

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	20
Program Memory Size	3KB (2K x 12)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	72 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f57-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC16F5X

Flash-Based, 8-Bit CMOS Microcontroller Series

High-Performance RISC CPU:

- Only 33 single-word instructions to learn
- All instructions are single cycle except for program branches which are two-cycle
- Two-level deep hardware stack
- Direct, Indirect and Relative Addressing modes for data and instructions
- · Operating speed:
 - DC 20 MHz clock speed
 - DC 200 ns instruction cycle time
- On-chip Flash program memory:
 - 512 x 12 on PIC16F54
 - 2048 x 12 on PIC16F57
 - 2048 x 12 on PIC16F59
- General Purpose Registers (SRAM):
 - 25 x 8 on PIC16F54
 - 72 x 8 on PIC16F57
 - 134 x 8 on PIC16F59

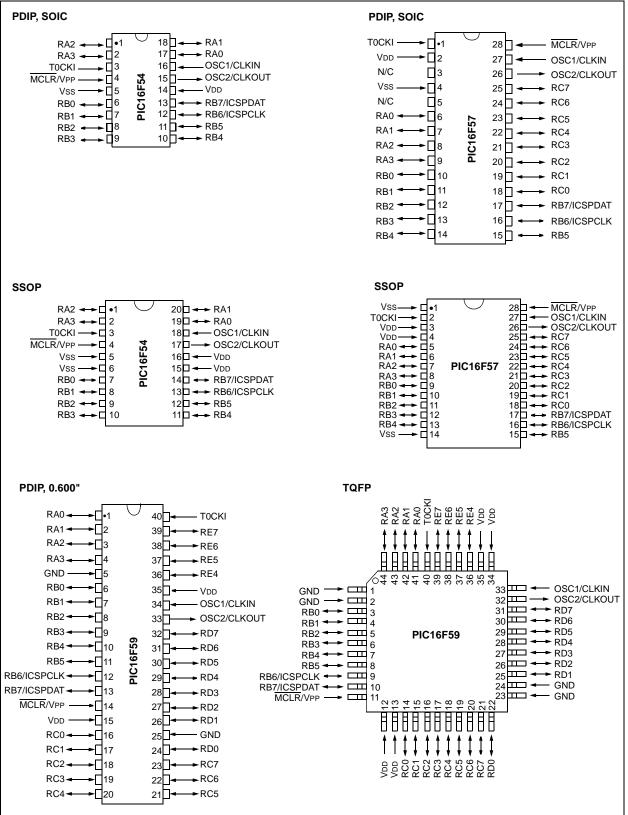
Special Microcontroller Features:

- Power-on Reset (POR)
- Device Reset Timer (DRT)
- Watchdog Timer (WDT) with its own on-chip RC oscillator for reliable operation
- Programmable Code Protection
- Power-Saving Sleep mode
- In-Circuit Serial Programming[™] (ICSP[™])
- Selectable oscillator options:
 - RC: Low-cost RC oscillator
 - XT: Standard crystal/resonator
 - HS: High-speed crystal/resonator
 - LP: Power-saving, low-frequency crystal
- Packages:
 - 18-pin PDIP and SOIC for PIC16F54
 - 20-pin SSOP for PIC16F54
 - 28-pin PDIP, SOIC and SSOP for PIC16F57
 - 40-pin PDIP for PIC16F59
 - 44-pin TQFP for PIC16F59

Low-Power Features:

- Operating Current:
 - 170 μA @ 2V, 4 MHz, typical
 - 15 μA @ 2V, 32 kHz, typical
- Standby Current:
 - 500 nA @ 2V, typical

Peripheral Features:


- 12/20/32 I/O pins:
 - Individual direction control
 - High current source/sink
- 8-bit real-time clock/counter (TMR0) with 8-bit programmable prescaler

CMOS Technology:

- Wide operating voltage range:
 - Industrial: 2.0V to 5.5V
 - Extended: 2.0V to 5.5V
- Wide temperature range:
 - Industrial: -40°C to 85°C
 - Extended: -40°C to 125°C
- High-endurance Flash:
 - 100K write/erase cycles
 - > 40-year retention

Device	Program Memory	Data Memory	I/O	Timers	
Device	Flash (words) SRAM (bytes)		1/0	8-bit	
PIC16F54	512	25	12	1	
PIC16F57	2048	72	20	1	
PIC16F59	2048	134	32	1	

Pin Diagrams

1.0 GENERAL DESCRIPTION

The PIC16F5X from Microchip Technology is a family of low-cost, high-performance, 8-bit, fully static, Flashbased CMOS microcontrollers. It employs a RISC architecture with only 33 single-word/single-cycle instructions. All instructions are single cycle except for program branches which take two cycles. The PIC16F5X delivers performance an order of magnitude higher than its competitors in the same price category. The 12-bit wide instructions are highly symmetrical resulting in 2:1 code compression over other 8-bit microcontrollers in its class. The easy-to-use and easyto-remember instruction set reduces development time significantly.

The PIC16F5X products are equipped with special features that reduce system cost and power requirements. The Power-on Reset (POR) and Device Reset Timer (DRT) eliminate the need for external Reset circuitry. There are four oscillator configurations to choose from, including the power-saving LP (Low Power) oscillator and cost saving RC oscillator. Power-saving Sleep mode, Watchdog Timer and code protection features improve system cost, power and reliability.

