bit 'b' is '0', then the next instruc- tion fetched during the current instruction execution is discarded and a NOP is executed instead, making this a two-cycle instruction.			
Words:	1			
Cycles:	1(2)			
<u>Example</u> :	HERE BTFSC FLA FALSE GOTO PRC TRUE • • •	G,1 CESS_CODE		
Before Instru	tion			
PC	= address (HE	RE)		
After Instructi if FLAG< PC if FLAG< PC	on 1> = 0, = address (TRU 1> = 1, = address (FALS	E); SE)		

BTFSS	Bit Test f, Skip if Set			
Syntax:	[label]	[<i>label</i>] BTFSS f, b		
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ 0 \leq b < 7 \end{array}$	0 ≤ f ≤ 31 0 ≤ b < 7		
Operation:	skip if (f<	:b>) = 1		
Status Affected:	None			
Encoding:	0111	bbbf	ffff	
Description:	If bit 'b' in register 'f' is '1', then the next instruction is skipped. If bit 'b' is '1', then the next instruc- tion fetched during the current instruction execution is discarded and a NOP is executed instead, making this a two-cycle instruction.			
Words:	1			
Cycles:	1(2)			
<u>Example</u> :	HERE FALSE TRUE	BTFSS GOTO •	FLAG,1 PROCESS	S_CODE
Before Instr	uction			
PC	=	addres	SS (HERE)
After Instruction		0		
PC	<1> =	u, addres	S (FALS	F).
if FLAG<	<1> =	1,	UPALIS	, (L
PC	=	addres	S (TRUE)

CALL	Subroutine Call	
Syntax:	[<i>label</i>] CALL k	
Operands:	$0 \leq k \leq 255$	
Operation:	$\begin{array}{l} (PC) + 1 \rightarrow TOS; \\ k \rightarrow PC < 7:0 >; \\ (Status < 6:5 >) \rightarrow PC < 10:9 >; \\ 0 \rightarrow PC < 8 > \end{array}$	
Status Affected:	None	
Encoding:	1001 kkkk kkkk	
Description.	address (PC + 1) is pushed onto the stack. The eight-bit immediate address is loaded into PC bits <7:0>. The upper bits PC<10:9> are loaded from STATUS<6:5>, PC<8> is cleared. CALL is a two-cycle instruction.	
Words:	1	
Cycles:	2	
Example:	HERE CALL THERE	
Before Instru PC = After Instruct PC = TOS =	address (HERE) ion address (THERE) address (HERE + 1)	

CLRW	Clear W			
Syntax:	[label]	CLRW		
Operands:	None			
Operation:	$\begin{array}{l} 00h \rightarrow (V \\ 1 \rightarrow Z \end{array}$	V);		
Status Affected:	Z			
Encoding:	0000	0100	0000	
Description:	The W re (Z) is set	egister is o	cleared. 2	Zero bit
Words:	1			
Cycles:	1			
<u>Example</u> :	CLRW			
Before Instru	ction			
W =	0x5A			
After Instruct	ion			
VV =	0x00			
Z =	1			

CLRF Clear f

Syntax:	[label]	CLRF f	
Operands:	$0 \le f \le 3^{-1}$	1	
Operation:	$\begin{array}{l} 00h \rightarrow (f \\ 1 \rightarrow Z \end{array}$);	
Status Affected:	Z		
Encoding:	0000	011f	ffff
Description:	The cont cleared a	tents of re and the Z	gister 'f' are bit is set.
Words:	1		
Cycles:	1		
Example:	CLRF	FLAG_RE	G
Before Instruc FLAG_RE After Instructi FLAG_RE Z	ction EG = on EG = =	0x5A 0x00 1	

CLRWDT	Clear Watchdog Timer
Syntax:	[label] CLRWDT
Operands:	None
Operation:	00h \rightarrow WDT; 0 \rightarrow WDT prescaler (if assigned); 1 \rightarrow TO; 1 \rightarrow PD
Status Affected:	TO, PD
Encoding:	0000 0000 0100
Description:	The CLRWDT instruction resets the WDT. It also resets the prescaler if the prescaler is assigned to the WDT and not Timer0. Status bits \overline{TO} and \overline{PD} are set.
Words:	1
Cycles:	1
Example:	CLRWDT
Before Instru WDT co After Instruc WDT co WDT pro TO PD	uction unter = ? tion unter = $0x00$ escaler = 0 = 1 = 1

GOTO	Uncondi	tional Br	anch
Syntax:	[label]	GOTO	k
Operands:	$0 \le k \le 5$	11	
Operation:	$k \rightarrow PC < STATUS$	8:0>; <6:5> →	PC<10:9>
Status Affected:	None		
Encoding:	101k	kkkk	kkkk
Description:	GOTO is a The 9-bit loaded in upper bits STATUS- cycle inst	an uncone immedia to PC bit s of PC a <6:5>. GC truction.	ditional branch. te value is s <8:0>. The re loaded from pTO is a two-
Words:	1		
Cycles:	2		
Example:	GOTO TH	IERE	
After Instruct PC =	ion address	G (THER	E)

