

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	20
Program Memory Size	3KB (2K x 12)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	72 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f57t-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 2-1: PIC16F5X SERIES BLOCK DIAGRAM

3.6 Stack

The PIC16F54 device has a 9-bit wide, two-level hardware PUSH/POP stack. The PIC16F57 and PIC16F59 devices have an 11-bit wide, two-level hardware PUSH/POP stack.

A CALL instruction will PUSH the current value of stack 1 into stack 2 and then PUSH the current program counter value, incremented by one, into stack level 1. If more than two sequential CALL's are executed, only the most recent two return addresses are stored.

A RETLW instruction will POP the contents of stack level 1 into the program counter and then copy stack level 2 contents into level 1. If more than two sequential RETLW's are executed, the stack will be filled with the address previously stored in level 2.

Note:	The W register will be loaded with the						
	literal value specified in the instruction.						
	This is particularly useful for the						
	implementation of data look-up tables						
	within the program memory.						

For the RETLW instruction, the PC is loaded with the Top-of-Stack (TOS) contents. All of the devices covered in this data sheet have a two-level stack. The stack has the same bit width as the device PC, therefore, paging is not an issue when returning from a subroutine.

3.7 Indirect Data Addressing; INDF and FSR Registers

The INDF register is not a physical register. Addressing INDF actually addresses the register whose address is contained in the FSR Register (FSR is a *pointer*). This is indirect addressing.

EXAMPLE 3-1: INDIRECT ADDRESSING

- Register file 08 contains the value 10h
- Register file 09 contains the value 0Ah
- Load the value 08 into the FSR register
- A read of the INDF register will return the value of 10h
- Increment the value of the FSR register by one (FSR = 09h)
- A read of the INDF register now will return the value of 0Ah.

Reading INDF itself indirectly (FSR = 0) will produce 00h. Writing to the INDF register indirectly results in a no-operation (although Status bits may be affected).

A simple program to clear RAM locations 10h-1Fh using indirect addressing is shown in Example 3-2.

EXAMPLE 3-2: HOW TO CLEAR RAM USING INDIRECT ADDRESSING

NEXT	MOVLW MOVWF CLRF INCF	H'10' FSR INDF FSR,F	;initialize pointer ;to RAM ;clear INDF Register ;inc pointer
	BTFSC	FSR,4	;all done?
	GOTO	NEXT	;NO, clear next
CONTINUE			
	:		;YES, continue

The FSR is either a 5-bit (PIC16F54), 7-bit (PIC16F57) or 8-bit (PIC16F59) wide register. It is used in conjunction with the INDF register to indirectly address the data memory area.

The FSR<4:0> bits are used to select data memory addresses 00h to 1Fh.

PIC16F54: This does not use banking. FSR<7:5> bits are unimplemented and read as '1's.

PIC16F57: FSR<7> bit is unimplemented and read as '1'. FSR<6:5> are the bank select bits and are used to select the bank to be addressed (00 = Bank 0, 01 = Bank 1, 10 = Bank 2, 11 = Bank 3).

PIC16F59: FSR<7:5> are the bank select bits and are used to select the bank to be addressed (000 = Bank 0, 001 = Bank 1, 010 = Bank 2,

011 = Bank 3, 100 = Bank 4, 101 = Bank 5, 110 = Bank 6, 111 = Bank 7).

Note: A CLRF FSR instruction may not result in an FSR value of 00h if there are unimplemented bits present in the FSR.

TABLE 5-3:	RESET CONDITIONS FOR ALL REGISTERS
------------	---

Register	Address	Power-on Reset	MCLR or WDT Reset
W	N/A	xxxx xxxx	uuuu uuuu
TRIS	N/A	1111 1111	1111 1111
OPTION	N/A	11 1111	11 1111
INDF	00h	xxxx xxxx	uuuu uuuu
TMR0	01h	xxxx xxxx	uuuu uuuu
PCL	02h	1111 1111	1111 1111
STATUS	03h	0001 1xxx	000q quuu
FSR ⁽¹⁾	04h	111x xxxx	111u uuuu
FSR ⁽²⁾	04h	1xxx xxxx	luuu uuuu
FSR ⁽³⁾	04h	xxxx xxxx	uuuu uuuu
PORTA	05h	xxxx	uuuu
PORTB	06h	xxxx xxxx	uuuu uuuu
PORTC ⁽⁴⁾	07h	xxxx xxxx	uuuu uuuu
PORTD ⁽⁵⁾	08h	xxxx xxxx	uuuu uuuu
PORTE ⁽⁵⁾	09h	xxxx	uuuu

Legend: u = unchanged, x = unknown, - = unimplemented, read as '0', q = see tables in Table 5-1 for possible values.

Note 1: PIC16F54 only.

2: PIC16F57 only.

3: PIC16F59 only.

4: General purpose register file on PIC16F54.

5: General purpose register file on PIC16F54 and PIC16F57.

FIGURE 5-1: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

5.1 Power-on Reset (POR)

The PIC16F5X family of devices incorporate on-chip Power-on Reset (POR) circuitry which provides an internal chip Reset for most power-up <u>situations</u>. To use this feature, the user merely ties the MCLR/VPP pin to VDD. A simplified block diagram of the on-chip Power-on Reset circuit is shown in Figure 5-1.

The Power-on Reset circuit and the Device Reset Timer (Section 5.2) circuit are closely related. On power-up, the Reset latch is set and the DRT is reset. The DRT timer begins counting once it detects MCLR to be high. After the time-out period, which is typically 18 ms, it will reset the Reset latch and thus end the onchip Reset signal.

A power-up example where MCLR is not tied to VDD is shown in Figure 5-3. VDD is allowed to rise and stabilize before bringing MCLR high. The chip will actually come out of Reset TDRT msec after MCLR goes high.

In Figure 5-4, the on-chip Power-on Reset feature is being used (MCLR and VDD are tied together). The VDD is stable before the start-up timer times out and there is no problem in getting a proper Reset. However, Figure 5-5 depicts a problem situation where VDD rises too slowly. The time between when the DRT senses a high on the MCLR/VPP pin and the MCLR/VPP pin (and VDD) actually reach their full value is too long. In this situation, when the start-up timer times out, VDD has not reached the VDD (min) value and the chip is, therefore, not ensured to function correctly. For such situations, we recommend that external RC circuits be used to achieve longer POR delay times (Figure 5-2).

- Note 1: When the device starts normal operation (exits the Reset condition), device operating parameters (voltage, frequency, temperature, etc.) must be met to ensure operation. If these conditions are not met, the device must be held in Reset until the operating conditions are met.
 2: The POR is disabled when the device is
 - **2:** The POR is disabled when the device is in Sleep.

For more information on the PIC16F5X POR, see Application Note AN522, "*Power-Up Considerations*" at www.microchip.com.