The PIC16F5X products are supported by a full-featured macro assembler, a software simulator, a low-cost development programmer and a full featured programmer. All the tools are supported on IBM[®] PC and compatible machines.

1.1 Applications

The PIC16F5X series fits perfectly in applications ranging from high-speed automotive and appliance motor control to low-power remote transmitters/receivers, pointing devices and telecom processors. The Flash technology makes customizing application programs codes. motor (transmitter speeds. receiver frequencies, etc.) extremely fast and convenient. The small footprint packages, for through hole or surface mounting, make this microcontroller series perfect for applications with space limitations. Low-cost, lowpower, high performance, ease of use and I/O flexibility make the PIC16F5X series very versatile, even in areas where no microcontroller use has been considered before (e.g., timer functions, replacement of "glue" logic in larger systems, co-processor applications).

Features	PIC16F54	PIC16F57	PIC16F59			
Maximum Operation Frequency	20 MHz	20 MHz	20 MHz			
Flash Program Memory (x12 words)	512	2K	2K			
RAM Data Memory (bytes)	25	72	134			
Timer Module(s)	TMR0	TMR0	TMR0			
I/O Pins	12	20	32			
Number of Instructions	33	33	33			
Packages	18-pin DIP, SOIC; 20-pin SSOP	28-pin DIP, SOIC; 28-pin SSOP	40-pin DIP, 44-pin TQFP			

TABLE 1-1: PIC16F5X FAMILY OF DEVICES

Note: All PIC[®] Family devices have Power-on Reset, selectable Watchdog Timer, selectable code-protect and high I/O current capability.

NOTES:

Name	Function	Input Type	Output Type	Description
RA0	RA0	TTL	CMOS	Bidirectional I/O pin
RA1	RA1	TTL	CMOS	Bidirectional I/O pin
RA2	RA2	TTL	CMOS	Bidirectional I/O pin
RA3	RA3	TTL	CMOS	Bidirectional I/O pin
RB0	RB0	TTL	CMOS	Bidirectional I/O pin
RB1	RB1	TTL	CMOS	Bidirectional I/O pin
RB2	RB2	TTL	CMOS	Bidirectional I/O pin
RB3	RB3	TTL	CMOS	Bidirectional I/O pin
RB4	RB4	TTL	CMOS	Bidirectional I/O pin
RB5	RB5	TTL	CMOS	Bidirectional I/O pin
RB6/ICSPCLK	RB6	TTL	CMOS	Bidirectional I/O pin
	ICSPCLK	ST		Serial programming clock
RB7/ICSPDAT	RB7	TTL	CMOS	Bidirectional I/O pin
	ICSPDAT	ST	CMOS	Serial programming I/O
RC0	RC0	TTL	CMOS	Bidirectional I/O pin
RC1	RC1	TTL	CMOS	Bidirectional I/O pin
RC2	RC2	TTL	CMOS	Bidirectional I/O pin
RC3	RC3	TTL	CMOS	Bidirectional I/O pin
RC4	RC4	TTL	CMOS	Bidirectional I/O pin
RC5	RC5	TTL	CMOS	Bidirectional I/O pin
RC6	RC6	TTL	CMOS	Bidirectional I/O pin
RC7	RC7	TTL	CMOS	Bidirectional I/O pin
TOCKI	TOCKI	ST	—	Clock input to Timer0. Must be tied to Vss or VDD, if not in use, to reduce current consumption.
MCLR/Vpp	MCLR	ST	_	Active-low Reset to device. Voltage on the MCLR/VPP pin must not exceed VDD to avoid unintended entering of Programming mode.
	Vpp	ΗV	_	Programming voltage input
OSC1/CLKIN	OSC1	XTAL	—	Oscillator crystal input
	CLKIN	ST	—	External clock source input
OSC2/CLKOUT	OSC2		XTAL	Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode.
	CLKOUT	—	CMOS	In RC mode, OSC2 pin outputs CLKOUT, which has 1/4 the frequency of OSC1.
Vdd	Vdd	Power	—	Positive supply for logic and I/O pins
Vss	Vss	Power	_	Ground reference for logic and I/O pins
N/C	N/C	_	_	Unused, do not connect
	put utput chmitt Trigge	r input	— =	input/outputCMOS = CMOS outputNot UsedXTAL = Crystal input/outputTTL inputHV = High Voltage

TABLE 2-2: PIC16F57 PINOUT DESCRIPTION

3.3 **STATUS Register**

This register contains the arithmetic status of the ALU, the Reset status and the page preselect bits for program memories larger than 512 words.

The STATUS register can be the destination for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS will clear the upper three bits and set the Z bit. This leaves the STATUS register as 000u uluu (where u = unchanged).

Therefore, it is recommended that only BCF, BSF, MOVWF and SWAPF instructions be used to alter the STATUS register because these instructions do not affect the Z, DC or C bits from the STATUS register. For other instructions which do affect Status bits, see Section 9.0 "Instruction Set Summary".

