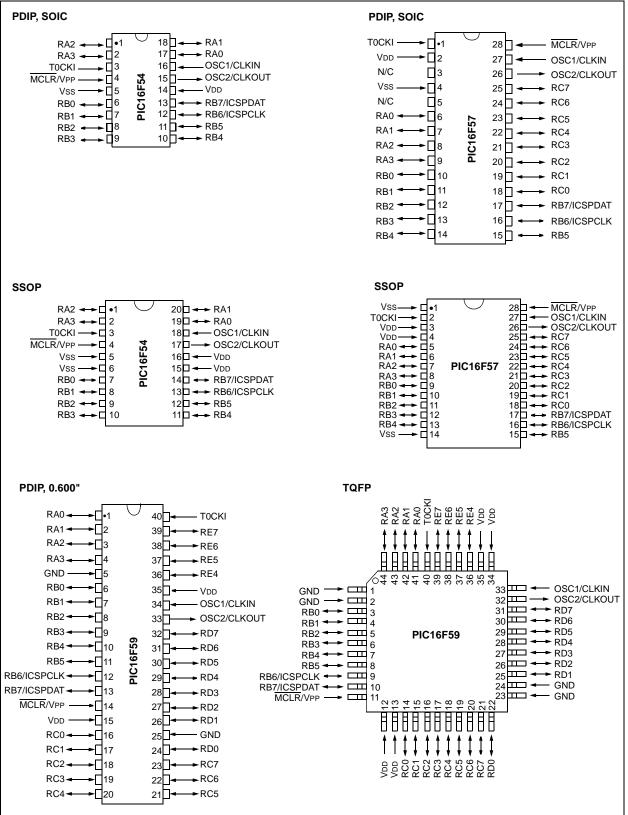


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	20
Program Memory Size	3KB (2K x 12)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	72 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f57t-e-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams

Table of Contents

1.0	General Description	5
2.0	General Description	7
3.0	Memory Organization Oscillator Configurations Reset	. 13
4.0	Oscillator Configurations	. 21
5.0	Reset	. 23
6.0	I/O Ports	. 29
7.0	Timer0 Module and TMR0 Register	. 33
8.0	Timer0 Module and TMR0 Register	. 37
9.0	Instruction Set Summary	. 41
10.0	Development Support	. 53
11.0	Development Support Electrical Specifications for PIC16F54/57	. 57
	Electrical Specifications for PIC16F59 (continued)	
12.0	Packaging Information	. 69
The N	ficrochip Web Site	. 83
Custo	mer Change Notification Service	. 83
Custo	mer Support	. 83
Read	er Response	. 84
Produ	ct Identification System	. 85

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

Microchip's Worldwide Web site; http://www.microchip.com

• Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

NOTES:

3.4 Option Register

The Option register is a 6-bit wide, write-only register which contains various control bits to configure the Timer0/WDT prescaler and Timer0.

By executing the OPTION instruction, the contents of the W register will be transferred to the Option register. A Reset sets the Option<5:0> bits.

REGISTER 3-2: OPTION REGISTER

U-0	U-0	W-1	W-1	W-1	W-1	W-1	W-1
	—	TOCS	T0SE	PSA	PS2	PS1	PS0
bit 7							bit 0

bit 7-6 Unimplemented: Read as '0'

bit 5	TOCS: Timer0 Clock Source Select bit				
	1 = Trans	sition on TO	CKI pin		
	0 = Intern	nal instructi	on cycle clocł	(CLKOUT)	
bit 4	TOSE: Tir	mer0 Sourc	e Edge Seled	t bit	
			•	sition on T0CKI pin sition on T0CKI pin	
bit 3	PSA : Prescaler Assignment bit				
	1 = Preso	aler assigr	ned to the WE	T	
	0 = Presc	caler assigr	ned to Timer0		
bit 2-0	PS<2:0>:	Prescaler	rate select bi	ts	
		Bit Value	Timer0 Rate	WDT Rate	
		000	1:2	1:1	
		001	1:4	1:2	

000	1:2	1:1
001	1:4	1:2
010	1:8	1:4
011	1:16	1:8
100	1:32	1:16
101	1:64	1:32
110	1:128	1:64
111	1 : 256	1 : 128

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

3.6 Stack

The PIC16F54 device has a 9-bit wide, two-level hardware PUSH/POP stack. The PIC16F57 and PIC16F59 devices have an 11-bit wide, two-level hardware PUSH/POP stack.