FIGURE 5-2:

EXTERNAL POWER-ON RESET CIRCUIT (FOR SLOW VDD POWER-UP)

- External Power-on Reset circuit is required only if VDD power-up is too slow. The diode D helps discharge the capacitor quickly when VDD powers down.
- R < 40 kΩ is recommended to make sure that voltage drop across R does not violate the device electrical specification.
- R1 = 100Ω to 1 k Ω will limit any current flowing into \overline{MCLR} from external capacitor C in the event of \overline{MCLR} pin breakdown due to Electrostatic Discharge (ESD) or Electrical Overstress (EOS).

5.2 Device Reset Timer (DRT)

The Device Reset Timer (DRT) provides an 18 ms nominal time-out on Reset regardless of the oscillator mode used. The DRT operates on an internal RC oscillator. The processor is kept in Reset as long as the DRT is active. The DRT delay allows VDD to rise above VDD min. and for the chosen oscillator to stabilize.

Oscillator circuits, based on crystals or ceramic resonators, require a certain time after power-up to establish a stable oscillation. The on-chip DRT keeps the device in a Reset condition for approximately 18 ms after the voltage on the MCLR/VPP pin has reached a logic high (VIH) level. Thus, external RC networks connected to the MCLR input are not required in most cases, allowing for savings in cost-sensitive and/or space restricted applications.

The device Reset time delay will vary from chip-to-chip due to VDD, temperature and process variation. See AC parameters for details.

The DRT will also be triggered upon a Watchdog Timer time-out. This is particularly important for applications using the WDT to wake the PIC16F5X from Sleep mode automatically.

5.3 Reset on Brown-Out

A Brown-out is a condition where device power (VDD) dips below its minimum value, but not to zero, and then recovers. The device should be reset in the event of a Brown-out.

To reset PIC16F5X devices when a Brown-out occurs, external Brown-out protection circuits may be built, as shown in Figure 5-6, Figure 5-7 and Figure 5-8.

FIGURE 5-7:

EXTERNAL BROWN-OUT PROTECTION CIRCUIT 2

This brown-out circuit is less expensive, although less accurate. Transistor Q1 turns off when VDD is below a certain level such that:

$$VDD \bullet \frac{R1}{R1 + R2} = 0.7V$$

EXTERNAL BROWN-OUT PROTECTION CIRCUIT 3

NOTES:

TABLE 6-1: SUMMARY OF PORT REGISTERS

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	<u>Value</u> on MCLR and WDT Reset
N/A	TRIS	I/O Con	ntrol Reg	isters (Tl	RISA, TF	RISB, TR	ISC, TR	ISD and	TRISE)	1111 1111	1111 1111
05h	PORTA			_		RA3	RA2	RA1	RA0	xxxx	uuuu
06h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx xxxx	uuuu uuuu
07h	PORTC ⁽¹⁾	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	xxxx xxxx	uuuu uuuu
08h	PORTD ⁽²⁾	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	xxxx xxxx	uuuu uuuu
09h	PORTE ⁽²⁾	RE7	RE6	RE5	RE4	—			_	xxxx	uuuu

Legend: Shaded cells = unimplemented, read as '0', - = unimplemented, read as '0', x = unknown, u = unchanged

Note 1: File address 07h is a General Purpose Register on the PIC16F54.

2: File address 08h and 09h are General Purpose Registers on the PIC16F54 and PIC16F57.

6.8 I/O Programming Considerations

6.8.1 BIDIRECTIONAL I/O PORTS

Some instructions operate internally as read followed by write operations. The BCF and BSF instructions, for example, read the entire port into the CPU, execute the bit operation and re-write the result. Caution must be used when these instructions are applied to a port where one or more pins are used as input/outputs. For example, a BSF operation on bit 5 of PORTB will cause all eight bits of PORTB to be read into the CPU, bit 5 to be set and the PORTB value to be written to the output latches. If another bit of PORTB is used as a bidirectional I/O pin (say bit '0'), and it is defined as an input at this time, the input signal present on the pin itself would be read into the CPU and rewritten to the data latch of this particular pin, overwriting the previous content. As long as the pin stays in the Input mode, no problem occurs. However, if bit '0' is switched into Output mode later on, the content of the data latch may now be unknown

Example 6-1 shows the effect of two sequential read-modify-write instructions (e.g., BCF, BSF, etc.) on an I/O port.

A pin actively outputting a high or a low should not be driven from external devices at the same time in order to change the level on this pin ("wired-or", "wired-and"). The resulting high output currents may damage the chip.

EXAMPLE 6-1: READ-MODIFY-WRITE INSTRUCTIONS ON AN I/O PORT

<pre>;Initial PORT Settings ;PORTB<7:4> Inputs ;PORTB<3:0> Outputs ;PORTB<7:6> have external pull-ups and are :not connected to other circuitry</pre>							
; ; PORT latch PORT pins							
; BCF PORTB, 7 ;01pp pppp 11pp pppp							
MOVLW H'3F' ; TRIS PORTE :10pp pppp 10pp pppp							
; ;Note that the user may have expected the							
pin ;values to be 00pp pppp. The 2nd BCF caused ;RB7 to be latched as the pin value (High).							

6.8.2 SUCCESSIVE OPERATIONS ON I/O PORTS

The actual write to an I/O port happens at the end of an instruction cycle, whereas for reading, the data must be valid at the beginning of the instruction cycle (see Figure 6-2). Therefore, care must be exercised if a write followed by a read operation is carried out on the same I/O port. The sequence of instructions should allow the pin voltage to stabilize (load dependent) before the next instruction, which causes that file to be read into the CPU, is executed. Otherwise, the previous state of that pin may be read into the CPU rather than the new state. When in doubt, it is better to separate these instructions with a NOP or another instruction not accessing this I/O port.

© 2007 Microchip Technology Inc.

FIGURE 7-3: TIMER0 TIMING: INTERNAL CLOCK/PRESCALER 1:2

PC (Program	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4
Counter)	(PC - 1	Y PC	PC + 1	PC + 2	PC + 3	PC + 4	PC + 5	PC + 6
Instruction Fetch		MOVWF TMR0	MOVF TMR0,W					
Timer0	<u>το</u> χ	T0 + 1			NT0		X_	NT0 + 1
Instruction Execute	1 1 1 1	1 1 1 1	Write TMR0 executed	Read TMR0 reads NT0 + 1				

TABLE 7-1:REGISTERS ASSOCIATED WITH TIMER0

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	<u>Value</u> on MCLR and WDT Reset
01h	TMR0	Timer0	- 8-bit re	al-time o		xxxx xxxx	uuuu uuuu				
N/A	OPTION	—	_	TOCS	T0SE	PSA	PS2	PS1	PS0	11 1111	11 1111

Legend: Shaded cells not used by Timer0, - = unimplemented, x = unknown, u = unchanged.