REGISTER 3-1: STATUS REGISTER (ADDRESS: 03h)

	R/W-0	R/W-0	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x
	PA2	PA1	PA0	TO	PD	Z	DC	С
	bit 7							bit 0
bit 7	Use of the P	ved, do not us A2 bit as a ge / with future p	neral purpos	e read/write I	oit is not rec	ommended, sin	ce this may af	fect upward
bit 6-5	PA<1:0>: Program Page Preselect bits (PIC16F57/PIC16F59) 00 = Page 0 (000h-1FFh) 01 = Page 1 (200h-3FFh) 10 = Page 2 (400h-5FFh) 11 = Page 3 (600h-7FFh) Each page is 512 words. Using the PA<1:0> bits as general purpose read/write bits in devices which do not use them for program page preselect is not recommended. This may affect upward compatibility with future products.							
bit 4		ut bit wer-up, CLRM time-out occu		on or SLEEP	instruction			
bit 3		Down bit wer-up or by ution of the S						
bit 2	 Z: Zero bit 1 = The result of an arithmetic or logic operation is zero 0 = The result of an arithmetic or logic operation is not zero 							
bit 1	DC: Digit Carry/Borrow bit (for ADDWF and SUBWF instructions) ADDWF 1 = A carry to the 4th low order bit of the result occurred 0 = A carry from the 4th low order bit of the result did not occur SUBWF 1 = A borrow to the 4th low order bit of the result did not occur 0 = A borrow to the 4th low order bit of the result did not occur 0 = A borrow to the 4th low order bit of the result did not occur 0 = A borrow to the 4th low order bit of the result did not occur							
bit 0	1 = A carry	rrow bit (for A occurred did not occur	<u>SUBWI</u> 1 = A b		occur Lo	ons) <u>RF or RLF</u> paded with LSb	or MSb, resp	ectively
	Legend:							
	R = Readab	ole bit	W = W	/ritable bit	U = Un	implemented bi	t, read as '0'	
	- n = Value a	at POR	'1' = B	it is set	'0' = Bit	t is cleared	x = Bit is un	known

3.6 Stack

The PIC16F54 device has a 9-bit wide, two-level hardware PUSH/POP stack. The PIC16F57 and PIC16F59 devices have an 11-bit wide, two-level hardware PUSH/POP stack.

A CALL instruction will PUSH the current value of stack 1 into stack 2 and then PUSH the current program counter value, incremented by one, into stack level 1. If more than two sequential CALL's are executed, only the most recent two return addresses are stored.

A RETLW instruction will POP the contents of stack level 1 into the program counter and then copy stack level 2 contents into level 1. If more than two sequential RETLW's are executed, the stack will be filled with the address previously stored in level 2.

Note:	The W register will be loaded with the
	literal value specified in the instruction.
	This is particularly useful for the
	implementation of data look-up tables
	within the program memory.

For the RETLW instruction, the PC is loaded with the Top-of-Stack (TOS) contents. All of the devices covered in this data sheet have a two-level stack. The stack has the same bit width as the device PC, therefore, paging is not an issue when returning from a subroutine.

3.7 Indirect Data Addressing; INDF and FSR Registers

The INDF register is not a physical register. Addressing INDF actually addresses the register whose address is contained in the FSR Register (FSR is a *pointer*). This is indirect addressing.

EXAMPLE 3-1: INDIRECT ADDRESSING

- Register file 08 contains the value 10h
- Register file 09 contains the value 0Ah
- Load the value 08 into the FSR register
- A read of the INDF register will return the value of 10h
- Increment the value of the FSR register by one (FSR = 09h)
- A read of the INDF register now will return the value of 0Ah.

Reading INDF itself indirectly (FSR = 0) will produce 00h. Writing to the INDF register indirectly results in a no-operation (although Status bits may be affected).

A simple program to clear RAM locations 10h-1Fh using indirect addressing is shown in Example 3-2.

EXAMPLE 3-2: HOW TO CLEAR RAM USING INDIRECT ADDRESSING

	MOVLW MOVWF	H'10' FSR	;initialize pointer ;to RAM
NEXT	CLRF	INDF	;clear INDF Register
	INCF	FSR,F	;inc pointer
	BTFSC	FSR,4	;all done?
	GOTO	NEXT	;NO, clear next
CONTINUE			
	:		;YES, continue

The FSR is either a 5-bit (PIC16F54), 7-bit (PIC16F57) or 8-bit (PIC16F59) wide register. It is used in conjunction with the INDF register to indirectly address the data memory area.

The FSR<4:0> bits are used to select data memory addresses 00h to 1Fh.

PIC16F54: This does not use banking. FSR<7:5> bits are unimplemented and read as '1's.

PIC16F57: FSR<7> bit is unimplemented and read as '1'. FSR<6:5> are the bank select bits and are used to select the bank to be addressed (00 = Bank 0, 01 = Bank 1, 10 = Bank 2, 11 = Bank 3).

PIC16F59: FSR<7:5> are the bank select bits and are used to select the bank to be addressed (000 = Bank 0, 001 = Bank 1, 010 = Bank 2,

011 = Bank 3, 100 = Bank 4, 101 = Bank 5, 110 = Bank 6, 111 = Bank 7).

Note: A CLRF FSR instruction may not result in an FSR value of 00h if there are unimplemented bits present in the FSR.

4.3 External Crystal Oscillator Circuit

Either a pre-packaged oscillator or a simple oscillator circuit with TTL gates can be used as an external crystal oscillator circuit. Pre-packaged oscillators provide a wide operating range and better stability. A well designed crystal oscillator will provide good performance with TTL gates. Two types of crystal oscillator circuits can be used: one with parallel resonance or one with series resonance.