A CALL instruction will PUSH the current value of stack 1 into stack 2 and then PUSH the current program counter value, incremented by one, into stack level 1. If more than two sequential CALL's are executed, only the most recent two return addresses are stored.

A RETLW instruction will POP the contents of stack level 1 into the program counter and then copy stack level 2 contents into level 1. If more than two sequential RETLW's are executed, the stack will be filled with the address previously stored in level 2.

Note:	The W register will be loaded with the				
	literal value specified in the instruction.				
	This is particularly useful for the				
	implementation of data look-up tables				
	within the program memory.				

For the RETLW instruction, the PC is loaded with the Top-of-Stack (TOS) contents. All of the devices covered in this data sheet have a two-level stack. The stack has the same bit width as the device PC, therefore, paging is not an issue when returning from a subroutine.

3.7 Indirect Data Addressing; INDF and FSR Registers

The INDF register is not a physical register. Addressing INDF actually addresses the register whose address is contained in the FSR Register (FSR is a *pointer*). This is indirect addressing.

EXAMPLE 3-1: INDIRECT ADDRESSING

- Register file 08 contains the value 10h
- Register file 09 contains the value 0Ah
- Load the value 08 into the FSR register
- A read of the INDF register will return the value of 10h
- Increment the value of the FSR register by one (FSR = 09h)
- A read of the INDF register now will return the value of 0Ah.

Reading INDF itself indirectly (FSR = 0) will produce 00h. Writing to the INDF register indirectly results in a no-operation (although Status bits may be affected).

A simple program to clear RAM locations 10h-1Fh using indirect addressing is shown in Example 3-2.

EXAMPLE 3-2: HOW TO CLEAR RAM USING INDIRECT ADDRESSING

	MOVLW MOVWF	H'10' FSR	;initialize pointer ;to RAM
NEXT	CLRF	INDF	;clear INDF Register
	INCF	FSR,F	;inc pointer
	BTFSC	FSR,4	;all done?
	GOTO	NEXT	;NO, clear next
CONTINUE			
	:		;YES, continue

The FSR is either a 5-bit (PIC16F54), 7-bit (PIC16F57) or 8-bit (PIC16F59) wide register. It is used in conjunction with the INDF register to indirectly address the data memory area.

The FSR<4:0> bits are used to select data memory addresses 00h to 1Fh.

PIC16F54: This does not use banking. FSR<7:5> bits are unimplemented and read as '1's.

PIC16F57: FSR<7> bit is unimplemented and read as '1'. FSR<6:5> are the bank select bits and are used to select the bank to be addressed (00 = Bank 0, 01 = Bank 1, 10 = Bank 2, 11 = Bank 3).

PIC16F59: FSR<7:5> are the bank select bits and are used to select the bank to be addressed (000 = Bank 0, 001 = Bank 1, 010 = Bank 2,

011 = Bank 3, 100 = Bank 4, 101 = Bank 5, 110 = Bank 6, 111 = Bank 7).

Note: A CLRF FSR instruction may not result in an FSR value of 00h if there are unimplemented bits present in the FSR. NOTES:

GOTO	Unconditional Branch			
Syntax:	[label]	GOTO	k	
Operands:	$0 \le k \le 5$	11		
Operation:	$k \rightarrow PC < STATUS$,	PC<10:9>	
Status Affected:	None			
Encoding:	101k	kkkk	kkkk	
Description:	GOTO is an unconditional branch. The 9-bit immediate value is loaded into PC bits <8:0>. The upper bits of PC are loaded from STATUS<6:5>. GOTO is a two- cycle instruction.			
Words:	1			
Cycles:	2			
Example:	GOTO TH	IERE		
After Instruct PC =	ion address	G (THER	E)	

INCF	Increment f
Syntax:	[<i>label</i>] INCF f, d
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in \ [0,1] \end{array}$
Operation:	(f) + 1 \rightarrow (dest)
Status Affected:	Z
Encoding:	0010 10df ffff
Description:	The contents of register 'f' are incremented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.
Words:	1
Cycles:	1
Example:	INCF CNT, 1
Before Instru CNT Z After Instruct CNT Z	= 0xFF = 0