TABLE 9-2:	INSTRUCTION SET	SUMMARY
------------	-----------------	---------

Operands Description Cycles MSb LSb Affected Notes ADDWF f, d AND W with f 1 0001 11df fffff Z 2, 4 CLRF f Clear f 1 0000 0101 fffff Z 4, 4 CLRW — Clear W 1 0000 0100 0000 Z 4 CLRW — Clear W 1 0000 0101 fffff Z 4 DECF f, d Decrement f 1 0010 11df fffff Z 2, 4 INCFS f, d Increment f, Skip if 0 1(2) 0011 11df fffff Z 2, 4 INCFS f, d Increment f, Skip if 0 11 0010 0df fffff Z 2, 4 MOVF f, d Move f 1 0010 0df fffff Z 2, 4 MOVF f, d Rotate ight fhrough Carry	Mnemonic,		Description	Cycles	12-	Bit Opc	ode	Status	Natas
ADDWF f, d Add W and f 1 0001 11df fffff C,DC,Z 1,2,4 ANDWF f, d AND W with f 1 0000 01df fffff Z 2,4 CLRF f Clear W 1 0000 0101 fffff Z 4 CLRW — Clear W 1 0000 0101 fffff Z 4 DECF f, d Decrement f 1 0010 11df fffff Z 2,4 INCFS f, d Increment f, Skip if 0 1(2) 0011 11df fffff Z 2,4 INCFS f, d Increment f, Skip if 0 1(2) 0011 11df ffff Z 2,4 MOVF f, d Move f 1 0010 0df ffff Z 2,4 MOVF f, d Rotate ight fhough Carry 1 0010 0df ffff Z 2,4 SUBWF f, d	Opera	ands	Description	Cycles	MSb		LSb	Affected	Notes
ANDWF f, d AND With f 1 0001 01df ffff Z 2,4 CLRF f Clear f 1 0000 011f ffff Z 4 CLRW 1 0000 011df fffff Z 4 COMF f, d Decrement f 1 0010 01df fffff Z 2,4 DECFSZ f, d Increment f, Skip if 0 1(2) 0011 11df ffff Z 2,4 INCF f, d Increment f, Skip if 0 1(2) 0011 11df ffff Z 2,4 INCFSZ f, d Increment f, Skip if 0 1(2) 0011 11df ffff Z 2,4 MOVF f, d Move f 1 0010 00df ffff Z 2,4 MOVF f, d Rotate right fitrough Carry 1 0011 01df ffff None 2,4 SUBWF f, d Subtract W from f	ADDWF	f, d	Add W and f	1	0001	11df	ffff	C,DC,Z	1, 2, 4
CLRF f Clear f 1 0000 011f fffff Z 4 CLRW — Clear W 1 0000 0100 0000 Z C COMF f, d Decrement f 1 0010 11df fffff Z 2, 4 DECF f, d Decrement f, Skip if 0 1(2) 0010 11df fffff Z 2, 4 NCF f, d Increment f, Skip if 0 1(2) 0011 11df ffff Z 2, 4 INCFSZ f, d Increment f, Skip if 0 1(2) 0011 11df ffff Z 2, 4 INCFSZ f, d Increment f, Skip if 0 1(2) 0011 10df ffff Z 2, 4 MOVF f, d Move f 1 0000 000f fff Z 2, 4 MOVF f, d Rotate left fthrough Carry 1 0011 01df ffff Z 2, 4 SUBWF	ANDWF	f, d	AND W with f	1	0001	01df	ffff	Z	2, 4
CLRW — Clear W 1 0000 0100 0000 Z COMF f, d Complement f 1 0010 01df fffff Z DECF f, d Decrement f, Skip if 0 1 0000 11df fffff Z 2, 4 INCF f, d Increment f, Skip if 0 1 0010 10df fffff Z 2, 4 INCFS f, d Increment f, Skip if 0 1 0010 10df fffff Z 2, 4 MOVF f, d Increment f, Skip if 0 1 0010 00df fffff Z 2, 4 MOVF f, d Move f 1 0010 0df fffff Z 2, 4 MOVF f, d Rotate left fthrough Carry 1 0011 0df fffff C 2, 4 SUBWF f, d Rotate right fthrough Carry 1 0011 0df fffff C.Z 2, 4 SUBWF f, d	CLRF	f	Clear f	1	0000	011f	ffff	Z	4
COMF f, d Complement f 1 0010 01df ffff Z DECF f, d Decrement f, Skip if 0 1(2) 0010 11df fffff Nore 2, 4 NCF f, d Increment f, Skip if 0 1(2) 0010 11df fffff Z 2, 4 INCFSZ f, d Increment f, Skip if 0 1(2) 0011 11df fffff Z 2, 4 INCF f, d Increment f, Skip if 0 1 0010 00df fffff Z 2, 4 INCF f, d Increment f, Skip if 0 1 0010 00df fffff Z 2, 4 MOVF f Move f 1 0010 00df fffff Z 2, 4 NOP No Operation 1 0010 0011 fffff C 2, 4 SUBWF f, d Subtract Wfrom f 1 0011 0ddf fffff C 2, 4 BT-ORIENTED FLE REGISTER OPERATIONS I 0010 bbbf	CLRW	_	Clear W	1	0000	0100	0000	Z	
DECF f, d Decrement f, Skip if 0 1 0000 11df ffff Z 2, 4 NCF f, d Increment f, Skip if 0 1 0010 11df fffff Z, 4 INCF SZ f, d Increment f, Skip if 0 1 0010 10df fffff Z 2, 4 INCFSZ f, d Inclusive OR W with f 1 0010 00df fffff Z 2, 4 MOVF f, d Move f 1 0010 00df fffff Z 2, 4 MOVF f, d Move f 1 0010 00df fffff Z 2, 4 MOVF f, d Move f 1 0010 00df fffff Z 2, 4 MOVF f, d Rotate left fthrough Carry 1 0011 01df fffff C 2, 4 SUBWF f, d Swap f 1 0011 10df fffff None 2, 4 BT-ORIENTED FILE	COMF	f, d	Complement f	1	0010	01df	ffff	Z	
DECFSZ f, d Decrement f, Skip if 0 1(2) 0010 11df ffff None 2, 4 INCF f, d Increment f 1 0010 10df fffff Z 2, 4 INCFSZ f, d Increment f, Skip if 0 1(2) 0011 11df fffff Z 2, 4 IORWF f, d Inclusive OR W with f 1 0001 00df fffff Z 2, 4 MOVF f, d Move f 1 0001 00df fffff Z 2, 4 MOVF f, d Move f 1 0000 0000 0000 None 1, 4 NOP - No Operation 1 0011 01df fffff C 2, 4 SUBWF f, d Subtract W from f 1 0011 01df fffff C, DC, Z 1, 2, 4 SUBWF f, d Subtract W from f 1 0011 10df fffff None 2, 4	DECF	f, d	Decrement f	1	0000	11df	ffff	Z	2, 4
INCF f, d Increment f, Skip if 0 1 0010 10df ffff Z 2, 4 INCFSZ f, d Incurement f, Skip if 0 1 0011 11df ffff None 2, 4 IORWF f, d Move OR W with f 1 0001 00df fffff Z 2, 4 MOVF f, d Move f 1 0001 00df fffff Z 2, 4 MOVF f, d Move V to f 1 0000 0000 0000 None 1, 4 NOP - No Operation 1 0011 01df fffff C 2, 4 SUBWF f, d Rotate right f through Carry 1 0011 01df fffff C 2, 4 SUBWF f, d Subtract W from f 1 0011 10df fffff None 2, 4 SUBWF f, d Swap f 1 0101 bbf fffff None 2, 4	DECFSZ	f, d	Decrement f, Skip if 0	1 ⁽²⁾	0010	11df	ffff	None	2, 4