Figure 4-3 shows an implementation example of a parallel resonant oscillator circuit. The circuit is designed to use the fundamental frequency of the crystal. The 74AS04 inverter performs the 180° phase shift that a parallel oscillator requires. The 4.7 k Ω resistor provides the negative feedback for stability. The 10 k Ω potentiometers bias the 74AS04 in the linear region. This circuit could be used for external oscillator designs.

FIGURE 4-3:

RESONANT CRYSTAL OSCILLATOR CIRCUIT (USING XT, HS OR LP OSCILLATOR MODE)

EXTERNAL PARALLEL

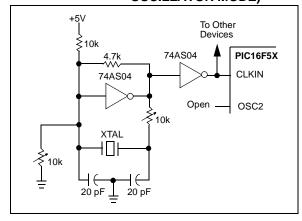
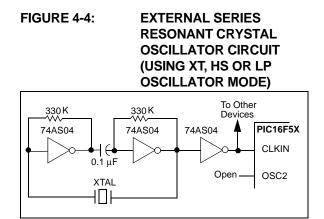
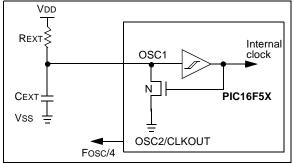



Figure 4-4 shows a series resonant oscillator circuit. This circuit is also designed to use the fundamental frequency of the crystal. The inverters perform a 360° phase shift in a series resonant oscillator circuit. The 330 k Ω resistors provide the negative feedback to bias the inverters in their linear region.

4.4 RC Oscillator


For applications where precise timing is not a requirement, the RC oscillator option is available. The operation and functionality of the RC oscillator is dependent upon a number of variables. The RC oscillator frequency is a function of:

- · Supply voltage
- Resistor (REXT) and capacitor (CEXT) values
- Operating temperature.

The oscillator frequency will vary from unit to unit due to normal process parameter variation. The difference in lead frame capacitance between package types will also affect the oscillation frequency, especially for low CEXT values. The user also needs to account for the tolerance of the external R and C components. Figure 4-5 shows how the R/C combination is connected.

The oscillator frequency, divided by 4, is available on the OSC2/CLKOUT pin and can be used for test purposes or to synchronize other logic.

5.0 RESET

The PIC16F5X devices may be reset in one of the following ways:

- Power-on Reset (POR)
- MCLR Reset (normal operation)
- MCLR Wake-up Reset (from Sleep)
- WDT Reset (normal operation)
- WDT Wake-up Reset (from Sleep)

Table 5-1 shows these Reset conditions for the PCL and STATUS registers.

Some registers are not affected in any Reset condition. Their status is unknown on POR and unchanged in any other Reset. Most other registers are reset to a "Reset state" on Power-on Reset (POR), MCLR or WDT Reset. A MCLR or WDT wake-up from Sleep also results in a device Reset and not a continuation of operation before Sleep. The $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits (STATUS <4:3>) are set or cleared depending on the different Reset conditions (Table 5-1). These bits may be used to determine the nature of the Reset.

Table 5-3 lists a full description of Reset states of all registers. Figure 5-1 shows a simplified block diagram of the on-chip Reset circuit.

TABLE 5-1:STATUS BITS AND THEIR SIGNIFICANCE

Condition	то	PD
Power-on Reset	1	1
MCLR Reset (normal operation)	u	u
MCLR Wake-up (from Sleep)	1	0
WDT Reset (normal operation)	0	1
WDT Wake-up (from Sleep)	0	0

Legend: u = unchanged, x = unknown, — = unimplemented read as '0'.

TABLE 5-2: SUMMARY OF REGISTERS ASSOCIATED WITH RESET

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	<u>Value</u> on MCLR and WDT Reset
03h	STATUS	PA2	PA1	PA0	TO	PD	Z	DC	С	0001 1xxx	000q quuu

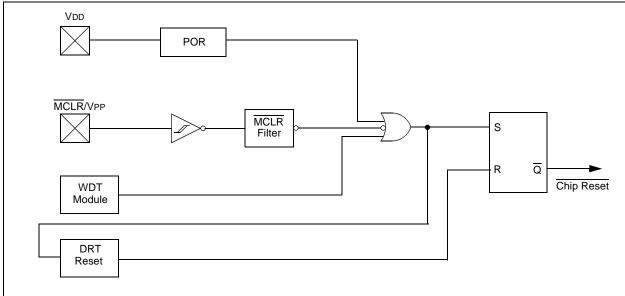
Legend: u = unchanged, x = unknown, q = see Table 5-1 for possible values.

TABLE 5-3:	RESET CONDITIONS FOR ALL REGISTERS
------------	------------------------------------

Register	Address	Power-on Reset	MCLR or WDT Reset	
W	N/A	xxxx xxxx	սսսս սսսս	
TRIS	N/A	1111 1111	1111 1111	
OPTION	N/A	11 1111	11 1111	
INDF	00h	XXXX XXXX	uuuu uuuu	
TMR0	01h	XXXX XXXX	uuuu uuuu	
PCL	02h	1111 1111	1111 1111	
STATUS	03h	0001 1xxx	000q quuu	
FSR ⁽¹⁾	04h 111x x		111u uuuu	
FSR ⁽²⁾	04h	1xxx xxxx	luuu uuuu	
FSR ⁽³⁾	04h	xxxx xxxx	uuuu uuuu	
PORTA	05h	xxxx	uuuu	
PORTB	06h	xxxx xxxx	uuuu uuuu	
PORTC ⁽⁴⁾	07h	xxxx xxxx	uuuu uuuu	
PORTD ⁽⁵⁾	08h	xxxx xxxx	uuuu uuuu	
PORTE ⁽⁵⁾	09h	xxxx	uuuu	

Legend: u = unchanged, x = unknown, - = unimplemented, read as '0', q = see tables in Table 5-1 for possible values.