INCFSZ	Increment f, Skip if 0
Syntax:	[label] INCFSZ f, d
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in \ [0,1] \end{array}$
Operation:	(f) + 1 \rightarrow (dest), skip if result = 0
Status Affected:	None
Encoding:	0011 11df ffff
Description:	The contents of register 'f' are incremented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'. If the result is '0', then the next instruction, which is already fetched, is discarded and a NOP is executed instead making it a two-cycle instruction.
Words:	1
Cycles:	1(2)
<u>Example</u> :	HERE INCFSZ CNT, 1 GOTO LOOP CONTINUE • •
Before Instruct PC After Instructi CNT if CNT PC if CNT PC	= address (HERE)

10.11 PICSTART Plus Development Programmer

The PICSTART Plus Development Programmer is an easy-to-use, low-cost, prototype programmer. It connects to the PC via a COM (RS-232) port. MPLAB Integrated Development Environment software makes using the programmer simple and efficient. The PICSTART Plus Development Programmer supports most PIC devices in DIP packages up to 40 pins. Larger pin count devices, such as the PIC16C92X and PIC17C76X, may be supported with an adapter socket. The PICSTART Plus Development Programmer is CE compliant.

10.12 PICkit 2 Development Programmer

The PICkit[™] 2 Development Programmer is a low-cost programmer and selected Flash device debugger with an easy-to-use interface for programming many of Microchip's baseline, mid-range and PIC18F families of Flash memory microcontrollers. The PICkit 2 Starter Kit includes a prototyping development board, twelve sequential lessons, software and HI-TECH's PICC[™] Lite C compiler, and is designed to help get up to speed quickly using PIC[®] microcontrollers. The kit provides everything needed to program, evaluate and develop applications using Microchip's powerful, mid-range Flash memory family of microcontrollers.

10.13 Demonstration, Development and Evaluation Boards

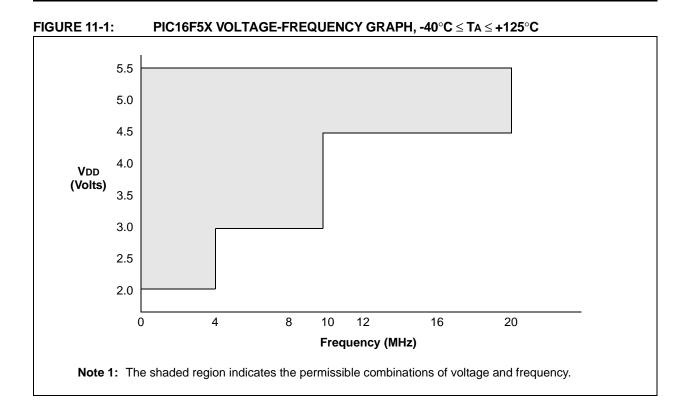
A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart[®] battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Check the Microchip web page (www.microchip.com) and the latest *"Product Selector Guide"* (DS00148) for the complete list of demonstration, development and evaluation kits.

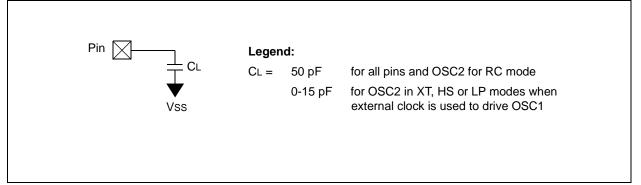

11.0 ELECTRICAL SPECIFICATIONS FOR PIC16F54/57

Absolute Maximum Ratings^(†)

Ambient Temperature under bias	40°C to +125°C
Storage Temperature	65°C to +150°C
Voltage on VDD with respect to Vss	
Voltage on MCLR with respect to Vss ⁽¹⁾	0V to +13.5V
Voltage on all other pins with respect to Vss	0.6V to (VDD + 0.6V)
Total power dissipation ⁽²⁾	
Max. current out of Vss pin	
Max. current into Vod pin	100 mA
Max. current into an input pin (T0CKI only)	±500 μA
Input clamp current, Iк (Vi < 0 or Vi > VDD)	<u>+</u> 20 mA
Output clamp current, IOK (VO < 0 or VO > VDD)	±20 mA
Max. output current sunk by any I/O pin	
Max. output current sourced by any I/O pin	
Max. output current sourced by a single I/O port (PORTA, B or C)	50 mA
Max. output current sunk by a single I/O port (PORTA, B or C)	50 mA
Note 4. Maltered entities below Mag at the MOLD give induction and an	

- **Note 1:** Voltage spikes below Vss at the MCLR pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50 to 100Ω should be used when applying a "low" level to the MCLR pin rather than pulling this pin directly to Vss.
 - 2: Power Dissipation is calculated as follows: Pdis = VDD x {IDD Σ IOH} + Σ {(VDD VOH) x IOH} + Σ (VOL x IOL)

†NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.