INCFSZ f, d Increment f, Skip if 0 1 ⁽²⁾ 0011 11df ffff None 2, 4 IORWF f, d Inclusive OR W with f 1 0001 00df ffff Z 2, 4 MOVF f, d Move f 1 0010 00df ffff Z 2, 4 MOVF f, d Move W to f 1 0000 0001 ffff Z 2, 4 NOP — No Operation 1 0000 0000 None 1, 4 NOP — No Operation 1 0011 01df ffff C 2, 4 SUBWF f, d Rotate right fhrough Carry 1 0011 10df ffff C 2, 4 SUBWF f, d Subtract W from f 1 0011 10df ffff C 2, 4 SUBWF f, d Exclusive OR W with f 1 0101 bbf ffff None 2, 4 BTC f,	INCF	f, d	Increment f	1	0010	10df	ffff	Z	2, 4
IORWF f, d Inclusive OR W with f 1 0001 00df ffff Z 2, 4 MOVF f, d Move f 1 0010 00df ffff Z 2, 4 MOVF f, d Move f 1 0010 00df ffff Z 2, 4 MOVF f, d Move W to f 1 0000 0000 0000 None 1, 4 MOP — No Operation 1 0011 01df ffff C 2, 4 RRF f, d Subtract W from f 1 0011 10df fffff C, DC,Z 1, 2, 4 SUBWF f, d Swap f 1 0101 10df fffff None 2, 4 SURDENTED FILE REGISTER OPERATIONS 1 0101 bbbf ffff None 2, 4 BTFSC f, b Bit Set f 1 0101 bbbf ffff None 2, 4 CALL K Sub	INCFSZ	f, d	Increment f, Skip if 0	1 ⁽²⁾	0011	11df	ffff	None	2, 4
MOVF f, d Move f I 0010 00df ffff Z 2, 4 MOVWF f Move W to f 1 0000 0000 None 1, 4 NOP No Operation 1 0010 0011 ffff C 2, 4 NOP No Operation 1 0011 01df fffff C 2, 4 RFF f, d Rotate left fthrough Carry 1 0011 01df fffff C 2, 4 SUBWF f, d Subtract W from f 1 0011 10df fffff C,DC,Z 1, 2, 4 SWAPF f, d Exclusive OR W with f 1 0011 10df fffff Z, 4 ADRWF f, d Exclusive OR W with f 1 0100 bbbf fffff None 2, 4 BCF f, b Bit Clear f 1 0100 bbbf ffff None 2, 4 BTFSC f, b Bit	IORWF	f, d	Inclusive OR W with f	1	0001	00df	ffff	Z	2, 4
MOVWF f Move W to f 1 0000 001f ffff None 1, 4 NOP — No Operation 1 0000 0000 0000 None 1 RLF f, d Rotate left f through Carry 1 0011 01df ffff C 2, 4 RRF f, d Subtract W from f 1 0000 10df fffff C 2, 4 SUBWF f, d Swap f 1 0011 10df fffff None 2, 4 SUBWF f, d Exclusive OR W with f 1 0011 10df fffff None 2, 4 SUBUF f, d Exclusive OR W with f 1 0100 bbbf fffff None 2, 4 BT-ORIENTED FILE EGISTER OPERATIONS 1 0101 bbbf fffff None 2, 4 BTFSC f, b Bit Test f, Skip if Clear 1(2) 0110 bbbf ffff None 1 1	MOVF	f, d	Move f	1	0010	00df	ffff	Z	2, 4
NOP — No Operation 1 0000 0000 0000 None RLF f, d Rotate left f through Carry 1 0011 01df ffff C 2, 4 RRF f, d Rotate right f through Carry 1 0011 00df ffff C 2, 4 SUBWF f, d Subtract W from f 1 0011 10df fffff C 2, 4 SWAPF f, d Swap f 1 0011 10df fffff None 2, 4 XORWF f, d Exclusive OR W with f 1 0101 10df fffff None 2, 4 BTORIENTED FILE REGISTER OPERATIONS Bit Clear f 1 0101 bbbf fffff None 2, 4 BSF f, b Bit Test f, Skip if Clear 1(2) 0110 bbbf fffff None 2, 4 LITERAL AND CONTROL OPERATIONS Interal with W 1 1110 kkkk kkkk Z 2 1001	MOVWF	f	Move W to f	1	0000	001f	ffff	None	1, 4
RLF f, d Rotate left f through Carry 1 0011 01df ffff C 2, 4 RRF f, d Rotate right f through Carry 1 0011 00df ffff C 2, 4 SUBWF f, d Subtract W from f 1 0001 10df ffff C,DC,Z 1, 2, 4 XORWF f, d Exclusive OR W with f 1 0011 10df ffff Z, 2, 4 BIT-ORIENTED FILE REGISTER OPERATIONS Bit Clear f 1 0101 bbbf ffff None 2, 4 BSF f, b Bit Set f 1 0101 bbbf ffff None 2, 4 BTFSC f, b Bit Test f, Skip if Clear 1 0101 bbbf ffff None 2, 4 LITERAL AND CONTROL OPERATIONS 1 110 bbbf ffff None 1 GAUL k Subroutine Call 1 1100 kkkk Kkk Z 4 CALL	NOP	_	No Operation	1	0000	0000	0000	None	
RRF f, d Rotate right f through Carry 1 0011 00df ffff C 2,4 SUBWF f, d Subtract W from f 1 0000 10df ffff C,DC,Z 1, 2, 4 SWAPF f, d Swap f 1 0011 10df ffff None 2, 4 XORWF f, d Exclusive OR W with f 1 0001 10df ffff Z 2, 4 BT-ORIENTED FILE REGISTER OPERATIONS I 0100 bbbf ffff None 2, 4 BCF f, b Bit Clear f 1 0100 bbbf ffff None 2, 4 BTFSC f, b Bit Test f, Skip if Clear 1(2) 0110 bbbf ffff None 2, 4 ITERAL AND CONTROL OPERATIONS 1 1110 kkkk kkkk Z None 1 1001 bbbf ffff None 1 1 1 0.000 0.000 1 1 1 1	RLF	f, d	Rotate left f through Carry	1	0011	01df	ffff	С	2, 4
SUBWFf, dSubtract W from f1000010dfffffC,DC,Z1, 2, 4SWAPFf, dSwap f1001110dfffffNone2, 4XORWFf, dExclusive OR W with f1000110dfffffZ2, 4BIT-ORIENTED FILE REGISTER OPERATIONSBCFf, bBit Clear f10100bbbfffffNone2, 4BSFf, bBit Clear f10101bbbfffffNone2, 4BTFSCf, bBit Test f, Skip if Clear1(2)0110bbbfffffNone2, 4BTFSSf, bBit Test f, Skip if Set1(2)0110bbbfffffNone2, 4LITERAL AND CONTROL OPERATIONSANDLWkAND literal with W11110kkkkkkkkZCALLkSubroutine Call21001kkkkKkkkNone1CLRWDT-Clear Watchdog Timer1000000000100TO, PDTO, PDGOTOkUnconditional branch2101kkkkk kkkkNoneNoneIORLWkInclusive OR Literal with W11100kkkk kkkkNoneOPTIONLoad OPTION register1000000000101TO, PDRETLWkReturn, place Literal in W21000kkkk kkkkNoneSLEEP-Go into Standby mode1000	RRF	f, d	Rotate right f through Carry	1	0011	00df	ffff	С	2,4