INCF	Increment f
Syntax:	[label] INCF f, d
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in \ [0,1] \end{array}$
Operation:	(f) + 1 \rightarrow (dest)
Status Affected:	Z
Encoding:	0010 10df ffff
Description.	incremented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.
Words:	1
Cycles:	1
Example:	INCF CNT, 1
Before Instru CNT Z After Instructi CNT Z	ction = 0xFF = 0 ion = 0x00 = 1

INCFSZ	Increment f, Skip if 0					
Syntax:	[<i>label</i>] INCFSZ f, d					
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in \ [0,1] \end{array}$					
Operation:	(f) + 1 \rightarrow (dest), skip if result = 0					
Status Affected:	None					
Encoding:	0011 11df ffff					
Description:	incremented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'. If the result is '0', then the next instruction, which is already fetched, is discarded and a NOP is executed instead making it a two-cycle instruction					
Words:	1					
Cycles:	1(2)					
Example:	HERE INCFSZ CNT, 1 GOTO LOOP CONTINUE • • •					
Before Instruct PC After Instructi CNT if CNT PC if CNT PC	<pre>ction = address (HERE) on = CNT + 1; = 0, = address (CONTINUE); ≠ 0, = address (HERE +1)</pre>					

MOVWF	Move W to f				
Syntax:	[label] MOVWF f				
Operands:	$0 \le f \le 31$				
Operation:	$(W) \rightarrow (f)$				
Status Affected:	None				
Encoding:	0000	001f	ffff		
Description:	Move data from the W register to register 'f'.				
Words:	1				
Cycles:	1				
Example:	MOVWF TEMP_REG				
Before Instruction $TEMP_REG = 0xFF$ W = 0x4F After Instruction $TEMP_REG = 0x4F$ W = 0x4F					

No Operation

NOP

Syntax:	[label]	NOP			
Operands:	None				
Operation:	No operation				
Status Affected:	None				
Encoding:	0000 0000 0000				
Description:	No operation.				
Words:	1				
Cycles:	1				
Example:	NOP				

OPTION	Load OPTION Register				
Syntax:	[label] OPTION				
Operands:	None				
Operation:	$(W) \rightarrow OPTION$				
Status Affected:	None				
Encoding:	0000	0000	0010		
Description:	The content of the W register is				
	loaded i	nto the O	ption register.		
Words:	1				
Cycles:	1				
Example:	OPTION				
Before Instruction					
W	= 0x	:07			
After Instruction					
OPTION	= 0x	:07			

RETLW	Return with Literal in W					
Syntax:	[label] RETLW k					
Operands:	$0 \le k \le 255$					
Operation:	$k \rightarrow (W);$ TOS \rightarrow PC					
Status Affected:	None					
Encoding:	1000 kkkk kkkk					
Description:	The W register is loaded with the eight-bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a two-cycle instruction.					
Words:	1					
Cycles:	2					
Example:	CALL TABLE;W contains ;table offset ;value. • ;W now has table • :value.					
TABLE	•					
	ADDWF PC ;W = offset RETLW k1 ;Begin table RETLW k2 ; • •					
	RETLW kn ; End of table					
Before Instru W	uction = 0x07					
After Instruc	tion – value of k8					
TABLE Before Instru W After Instruc W	<pre>, value. ; value. ADDWF PC ;W = offset RETLW k1 ;Begin table RETLW k2 ; RETLW kn ; End of table uction = 0x07 tion = value of k8</pre>					

10.7 MPLAB ICE 2000 High-Performance In-Circuit Emulator

The MPLAB ICE 2000 In-Circuit Emulator is intended to provide the product development engineer with a complete microcontroller design tool set for PIC microcontrollers. Software control of the MPLAB ICE 2000 In-Circuit Emulator is advanced by the MPLAB Integrated Development Environment, which allows editing, building, downloading and source debugging from a single environment.

The MPLAB ICE 2000 is a full-featured emulator system with enhanced trace, trigger and data monitoring features. Interchangeable processor modules allow the system to be easily reconfigured for emulation of different processors. The architecture of the MPLAB ICE 2000 In-Circuit Emulator allows expansion to support new PIC microcontrollers.

The MPLAB ICE 2000 In-Circuit Emulator system has been designed as a real-time emulation system with advanced features that are typically found on more expensive development tools. The PC platform and Microsoft[®] Windows[®] 32-bit operating system were chosen to best make these features available in a simple, unified application.

10.8 MPLAB REAL ICE In-Circuit Emulator System

MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC[®] and MCU devices. It debugs and programs PIC[®] and dsPIC[®] Flash microcontrollers with the easy-to-use, powerful graphical user interface of the MPLAB Integrated Development Environment (IDE), included with each kit.

The MPLAB REAL ICE probe is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with the popular MPLAB ICD 2 system (RJ11) or with the new high speed, noise tolerant, lowvoltage differential signal (LVDS) interconnection (CAT5).