11.4 Timing Parameter Symbology and Load Conditions

The timing parameter symbols have been created with one of the following formats:

- 1. TppS2ppS
- 2. TppS

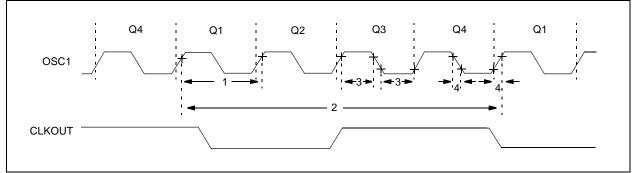

2. Tp	pS	
т		
F	Frequency	T Time
Lowe	rcase letters (pp) and their meanings:	
рр		
2	to	mc MCLR
ck	CLKOUT	osc oscillator
су	cycle time	os OSC1
drt	device reset timer	t0 T0CKI
io	I/O port	wdt watchdog timer
Uppe	rcase letters and their meanings:	
S		
F	Fall	P Period
Н	High	R Rise
I	Invalid (High-impedance)	V Valid
L	Low	Z High-impedance

FIGURE 11-2: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS – PIC16F5X

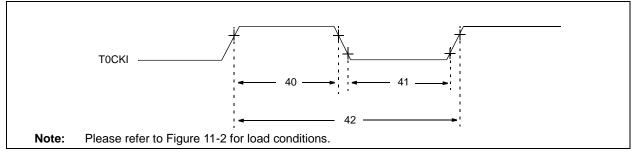
11.5 Timing Diagrams and Specifications

FIGURE 11-3: EXTERNAL CLOCK TIMING

PIC16F5X

AC CHARAG	CTERISTICS							
Parameter No.	Sym.	Characteristic		Min. Typ†		Units	Conditions	
	Fosc	External CLKIN Frequency ⁽¹⁾	DC	_	4.0	MHz	XT Osc mode	
			DC	—	20	MHz	HS Osc mode	
			DC	—	200	kHz	LP Osc mode	
		Oscillator Frequency ⁽¹⁾	DC		4.0	MHz	RC Osc mode	
			0.1	—	4.0	MHz	XT Osc mode	
			4.0	—	20	MHz	HS Osc mode	
			5.0	—	200	kHz	LP Osc mode	
1	Tosc	External CLKIN Period ⁽¹⁾	250	_	_	ns	XT Osc mode	
			50	—	—	ns	HS Osc mode	
			5.0	—	—	μs	LP Osc mode	
		Oscillator Period ⁽¹⁾	250	-		ns	RC Osc mode	
			250	—	10,000	ns	XT Osc mode	
			50	—	250	ns	HS Osc mode	
			5.0	_	_	μs	LP Osc mode	
2	Тсү	Instruction Cycle Time ⁽²⁾		4/Fosc		_		
3	TosL, TosH	Clock in (OSC1) Low or High Time	50*			ns	XT oscillator	
			20*	—	—	ns	HS oscillator	
			2.0*	—		μs	LP oscillator	
4	TosR, TosF	Clock in (OSC1) Rise or Fall Time		—	25*	ns	XT oscillator	
			—	—	5*	ns	HS oscillator	
				—	50*	ns	LP oscillator	

TABLE 11-1: EXTERNAL CLOCK TIMING REQUIREMENTS


* These parameters are characterized but not tested.

† Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

2: Instruction cycle period (TCY) equals four times the input oscillator time base period.