SWAPF XORWFf, dSwap f Exclusive OR W with f1001110dfffff ffffNone Z2, 4BIT-ORIENTED FILE REGISTER OPERATIONSBCFf, bBit Clear f10100bbbffffffNone2, 4BSFf, bBit Clear f10101bbbffffffNone2, 4BTFSCf, bBit Test f, Skip if Clear10101bbbffffffNone2, 4BTFSSf, bBit Test f, Skip if Clear1(2)0110bbbffffffNone2, 4BTFSSf, bBit Test f, Skip if Set1(2)0110bbbffffffNone2, 4LITERAL AND CONTROL OPERATIONS11110kkkkkkkkXNone1ANDLWkAND literal with W11110kkkkkkkkXNone1CALLkSubroutine Call21001kkkkkkkkNone11CLRWDT-Clear Watchdog Timer1000000000100TO, PD1GOTOkUnconditional branch2101kkkkkkkkkZNoneIORLWkInclusive OR Literal with W11100kkkkkkkkNoneOPTION-Load OPTION register1000000000010NoneRETLWkReturn, place Literal in W21000kkkk kkkkNoneSLEEP-Go	SUBWF	f, d	Subtract W from f	1	0000	10df	ffff	C,DC,Z	1, 2, 4
XORWFf, dExclusive OR W with f1000110dfffffZ2, 4BIT-ORIENTED FILE REGISTER OPERATIONSBCFf, bBit Clear f10100bbbfffffNone2, 4BSFf, bBit Set f10101bbbffffffNone2, 4BTFSCf, bBit Test f, Skip if Clear1(2)0110bbbffffffNone2, 4BTFSSf, bBit Test f, Skip if Set1(2)0110bbbffffffNone2, 4LITERAL AND CONTROL OPERATIONSANDLWkAND literal with W11110kkkkkkkkZCALLkSubroutine Call21001kkkkNone1CLRWDTClear Watchdog Timer1000000000100TO, PDGOTOkInconditional branch2101kkkkkkkkkZIORLWkMove Literal to W11100kkkkkkkkZOPTION-Load OPTION register1000000000010NoneRETLWkReturn, place Literal in W21000kkkkkkkkNoneSLEEPGo into Standby mode1000000000011TO, PDTRISfLoad TRIS register1000000000fffNone3XORLWkExclusive OR Literal to W111111kkkkZ </td <td>SWAPF</td> <td>f, d</td> <td>Swap f</td> <td>1</td> <td>0011</td> <td>10df</td> <td>ffff</td> <td>None</td> <td>2, 4</td>	SWAPF	f, d	Swap f	1	0011	10df	ffff	None	2, 4
BIT-ORIENTED FILE REGISTER OPERATIONSBCFf, bBit Clear f10100bbbfffffNone2, 4BSFf, bBit Set f10101bbbfffffNone2, 4BTFSCf, bBit Test f, Skip if Clear1(2)0110bbbffffffNone2, 4BTFSSf, bBit Test f, Skip if Set1(2)0111bbbffffffNone2, 4LITERAL AND CONTROL OPERATIONSANDLWkAND literal with W111110kkkkkkkkZCALLkSubroutine Call21001kkkkNone1CLRWDT-Clear Watchdog Timer1000000000100TO, PDGOTOkUnconditional branch2101kkkkkKkkkZIORLWkInclusive OR Literal with W11100kkkk kkkkZOPTION-Load OPTION register1000000000101RETLWkReturn, place Literal in W21000kkkk kkkkNoneSLEEP-Go into Standby mode1000000000111TO, PDTRISfLoad TRIS register1000000000fffNone3XORLWkExclusive OR Literal to W11111kkkk kkkkZ	XORWF	f, d	Exclusive OR W with f	1	0001	10df	ffff	Z	2, 4
BCFf, bBit Clear f10100bbbfffffNone2, 4BSFf, bBit Set f10101bbbfffffNone2, 4BTFSCf, bBit Test f, Skip if Clear1(2)0110bbbfffffNone2, 4BTFSSf, bBit Test f, Skip if Set1(2)0110bbbfffffNone2, 4LITERAL AND CONTROL OPERATIONS11110kkkkkkkkZ1ANDLWkAND literal with W11110kkkkNone1CLRWDT-Clear Watchdog Timer1000000000100TO, PDGOTOkUnconditional branch2101kkkkkkkkkZIORLWkInclusive OR Literal with W11100kkkkkkkkZMOVLWkMove Literal to W11100kkkkNoneFTO, PDOPTION-Load OPTION register1000000000010NoneRETLWkReturn, place Literal in W21000kkkkkkkkNoneSLEEPGo into Standby mode1000000000011TO, PDTRISfLoad TRIS register1000000000fffNone3XORLWkExclusive OR Literal to W11111kkkkZ3	BIT-ORIEN	NTED FIL	E REGISTER OPERATIONS						-
BSFf, bBit Set f10101bbbfffffNone2, 4BTFSCf, bBit Test f, Skip if Clear1(2)0110bbbfffffNone2, 4BTFSSf, bBit Test f, Skip if Set1(2)0110bbbfffffNone2, 4LITERAL AND CONTROL OPERATIONSANDLWkAND literal with W11110kkkkkkkkZCALLkSubroutine Call21001kkkkNone1CLRWDTClear Watchdog Timer1000000000100TO, PDGOTOkUnconditional branch2101kkkkkkkkkZIORLWkInclusive OR Literal with W11100kkkkKkkkZMOVLWkMove Literal to W11100kkkkNoneNoneOPTIONLoad OPTION register1000000000010NoneRETLWkReturn, place Literal in W21000kkkkkkkkNoneSLEEP—Go into Standby mode1000000000011TO, PDTRISfLoad TRIS register1000000000fffNone3XORLWkExclusive OR Literal to W11111kkkkZ	BCF	f, b	Bit Clear f	1	0100	bbbf	ffff	None	2, 4
BTFSC BTFSSf, bBit Test f, Skip if Clear Bit Test f, Skip if Set1(2)0110bbbfffffNoneLITERAL AND CONTROL OPERATIONSANDLWkAND literal with W11110kkkkkkkkZCALLkSubroutine Call21001kkkkkkkkNone1CLRWDT-Clear Watchdog Timer1000000000100TO, PDGOTOkUnconditional branch21011kkkkkkkkZIORLWkInclusive OR Literal with W11101kkkkkkkkZMOVLWkMove Literal to W11100kkkkKkkkNoneOPTION-Load OPTION register1000000000010NoneRETLWkReturn, place Literal in W21000kkkkkkkkNoneSLEEP-Go into Standby mode1000000000111TO, PDTRISfLoad TRIS register1000000000111TO, PDXORLWkExclusive OR Literal to W11111kkkkXkkkZ	BSF	f, b	Bit Set f	1	0101	bbbf	ffff	None	2, 4