Note 1: PIC16F54 only.


2: PIC16F57 only.

3: PIC16F59 only.

4: General purpose register file on PIC16F54.

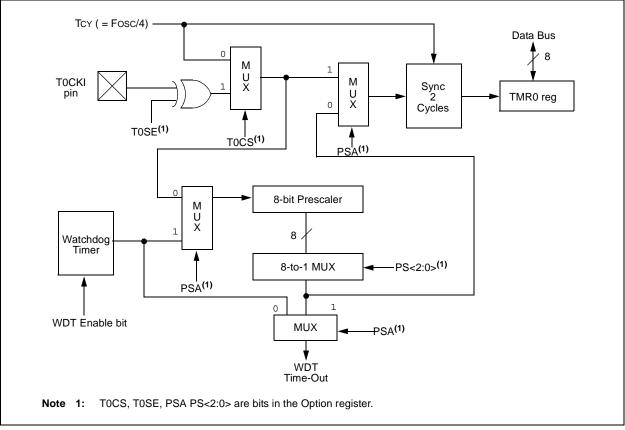
5: General purpose register file on PIC16F54 and PIC16F57.

FIGURE 5-1: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

7.2.1 SWITCHING PRESCALER ASSIGNMENT

The prescaler assignment is fully under software control (i.e., it can be changed "on-the-fly" during program execution). To avoid an unintended device Reset, the following instruction sequence (Example 7-1) must be executed when changing the prescaler assignment from Timer0 to the WDT.

EXAMPLE 7-1: CHANGING PRESCALER (TIMER0 \rightarrow WDT)


	•	,
CLRWDT		;Clear WDT
CLRF	TMR0	;Clear TMR0 & ;Prescaler
MOVLW	B'00xx1111'	;Last 3 instructions
		; in this example
OPTION		;are required only if
		;desired
CLRWDT		;PS<2:0> are 000 or 001
MOVLW	B'00xx1xxx′	;Set Prescaler to
OPTION		;desired WDT rate

To change prescaler from the WDT to the Timer0 module, use the sequence shown in Example 7-2. This sequence must be used even if the WDT is disabled. A CLRWDT instruction should be executed before switching the prescaler.

EXAMPLE 7-2:	CHANGING PRESCALER		
	(WDT→TIMER0)		

CLRWDT		;Clear WDT and
		;prescaler
MOVLW	B'xxxx0xxx'	;Select TMR0, new
		;prescale value and
		;clock source
OPTION		

FIGURE 7-5: BLOCK DIAGRAM OF THE TIMER0/WDT PRESCALER

9.0 INSTRUCTION SET SUMMARY

Each PIC16F5X instruction is a 12-bit word divided into an opcode, which specifies the instruction type, and one or more operands which further specify the operation of the instruction. The PIC16F5X instruction set summary in Table 9-2 groups the instructions into byteoriented, bit-oriented, and literal and control operations. Table 9-1 shows the opcode field descriptions.

For **byte-oriented** instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator is used to specify which one of the 32 file registers in that bank is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed in the file register specified in the instruction.

For **bit-oriented** instructions, 'b' represents a bit field designator which selects the number of the bit affected by the operation, while 'f' represents the number of the file in which the bit is located.

For **literal and control** operations, 'k' represents an 8- or 9-bit constant or literal value.

TABLE 9-1:	OPCODE FIELD
	DESCRIPTIONS

DESCRIPTIONS			
Field	Description		
f	Register file address (0x00 to 0x1F)		
W	Working register (accumulator)		
b	Bit address within an 8-bit file register		
k	Literal field, constant data or label		
x	Don't care location (= 0 or 1)		
	The assembler will generate code with		
	x = 0. It is the recommended form of use		
	for compatibility with all Microchip		
	software tools.		
d	Destination select;		
	d = 0 (store result in W)		
	d = 1 (store result in file register 'f')		
	Default is d = 1		
label	Label name		
TOS	Top-of-Stack		
PC	Program Counter		
WDT	Watchdog Timer Counter		
TO	Time-out bit		
PD	Power-down bit		
dest	Destination, either the W register or the		
	specified register file location		
[]	Options		
()	Contents		
\rightarrow	Assigned to		
< >	Register bit field		
∈	In the set of		
italics	User defined term		

All instructions are executed within one single instruction cycle, unless a conditional test is true or the program counter is changed as a result of an instruction. In this case, the execution takes two instruction cycles. One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time would be 1 μ s. If a conditional test is true or the program counter is changed as a result of an instruction, the instruction execution time would be 2 μ s.

Figure 9-1 shows the three general formats that the instructions can have. All examples in the figure use the following format to represent a hexadecimal number:

0xhhh

where 'h' signifies a hexadecimal digit.