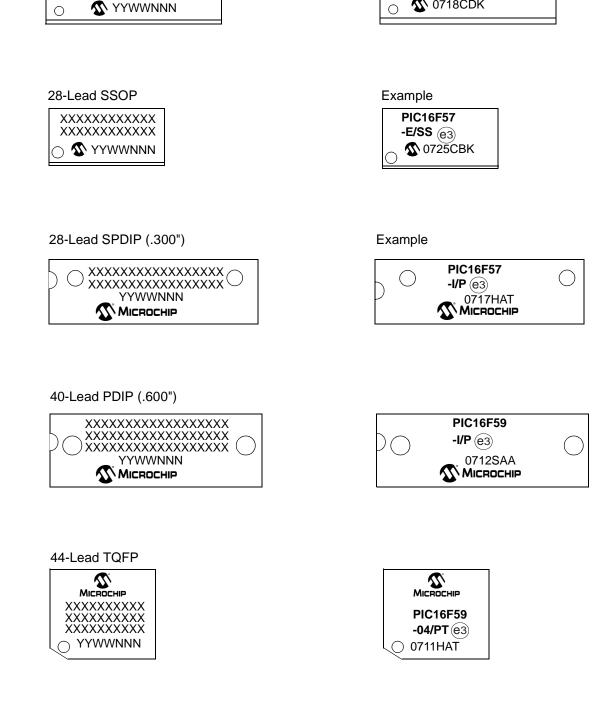
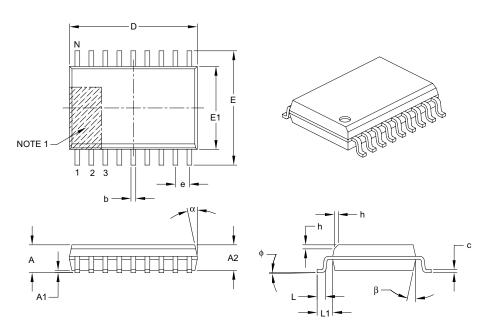


TABLE 11-4: TIMER0 CLOCK REQUIREMENTS – PIC16F5X

			Standard Operating Conditions (unless otherwise specified)Operating Temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended					
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions	
40	Tt0H	TOCKI High Pulse Width: No Prescaler With Prescaler	0.5 Tcy + 20* 10*			ns ns	_	
41	TtOL	T0CKI Low Pulse Width: No Prescaler With Prescaler	0.5 Tcy + 20* 10*			ns ns	_	
42	Tt0P	T0CKI Period	20 or <u>Tcy + 40</u> * N	—	—	ns	Whichever is greater. N = Prescale Value (1, 2, 4,, 256)	

These parameters are characterized but not tested.


Data in the Typical ("Typ") column is at 5.0V, 25°C unless otherwise stated. These parameters are for † design guidance only and are not tested.

28-Lead SOIC

18-Lead Plastic Small Outline (SO) – Wide, 7.50 mm Body [SOIC]

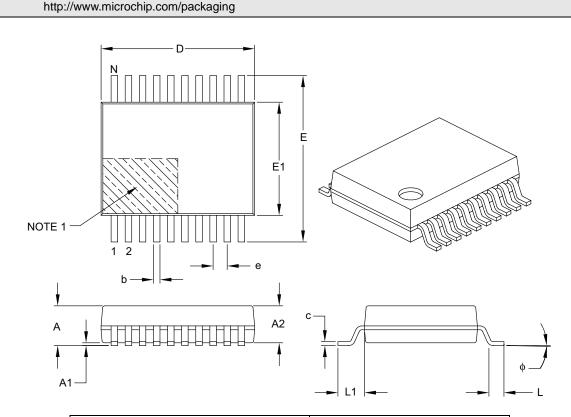
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS			
	Dimension Limits	MIN	NOM	MAX	
Number of Pins	N	18			
Pitch	e	1.27 BSC			
Overall Height	А	-	-	2.65	
Molded Package Thickness	A2	2.05	-	-	
Standoff §	A1	0.10	-	0.30	
Overall Width	E	10.30 BSC			
Molded Package Width	E1	7.50 BSC			
Overall Length	D	11.55 BSC			
Chamfer (optional)	h	0.25	-	0.75	
Foot Length	L	0.40	-	1.27	
Footprint	L1	1.40 REF			
Foot Angle	φ	0°	-	8°	
Lead Thickness	с	0.20	-	0.33	
Lead Width	b	0.31	-	0.51	
Mold Draft Angle Top	α	5°	-	15°	
Mold Draft Angle Bottom	β	5°	_	15°	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.