BTFSSf, bBit Test f, Skip if Set1(2)0111bbbfffffNoneLITERAL AND CONTROL OPERATIONSANDLWkAND literal with W11110kkkkkkkkZCALLkSubroutine Call21001kkkkkkkkNone1CLRWDTClear Watchdog Timer1000000000100TO, PD1GOTOkUnconditional branch2101kkkkkkkkkXone1IORLWkInclusive OR Literal with W11101kkkkkkkkZMOVLWkMove Literal to W11100kkkkNone1OPTIONLoad OPTION register1000000000010NoneRETLWkReturn, place Literal in W21000kkkkkkkkNoneSLEEPGo into Standby mode1000000000111TO, PDTRISfLoad TRIS register1000000000111TO, PDXORLWkExclusive OR Literal to W11111kkkkXkkkZ	BTFSC	f, b	Bit Test f, Skip if Clear	1 ⁽²⁾	0110	bbbf	ffff	None	
LITERAL AND CONTROL OPERATIONSANDLWkAND literal with W11110kkkkkkkkZCALLkSubroutine Call21001kkkkkkkkNone1CLRWDT-Clear Watchdog Timer1000000000100TO, PD1GOTOkUnconditional branch2101kkkkkkkkkNone1IORLWkInclusive OR Literal with W11101kkkkkkkkZMOVLWkMove Literal to W11100kkkkNone1OPTION-Load OPTION register1000000000010NoneRETLWkReturn, place Literal in W21000kkkkkkkkNoneSLEEPGo into Standby mode100000000011TO, PDTRISfLoad TRIS register1000000000fffNone3XORLWkExclusive OR Literal to W11111kkkkkkkkZ	BTFSS	f, b	Bit Test f, Skip if Set	1 ⁽²⁾	0111	bbbf	ffff	None	
ANDLWkAND literal with W11110kkkkkkkkZCALLkSubroutine Call21001kkkkkkkkNone1CLRWDT—Clear Watchdog Timer1000000000100TO, PDGOTOkUnconditional branch2101kkkkkkkkkNoneIORLWkInclusive OR Literal with W11101kkkkkkkkZMOVLWkMove Literal to W11100kkkkkkkkNoneOPTION—Load OPTION register1000000000010NoneRETLWkReturn, place Literal in W21000kkkkkkkkNoneSLEEP—Go into Standby mode1000000000011TO, PDTRISfLoad TRIS register1000000000fffNone3XORLWkExclusive OR Literal to W11111kkkkkkkkZ	LITERAL	AND CON	ITROL OPERATIONS						
CALLkSubroutine Call21001kkkkkkkkNone1CLRWDT—Clear Watchdog Timer1000000000100TO, PD1GOTOkUnconditional branch2101kkkkkkkkkNone1IORLWkInclusive OR Literal with W11101kkkkkkkkZMOVLWkMove Literal to W11100kkkkkkkkNoneOPTION—Load OPTION register1000000000010NoneRETLWkReturn, place Literal in W21000kkkkkkkkNoneSLEEP—Go into Standby mode1000000000011TO, PDTRISfLoad TRIS register1000000000fffNone3XORLWkExclusive OR Literal to W11111kkkkkkkkZ	ANDLW	k	AND literal with W	1	1110	kkkk	kkkk	Z	
CLRWDT—Clear Watchdog Timer1000000000100TO, PDGOTOkUnconditional branch2101kkkkkkkkkNoneIORLWkInclusive OR Literal with W11101kkkkkkkkZMOVLWkMove Literal to W11100kkkkkkkkNoneOPTION—Load OPTION register1000000000010NoneRETLWkReturn, place Literal in W21000kkkkkkkkNoneSLEEP—Go into Standby mode1000000000011TO, PDTRISfLoad TRIS register1000000000fffNone3XORLWkExclusive OR Literal to W11111kkkkkkkkZ	CALL	k	Subroutine Call	2	1001	kkkk	kkkk	None	1
GOTOkUnconditional branch2101kkkkkkkkkNoneIORLWkInclusive OR Literal with W11101kkkkkkkkZMOVLWkMove Literal to W11100kkkkkkkkNoneOPTION—Load OPTION register1000000000010NoneRETLWkReturn, place Literal in W21000kkkkkkkkNoneSLEEP—Go into Standby mode1000000000011TO, PDTRISfLoad TRIS register100000000offfNone3XORLWkExclusive OR Literal to W11111kkkkkkkkZ	CLRWDT	—	Clear Watchdog Timer	1	0000	0000	0100	TO, PD	
IORLWkInclusive OR Literal with W11101kkkkkkkkZMOVLWkMove Literal to W11100kkkkkkkkNoneOPTION—Load OPTION register1000000000010NoneRETLWkReturn, place Literal in W21000kkkkkkkkNoneSLEEP—Go into Standby mode1000000000011TO, PDTRISfLoad TRIS register1000000000fffNone3XORLWkExclusive OR Literal to W11111kkkkkkkkZ	GOTO	k	Unconditional branch	2	101k	kkkk	kkkk	None	
MOVLWkMove Literal to W11100kkkkkkkkNoneOPTIONLoad OPTION register1000000000010NoneRETLWkReturn, place Literal in W21000kkkkkkkkNoneSLEEPGo into Standby mode1000000000011TO, PDTRISfLoad TRIS register1000000000fffNone3XORLWkExclusive OR Literal to W11111kkkkkkkkZ	IORLW	k	Inclusive OR Literal with W	1	1101	kkkk	kkkk	Z	
OPTION — Load OPTION register 1 0000 0000 0010 None RETLW k Return, place Literal in W 2 1000 kkkk kkkk None SLEEP — Go into Standby mode 1 0000 0000 0011 TO, PD TRIS f Load TRIS register 1 0000 0000 0fff None 3 XORLW k Exclusive OR Literal to W 1 1111 kkkk kkkk Z	MOVLW	k	Move Literal to W	1	1100	kkkk	kkkk	None	
RETLWkReturn, place Literal in W21000kkkkkkkkNoneSLEEP—Go into Standby mode1000000000011TO, PDTRISfLoad TRIS register1000000000fffNone3XORLWkExclusive OR Literal to W11111kkkkkkkkZ	OPTION	—	Load OPTION register	1	0000	0000	0010	None	
SLEEP — Go into Standby mode 1 0000 0001 TO, PD TRIS f Load TRIS register 1 0000 0000 0fff None 3 XORLW k Exclusive OR Literal to W 1 1111 kkkk kkkk Z	RETLW	k	Return, place Literal in W	2	1000	kkkk	kkkk	None	
TRIS f Load TRIS register 1 0000 0000 offf None 3 XORLW k Exclusive OR Literal to W 1 1111 kkkk kkkk Z	SLEEP	—	Go into Standby mode	1	0000	0000	0011	TO, PD	
XORLW k Exclusive OR Literal to W 1 1111 kkkk Z	TRIS	f	Load TRIS register	1	0000	0000	Offf	None	3
	XORLW	k	Exclusive OR Literal to W	1	1111	kkkk	kkkk	Z	