FIGURE 9-1: GENERAL FORMAT FOR INSTRUCTIONS

Byte-oriented file register operations				
11 6 5 4 0				
OPCODE d f (FILE #)				
d = 0 for destination W d = 1 for destination f f = 5-bit file register address				
Bit-oriented file register operations				
11 8 7 5 4 0				
OPCODE b (BIT #) f (FILE #)				
 b = 3-bit bit address f = 5-bit file register address Literal and control operations (except GOTO) 				
<u>11 8 7 0</u>				
OPCODE k (literal)				
k = 8-bit immediate value				
Literal and control operations - GOTO instruction				
11 9 8 0				
OPCODE k (literal)				
k = 9-bit immediate value				

PIC16F5X

BSF	Bit Set f			
Syntax:	[label] BSF f, b			
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ 0 \leq b \leq 7 \end{array}$			
Operation:	$1 \rightarrow (f < b >)$			
Status Affected:	None			
Encoding:	0101	bbbf	ffff	
Description:	Bit 'b' in ı	register 'f	' is set.	
Words:	1			
Cycles:	1			
Example:	BSF	FLAG_RE	EG, 7	
Before Instruction FLAG_REG = 0x0A After Instruction FLAG_REG = 0x8A				

BTFSC	Bit Test f, Skip if Clear			
Syntax:	[label] BTFSC f, b			
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ 0 \leq b \leq 7 \end{array}$			
Operation:	skip if $(f < b >) = 0$			
Status Affected:	None			
Encoding:	0110 bbbf ffff			
Description:	If bit 'b' in register 'f' is '0', then the next instruction is skipped. If bit 'b' is '0', then the next instruc- tion fetched during the current instruction execution is discarded and a NOP is executed instead, making this a two-cycle instruction.			
Words:	1			
Cycles:	1(2)			
<u>Example</u> :	HERE BTFSC FLAG,1 FALSE GOTO PROCESS_CODE TRUE • •			
Before Instru PC After Instruc if FLAG PC	<pre>= address (HERE) tion <1> = 0, = address (TRUE);</pre>			
if FLAG PC	<1> = 1, = address(FALSE)			

BTFSS	Bit Test f, Skip if Set				
Syntax:	[label]	BTFSS f	, b		
Operands:		$\begin{array}{l} 0 \leq f \leq 31 \\ 0 \leq b < 7 \end{array}$			
Operation:	skip if (f<	:b>) = 1			
Status Affected:	None				
Encoding:	0111	bbbf	ffff		
Description:	If bit 'b' in register 'f' is '1', then the next instruction is skipped. If bit 'b' is '1', then the next instruc- tion fetched during the current instruction execution is discarded and a NOP is executed instead, making this a two-cycle instruction.				
Words:	1				
Cycles:	1(2)				
<u>Example</u> :	HERE FALSE TRUE	BTFSS GOTO •	FLAG,1 PROCESS_CODE		
Before Inst	ruction				
PC	=	addres	SS (HERE)		
After Instru If FLAG PC if FLAG	<1> =	0, addres 1,	SS (FALSE);		
PC	=	addres	SS (TRUE)		

PIC16F5X

COMF	Complement f			
Syntax:	[<i>label</i>] COMF f, d			
Operands:	$0 \le f \le 31$ $d \in [0,1]$			
Operation:	$(\overline{f}) \rightarrow (\text{dest})$			
Status Affected:	Z			
Encoding:	0010 01df ffff			
Description:	The contents of register 'f' are complemented. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.			
Words:	1			
Cycles:	1			
Example:	COMF REG1,0			
Before Instru REG1 After Instruct REG1 W	= 0x13			

DECF	Decrement f				
Syntax:	[<i>label</i>] DECF f, d				
Operands:	$0 \le f \le 31$ $d \in [0,1]$				
Operation:	$(f) - 1 \rightarrow (dest)$				
Status Affected:	Z				
Encoding:	0000 11df ffff				
Description:	Decrement register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.				
Words:	1				
Cycles:	1				
Example:	DECF CNT, 1				
Before Instru CNT Z After Instruct	= 0x01 = 0				
CNT Z	= 0x00 = 1				

DECFSZ	Decrement f, Skip if 0			
Syntax:	[label] DECFSZ f, d			
Operands:	$0 \le f \le 31$ $d \in [0,1]$			
Operation:	$(f) - 1 \rightarrow d;$ skip if result = 0			
Status Affected:	None			
Encoding:	0010 11df ffff			
Description:	The contents of register 'f' are decremented. If 'd' is '0', the result is placed in the W register. If 'd' is '1'. the result is placed back in register 'f'. If the result is '0', the next instruction, which is already fetched, is discarded and a NOP is executed instead making it a two-cycle instruction.			
Words:	1			
Cycles:	1(2)			
Example:	HERE DECFSZ CNT, 1 GOTO LOOP CONTINUE • •			
Before Instru PC After Instruc	= address (HERE)			
CNT if CNT PC if CNT PC	<pre>= CNT - 1; = 0, = address (CONTINUE); ≠ 0, = address (HERE+1)</pre>			