3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

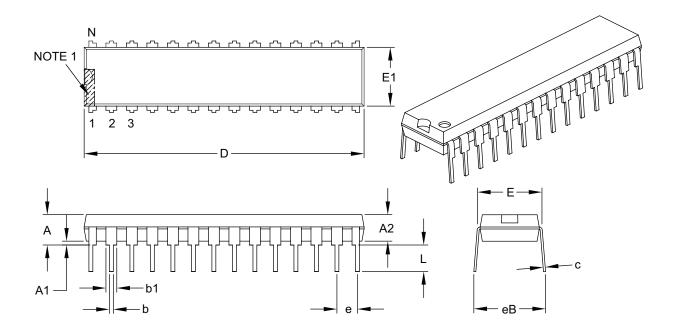
Microchip Technology Drawing C04-051B

For the most current package drawings, please see the Microchip Packaging Specification located at

20-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]

	Units	MILLIMETERS			
	Dimension Limits	MIN	NOM	MAX	
Number of Pins	N 20				
Pitch	е	0.65 BSC			
Overall Height	А	-	-	2.00	
Molded Package Thickness	A2	1.65	1.75	1.85	
Standoff	A1	0.05	-	-	
Overall Width	E	7.40	7.80	8.20	
Molded Package Width	E1	5.00	5.30	5.60	
Overall Length	D	6.90	7.20	7.50	
Foot Length	L	0.55	0.75	0.95	
Footprint	L1	1.25 REF			
Lead Thickness	С	0.09	-	0.25	
Foot Angle	φ	0°	4°	8°	
Lead Width	b	0.22	-	0.38	

Notes:


Note:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.
- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-072B

28-Lead Skinny Plastic Dual In-Line (SP) – 300 mil Body [SPDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

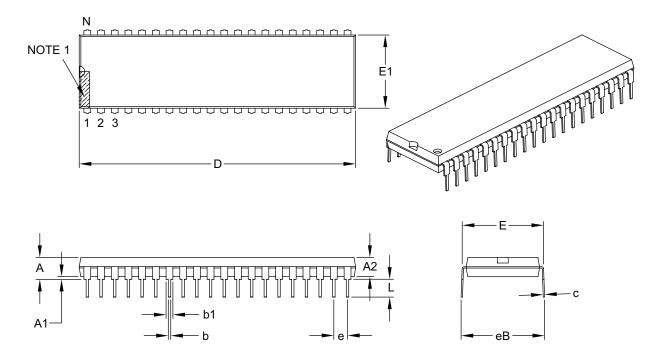
	Units	INCHES			
Dimensio	n Limits	MIN	NOM	MAX	
Number of Pins	28				
Pitch	е	.100 BSC			
Top to Seating Plane	А	-	-	.200	
Molded Package Thickness	A2	.120	.135	.150	
Base to Seating Plane	A1	.015	-	-	
Shoulder to Shoulder Width	Е	.290	.310	.335	
Molded Package Width	E1	.240	.285	.295	
Overall Length	D	1.345	1.365	1.400	
Tip to Seating Plane	L	.110	.130	.150	
Lead Thickness	С	.008	.010	.015	
Upper Lead Width	b1	.040	.050	.070	
Lower Lead Width	b	.014	.018	.022	
Overall Row Spacing §	eB	_	-	.430	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.


4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-070B

40-Lead Plastic Dual In-Line (P) – 600 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES	
Dimer	nsion Limits	MIN	NOM	MAX
Number of Pins	N	40		
Pitch	е	.100 BSC		
Top to Seating Plane	Α	-	-	.250
Molded Package Thickness	A2	.125	-	.195
Base to Seating Plane	A1	.015	-	-
Shoulder to Shoulder Width	E	.590	-	.625
Molded Package Width	E1	.485	-	.580
Overall Length	D	1.980	-	2.095
Tip to Seating Plane	L	.115	-	.200
Lead Thickness	С	.008	-	.015
Upper Lead Width	b1	.030	-	.070
Lower Lead Width	b	.014	-	.023
Overall Row Spacing §	eB	-	-	.700

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-016B

APPENDIX A: DATA SHEET REVISION HISTORY

Revision D (04/2007)

Changed PICmicro to PIC; Replaced Dev. Tool Section; Updated Package Marking Information and replaced Package Drawings (Rev. AP)

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- **Product Support** Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com, click on Customer Change Notification and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support
- Development Systems Information Line

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com