Note 1: The 9th bit of the program counter will be forced to a '0' by any instruction that writes to the PC except for GOTO (see Section 3.5 "Program Counter" for more on program counter).

2: When an I/O register is modified as a function of itself (e.g., MOVF PORTB, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

3: The instruction TRIS f, where f = 5, 6 or 7 causes the contents of the W register to be written to the tri-state latches of PORTA, B or C, respectively. A '1' forces the pin to a high-impedance state and disables the output buffers.

4: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared (if assigned to TMR0).

ADDWF	Add W	and f	
Syntax:	[label]A	DDWF	f, d
Operands:	$\begin{array}{l} 0 \leq f \leq 3^{\prime} \\ d \in [0,1] \end{array}$		
Operation:	(W) + (f)	\rightarrow (dest)	
Status Affected:	C, DC, Z		
Encoding:	0001	11df	ffff
	and regis result is a 'd' is '1', register	ster 'f'. If ' stored in t the result 'f'.	d' is '0', the he W register. If is stored back in
Words:	1		
Cycles:	1		
Example:	ADDWF	TEMP_RE	G, 0
Before Instru W TEMP_F After Instruct	uction = REG = tion	0x17 0xC2	
W TEMP_F	= REG =	0xD9 0xC2	

ANDWF	AND W	with f		
Syntax:	[label]	ANDWF	f, d	
Operands:	$0 \le f \le 31$ $d \in [0,1]$			
Operation:	(W) .ANE	D. (f) \rightarrow (c	lest)	
Status Affected:	Z			
Encoding:	0001	01df	ffff	
Description:	AND'ed with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.			
Words:	1			
Cycles:	1			
Example:	ANDWF	TEMP_RE	EG, 1	
Before Instruction W = 0x17 TEMP_REG = 0xC2 After Instruction				
W TEMP_	= REG =	0x17 0x02		

ANDLW	AND literal with W			
Syntax:	[<i>label</i>] ANDLW k			
Operands:	$0 \le k \le 2$	55		
Operation:	(W).AND. (k) \rightarrow (W)			
Status Affected:	Z			
Encoding:	1110	kkkk	kkkk]
Description:	AND'ed v The resu register.	with the e lt is place	ight-bit lit ad in the \	ster are :eral 'k'. <i>N</i>
Words:	1			
Cycles:	1			
Example:	ANDLW	H'5F'		
Before Instru W = After Instruct W =	iction 0xA3 tion 0x03			

BCF	Bit Clea	r f		
Syntax:	[label]	BCF f,	b	
Operands:	$0 \le f \le 3^{\prime\prime}$ $0 \le b \le 7$	1		
Operation:	$0 \rightarrow (f < b$	>)		
Status Affected:	None			
Encoding:	0100	bbbf	ffff	
Description:	Bit 'b' in	register 'f'	' is cleare	ed.
Words:	1			
Cycles:	1			
Example:	BCF	FLAG_RE	EG, 7	
Before Instruction FLAG_REG = 0xC7 After Instruction				
FLAG_R	REG =	0x47		

PIC16F5X

BSF	Bit Set f			
Syntax:	[label]	BSF f, b)	
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ 0 \leq b \leq 7 \end{array}$			
Operation:	$1 \rightarrow (f < b)$	>)		
Status Affected:	None			
Encoding:	0101	bbbf	ffff	
Description:	Bit 'b' in ı	register 'f	' is set.	
Words:	1			
Cycles:	1			
Example:	BSF	FLAG_RE	EG, 7	
Before Instru FLAG_R After Instruct	uction REG = 0 tion	0x0A		
FLAG_R	REG = 0	X8A		

BTFSC	Bit Test f, Skip if Clear			
Syntax:	[label] BTFSC f, b			
Operands:	$0 \le f \le 31$ $0 \le b \le 7$			
Operation:	skip if (f) = 0			
Status Affected:	None			
Encoding:	0110 bbbf ff	ff		
Description:	If bit 'b' in register 'f' is '0', then the next instruction is skipped. If bit 'b' is '0', then the next instruc- tion fetched during the current instruction execution is discarded and a NOP is executed instead, making this a two-cycle instruction.			
Words:	1			
Cycles:	1(2)			
<u>Example</u> :	HERE BTFSC FLA FALSE GOTO PRC TRUE • • •	G,1 CESS_CODE		
Before Instru	tion			
PC	= address (HE	RE)		
After Instructi if FLAG< PC if FLAG< PC	on 1> = 0, = address (TRU 1> = 1, = address (FALS	E); SE)		

BTFSS	Bit Test f, Skip if Set				
Syntax:	[label]	BTFSS f	, b		
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ 0 \leq b < 7 \end{array}$	l			
Operation:	skip if (f<	:b>) = 1			
Status Affected:	None				
Encoding:	0111	bbbf	ffff		
Description:	If bit 'b' in register 'f' is '1', then the next instruction is skipped. If bit 'b' is '1', then the next instruc- tion fetched during the current instruction execution is discarded and a NOP is executed instead, making this a two-cycle instruction.				
Words:	1				
Cycles:	1(2)				
<u>Example</u> :	HERE BTFSS FLAG,1 FALSE GOTO PROCESS_CODE TRUE • •				
Before Instr	uction				
PC	=	addres	SS (HERE)	
After Instruc		0			
PC	<1> =	u, addres	CEALS	F).	
if FLAG<	<1> =	1,	UPALIS	, (L	
PC	=	addres	S (TRUE)	

CALL	Subroutine Call			
Syntax:	[<i>label</i>] CALL k			
Operands:	$0 \leq k \leq 255$			
Operation:	(PC) + 1 \rightarrow TOS; k \rightarrow PC<7:0>; (Status<6:5>) \rightarrow PC<10:9>; 0 \rightarrow PC<8>			
Status Affected:	None			
Encoding:	1001 kkkk kkkk			
Description.	address (PC + 1) is pushed onto the stack. The eight-bit immediate address is loaded into PC bits <7:0>. The upper bits PC<10:9> are loaded from STATUS<6:5>, PC<8> is cleared. CALL is a two-cycle instruction.			
Words:	1			
Cycles:	2			
Example:	HERE CALL THERE			
Before Instru PC = After Instruct PC = TOS =	address (HERE) ion address (THERE) address (HERE + 1)			