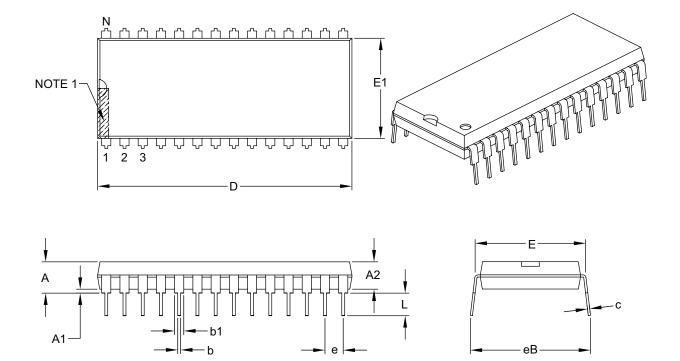
GOTO	Unconditional Branch			
Syntax:	[label]	GOTO	k	
Operands:	$0 \le k \le 5$	11		
Operation:	$k \rightarrow PC < 8:0>;$ STATUS<6:5> $\rightarrow PC < 10:9>$			
Status Affected:	None			
Encoding:	101k	kkkk	kkkk	
Description:	GOTO is an unconditional branch. The 9-bit immediate value is loaded into PC bits <8:0>. The upper bits of PC are loaded from STATUS<6:5>. GOTO is a two- cycle instruction.			
Words:	1			
Cycles:	2			
Example:	GOTO THERE			
After Instruct PC =	ion address	G (THER	E)	

INCF	Increment f
Syntax:	[<i>label</i>] INCF f, d
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in \ [0,1] \end{array}$
Operation:	(f) + 1 \rightarrow (dest)
Status Affected:	Z
Encoding:	0010 10df ffff
Description:	The contents of register 'f' are incremented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.
Words:	1
Cycles:	1
Example:	INCF CNT, 1
Before Instru CNT Z After Instruct CNT Z	= 0xFF = 0

INCFSZ	Increment f, Skip if 0			
Syntax:	[label] INCFSZ f, d			
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in \left[0,1\right] \end{array}$			
Operation:	(f) + 1 \rightarrow (dest), skip if result = 0			
Status Affected:	None			
Encoding:	0011 11df ffff			
Description:	The contents of register 'f' are incremented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'. If the result is '0', then the next instruction, which is already fetched, is discarded and a NOP is executed instead making it a two-cycle instruction.			
Words:	1			
Cycles:	1(2)			
<u>Example</u> :	HERE INCFSZ CNT, 1 GOTO LOOP CONTINUE • •			
Before Instruct PC After Instructi CNT if CNT PC if CNT PC	= address (HERE)			

SUBWF	Subtract W from f
Syntax:	[<i>label</i>] SUBWF f, d
Operands:	$0 \le f \le 31$
	d ∈ [0,1]
Operation:	(f) – (W) \rightarrow (dest)
Status Affected:	C, DC, Z
Encoding:	0000 10df ffff
Description:	Subtract (2's complement method) the W register from register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.
Words:	1
Cycles:	1
Example 1:	SUBWF REG1, 1
Before Instru REG1 W C After Instruct REG1 W C <u>Example 2</u> : Before Instru REG1 W C After Instruct REG1 W C Example 3:	action = 3 = 2 = ? tion = 1 = 2 = 1 ; result is positive action = 2 = ? tion = 2 = ? tion = 0 = 2 = 1 ; result is zero
Before Ins REG1 W C After Instruct REG1 W C	= 1 = 2 = ?

SWAPF	Swap Nibbles in f
Syntax:	[label] SWAPF f, d
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in \ [0,1] \end{array}$
Operation:	$(f<3:0>) \rightarrow (dest<7:4>);$ $(f<7:4>) \rightarrow (dest<3:0>)$
Status Affected:	None
Encoding:	0011 10df ffff
Description:	The upper and lower nibbles of register 'f' are exchanged. If 'd' is '0', the result is placed in W register. If 'd' is '1', the result is placed in register 'f'.
Words:	1
Cycles:	1
Example:	SWAPF REG1, 0
After Instruct REG1 W	ion = 0xA5 = 0x5A
TRIS	Load TRIS Register
Syntax:	[<i>label</i>] TRIS f
Operands:	f = 5, 6, 7, 8 or 9
Operation:	(W) \rightarrow TRIS register f
Status Affected:	None
Encoding:	0000 0000 0fff
Description:	TRIS register 'f' ($f = 5, 6 \text{ or } 7$) is loaded with the contents of the W register.
Words:	1
Cycles:	1
Example:	TRIS PORTB
Before Instruct W After Instructi TRISB	= 0xA5 on


11.0 ELECTRICAL SPECIFICATIONS FOR PIC16F54/57

Absolute Maximum Ratings^(†)

Ambient Temperature under bias	40°C to +125°C
Storage Temperature	65°C to +150°C
Voltage on VDD with respect to Vss	
Voltage on MCLR with respect to Vss ⁽¹⁾	0V to +13.5V
Voltage on all other pins with respect to Vss	0.6V to (VDD + 0.6V)
Total power dissipation ⁽²⁾	
Max. current out of Vss pin	
Max. current into Vod pin	100 mA
Max. current into an input pin (T0CKI only)	±500 μA
Input clamp current, Iк (Vi < 0 or Vi > VDD)	<u>+</u> 20 mA
Output clamp current, IOK (VO < 0 or VO > VDD)	±20 mA
Max. output current sunk by any I/O pin	
Max. output current sourced by any I/O pin	
Max. output current sourced by a single I/O port (PORTA, B or C)	50 mA
Max. output current sunk by a single I/O port (PORTA, B or C)	50 mA
Note 4. Maltered entities below Mag at the MOLD give induction and an	

- **Note 1:** Voltage spikes below Vss at the MCLR pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50 to 100Ω should be used when applying a "low" level to the MCLR pin rather than pulling this pin directly to Vss.
 - 2: Power Dissipation is calculated as follows: Pdis = VDD x {IDD Σ IOH} + Σ {(VDD VOH) x IOH} + Σ (VOL x IOL)

†NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

For the most current package drawings, please see the Microchip Packaging Specification located at

28-Lead Plastic Dual In-Line (P) – 600 mil Body [PDIP]

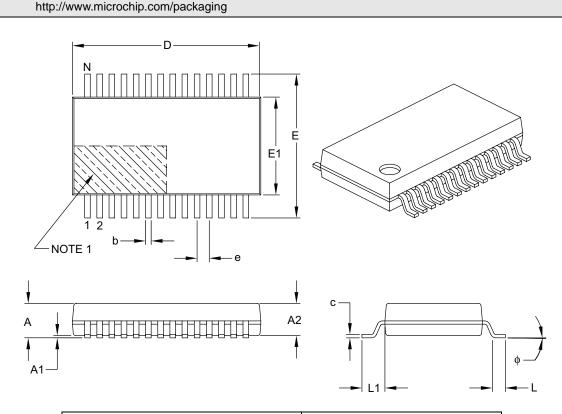
http://www.microchip.com/packaging

	Units		INCHES	
Dimens	sion Limits	MIN	NOM	MAX
Number of Pins	Ν		28	
Pitch	е	.100 BSC		
Top to Seating Plane	А	-	-	.250
Molded Package Thickness	A2	.125	-	.195
Base to Seating Plane	A1	.015	-	-
Shoulder to Shoulder Width	E	.590	-	.625
Molded Package Width	E1	.485	-	.580
Overall Length	D	1.380	-	1.565
Tip to Seating Plane	L	.115	-	.200
Lead Thickness	С	.008	-	.015
Upper Lead Width	b1	.030	-	.070
Lower Lead Width	b	.014	-	.022
Overall Row Spacing §	eB	-	-	.700

Notes:

Note:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.


2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-079B

For the most current package drawings, please see the Microchip Packaging Specification located at

28-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]

	Units	MILLIMETERS		5
	Dimension Limits	MIN	NOM	MAX
Number of Pins	N	28		
Pitch	е	0.65 BSC		
Overall Height	А	-	-	2.00
Molded Package Thickness	A2	1.65	1.75	1.85
Standoff	A1	0.05	-	-
Overall Width	E	7.40	7.80	8.20
Molded Package Width	E1	5.00	5.30	5.60
Overall Length	D	9.90	10.20	10.50
Foot Length	L	0.55	0.75	0.95
Footprint	L1	1.25 REF		
Lead Thickness	С	0.09	-	0.25
Foot Angle	φ	0°	4°	8°
Lead Width	b	0.22	-	0.38

Note:

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.
- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-073B

Α

Absolute Maximum Ratings	
PIC1654/57	
PIC1659	
ADDWF	
ALU	7
ANDLW	
ANDWF	
Applications	5
Architectural Overview	7
Assembler	
MPASM Assembler	

В

Block Diagram	
On-Chip Reset Circuit	
PIC16F5X Series	
Timer0	
TMR0/WDT Prescaler	
Watchdog Timer	
Brown-Out Protection Circuit	
BSF	
BTFSC	
BTFSS	

С

C Compilers	
MPLAB C18	54
MPLAB C30	54
CALL	19, 45
Carry (C) bit	7, 17
Clocking Scheme	
CLRF	45
CLRW	45
CLRWDT	45
Code Protection	
COMF	
Configuration Bits	
Customer Change Notification Service	
Customer Notification Service	83
Customer Support	83

D

DC Characteristics	
Commercial	62
Extended	61
Industrial	
DECF	
DECFSZ	
Development Support	53
Device Reset Timer (DRT)	27
Digit Carry (DC) bit	7, 17
DRT	

Е

Electrical Specifications	
PIC16F54/57	
PIC16F59	
Errata	
External Power-On Reset Circuit	25

F

FSR Register	20
Value on Reset (PIC16F54)	
Value on Reset (PIC16F57)	
Value on Reset (PIC16F59)	

G	
GOTO 19, 4	47
Н	
High-Performance RISC CPU	. 1
1	
-	
I/O Interfacing	
I/O Ports	
I/O Programming Considerations	
ID Locations	
INCF	
INCFSZ	
INDF Register	20
Value on Reset2	
Indirect Data Addressing 2	20
Instruction Cycle	
Instruction Flow/Pipelining	12
Instruction Set Summary	
Internet Address	83
IORLW	48
IORWF	48
L	
Loading of PC	19
Μ	
MCLR Reset	
Register values on	24
Memory Map	
PIC16F54	13
PIC16F57/59	13
Memory Organization	13
Microchip Internet Web Site 8	83
MOVF	48
MOVLW	48
MOVWF	49
MPLAB ASM30 Assembler, Linker, Librarian	54
MPLAB ICD 2 In-Circuit Debugger	55
MPLAB ICE 2000 High-Performance Universal	
In-Circuit Emulator	
MPLAB Integrated Development Environment Software 5	53
MPLAB PM3 Device Programmer	55
MPLAB REAL ICE In-Circuit Emulator System	55
MPLINK Object Linker/MPLIB Object Librarian	54
NI .	
N	
NOP	49
0	
0	
Option	
Option Register	18
Value on Reset	24
Oscillator Configurations	21
Oscillator Types	
HS	21
LP	21
RC	21
ХТ	21
P	
P	
PA0 bit	17
PA1 bit	17
Paging	19
PC	