MPLAB REAL ICE is field upgradeable through future firmware downloads in MPLAB IDE. In upcoming releases of MPLAB IDE, new devices will be supported, and new features will be added, such as software breakpoints and assembly code trace. MPLAB REAL ICE offers significant advantages over competitive emulators including low-cost, full-speed emulation, real-time variable watches, trace analysis, complex breakpoints, a ruggedized probe interface and long (up to three meters) interconnection cables.

10.9 MPLAB ICD 2 In-Circuit Debugger

Microchip's In-Circuit Debugger, MPLAB ICD 2, is a powerful, low-cost, run-time development tool, connecting to the host PC via an RS-232 or high-speed USB interface. This tool is based on the Flash PIC MCUs and can be used to develop for these and other PIC MCUs and dsPIC DSCs. The MPLAB ICD 2 utilizes the in-circuit debugging capability built into the Flash devices. This feature, along with Microchip's In-Circuit Serial Programming[™] (ICSP[™]) protocol, offers costeffective, in-circuit Flash debugging from the graphical user interface of the MPLAB Integrated Development Environment. This enables a designer to develop and debug source code by setting breakpoints, single stepping and watching variables, and CPU status and peripheral registers. Running at full speed enables testing hardware and applications in real time. MPLAB ICD 2 also serves as a development programmer for selected PIC devices.

10.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages and a modular, detachable socket assembly to support various package types. The ICSP™ cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices and incorporates an SD/MMC card for file storage and secure data applications.

10.11 PICSTART Plus Development Programmer

The PICSTART Plus Development Programmer is an easy-to-use, low-cost, prototype programmer. It connects to the PC via a COM (RS-232) port. MPLAB Integrated Development Environment software makes using the programmer simple and efficient. The PICSTART Plus Development Programmer supports most PIC devices in DIP packages up to 40 pins. Larger pin count devices, such as the PIC16C92X and PIC17C76X, may be supported with an adapter socket. The PICSTART Plus Development Programmer is CE compliant.

10.12 PICkit 2 Development Programmer

The PICkit[™] 2 Development Programmer is a low-cost programmer and selected Flash device debugger with an easy-to-use interface for programming many of Microchip's baseline, mid-range and PIC18F families of Flash memory microcontrollers. The PICkit 2 Starter Kit includes a prototyping development board, twelve sequential lessons, software and HI-TECH's PICC[™] Lite C compiler, and is designed to help get up to speed quickly using PIC[®] microcontrollers. The kit provides everything needed to program, evaluate and develop applications using Microchip's powerful, mid-range Flash memory family of microcontrollers.

10.13 Demonstration, Development and Evaluation Boards

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart[®] battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Check the Microchip web page (www.microchip.com) and the latest *"Product Selector Guide"* (DS00148) for the complete list of demonstration, development and evaluation kits.

11.1 DC Characteristics: PIC16F5X (Industrial)

DC CHARACTERISTICS		Standard Operating Conditions (unless otherwise specified) Operating Temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial					
Param No.	Sym.	Characteristic/Device	Min.	Тур†	Max.	Units	Conditions
D001	Vdd	Supply Voltage	2.0	—	5.5	V	
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾	—	1.5*	_	V	Device in Sleep mode
D003	Vpor	VDD Start Voltage to ensure Power-on Reset	_	Vss	_	V	See Section 5.1 "Power-on Reset (POR)" for details on Power-on Reset
D004	Svdd	VDD Rise Rate to ensure Power-on Reset	0.05*	-	-	V/ms	See Section 5.1 "Power-on Reset (POR)" for details on Power-on Reset
D010	Idd	Supply Current ⁽²⁾					
			_	170	350	μA	Fosc = 4 MHz, VDD = 2.0V, XT or RC mode ⁽³⁾
			-	0.4	1.0	mA	Fosc = 10 MHz, VDD = 3.0V, HS mode
			-	1.7	5.0	mA	Fosc = 20 MHz, VDD = 5.0V, HS mode
			_	15	22.5	μA	FOSC = 32 KHZ, VDD = 2.0V, LP mode,
D020	IPD	Power-down Current ⁽²⁾					
			-	1.0	6.0	μA	VDD = 2.0V, WDT enabled
			—	0.5	2.5	μA	VDD = 2.0V, WDT disabled

* These parameters are characterized but not tested.

† Data in "Typ" column is based on characterization results at 25°C. This data is for design guidance only and is not tested.

Note 1: This is the limit to which VDD can be lowered in Sleep mode without losing RAM data.

- 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern and temperature, also have an impact on the current consumption.
 - a) The test conditions for all IDD measurements in Active Operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to Vss, T0CKI = VDD, MCLR = VDD; WDT enabled/ disabled as specified.
 - b) For standby current measurements, the conditions are the same, except that the device is in Sleep mode. The Power-down Current in Sleep mode does not depend on the oscillator type.
- 3: Does not include current through REXT. The current through the resistor can be estimated by the formula: IR = VDD/2REXT (mA) with REXT in k Ω .

12.0 PACKAGING INFORMATION

12.1 Package Marketing Information

* Standard PIC device marking consists of Microchip part number, year code, week code, and traceability code. For PIC device marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.