CLRW	Clear W			
Syntax:	[label]	CLRW		
Operands:	None			
Operation:	$\begin{array}{l} 00h \rightarrow (W); \\ 1 \rightarrow Z \end{array}$			
Status Affected:	Z			
Encoding:	0000	0100	0000	
Description:	The W re (Z) is set	egister is o	cleared. 2	Zero bit
Words:	1			
Cycles:	1			
<u>Example</u> :	CLRW			
Before Instru	ction			
W =	0x5A			
After Instruct	ion			
VV =	0x00			
Z =	1			

CLRF Clear f

Syntax:	[label]	CLRF f		
Operands:	$0 \le f \le 3^{-1}$	1		
Operation:	$\begin{array}{l} 00h \rightarrow (f); \\ 1 \rightarrow Z \end{array}$			
Status Affected:	Z			
Encoding:	0000	011f	ffff	
Description:	The cont cleared a	tents of re and the Z	gister 'f' are bit is set.	
Words:	1			
Cycles:	1			
Example:	CLRF	FLAG_RE	G	
Before Instruc FLAG_RE After Instructi FLAG_RE Z	ction EG = on EG = =	0x5A 0x00 1		

CLRWDT	Clear Watchdog Timer			
Syntax:	[label] CLRWDT			
Operands:	None			
Operation:	$\begin{array}{l} 00h \rightarrow WDT; \\ 0 \rightarrow WDT \mbox{ prescaler (if assigned);} \\ 1 \rightarrow \overline{TO}; \\ 1 \rightarrow \overline{PD} \end{array}$			
Status Affected:	TO, PD			
Encoding:	0000 0000 0100			
Description:	The CLRWDT instruction resets the WDT. It also resets the prescaler if the prescaler is assigned to the WDT and not Timer0. Status bits \overline{TO} and \overline{PD} are set.			
Words:	1			
Cycles:	1			
Example:	CLRWDT			
Example:CLRWDTBefore InstructionWDT counter=WDT counter=?After InstructionWDT counter=WDT prescaler=0 \overline{TO} =1 \overline{PD} =1				

PIC16F5X

XORLW	Exclusive OR literal with W			
Syntax:	[<i>label</i>] XORLW k			
Operands:	$0 \le k \le 255$			
Operation:	(W) .XOF	R. $k \rightarrow (W$	/)	
Status Affected:	Z			
Encoding:	1111	kkkk	kkkk	
Description:	The cont XOR'ed The resu register.	ents of th with the e It is place	e W regis ight-bit lit ed in the \	ster are eral 'k'. N
Words:	1			
Cycles:	1			
Example:	XORLW	0xAF		
Before Instru W = After Instruct W =	ction 0xB5 ion 0x1A			

XORWF	Exclusive OR W with f			
Syntax:	[label]	XORWF	f, d	
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in \ [0,1] \end{array}$			
Operation:	(W) .X0	$DR.(f) \to (f)$	dest)	
Status Affected:	Z			
Encoding:	0001	10df	ffff	
	W registers stored	ster with re result is st r. If 'd' is '1 back in reg	gister 'f'. If 'd' is ored in the W ', the result is ister 'f'.	
Words:	1			
Cycles:	1			
Example:	XORWF	REG,1		
Before Instru	iction			
REG	=	0xAF		
W	=	0xB5		
After Instruct	ion			
REG	=	0x1A		
W	=	0xB5		

10.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers are supported with a full range of hardware and software development tools:

- Integrated Development Environment
 - MPLAB® IDE Software
- Assemblers/Compilers/Linkers
 - MPASM[™] Assembler
 - MPLAB C18 and MPLAB C30 C Compilers
 - MPLINK[™] Object Linker/
 - MPLIB[™] Object Librarian
 - MPLAB ASM30 Assembler/Linker/Library
- Simulators
 - MPLAB SIM Software Simulator
- Emulators
 - MPLAB ICE 2000 In-Circuit Emulator
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debugger
 - MPLAB ICD 2
- Device Programmers
 - PICSTART[®] Plus Development Programmer
 - MPLAB PM3 Device Programmer
 - PICkit[™] 2 Development Programmer
- Low-Cost Demonstration and Development Boards and Evaluation Kits

10.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8/16-bit microcontroller market. The MPLAB IDE is a Windows[®] operating system-based application that contains:

- A single graphical interface to all debugging tools
 - Simulator
 - Programmer (sold separately)
 - Emulator (sold separately)
 - In-Circuit Debugger (sold separately)
- · A full-featured editor with color-coded context
- A multiple project manager
- Customizable data windows with direct edit of contents
- High-level source code debugging
- Visual device initializer for easy register initialization
- · Mouse over variable inspection
- Drag and drop variables from source to watch windows
- · Extensive on-line help
- Integration of select third party tools, such as HI-TECH Software C Compilers and IAR C Compilers

The MPLAB IDE allows you to:

- Edit your source files (either assembly or C)
- One touch assemble (or compile) and download to PIC MCU emulator and simulator tools (automatically updates all project information)
- Debug using:
 - Source files (assembly or C)
 - Mixed assembly and C
 - · Machine code

MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost-effective simulators, through low-cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increased flexibility and power.

10.2 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for all PIC MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code and COFF files for debugging.

The MPASM Assembler features include:

- Integration into MPLAB IDE projects
- User-defined macros to streamline
 assembly code
- Conditional assembly for multi-purpose source files
- Directives that allow complete control over the assembly process

10.3 MPLAB C18 and MPLAB C30 C Compilers

The MPLAB C18 and MPLAB C30 Code Development Systems are complete ANSI C compilers for Microchip's PIC18 and PIC24 families of microcontrollers and the dsPIC30 and dsPIC33 family of digital signal controllers. These compilers provide powerful integration capabilities, superior code optimization and ease of use not found with other compilers.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

10.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler and the MPLAB C18 C Compiler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

10.5 MPLAB ASM30 Assembler, Linker and Librarian

MPLAB ASM30 Assembler produces relocatable machine code from symbolic assembly language for dsPIC30F devices. MPLAB C30 C Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- Support for the entire dsPIC30F instruction set
- Support for fixed-point and floating-point data
- · Command line interface
- Rich directive set
- Flexible macro language
- MPLAB IDE compatibility

10.6 MPLAB SIM Software Simulator

The MPLAB SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC[®] DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB SIM Software Simulator fully supports symbolic debugging using the MPLAB C18 and MPLAB C30 C Compilers, and the MPASM and MPLAB ASM30 Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

10.11 PICSTART Plus Development Programmer

The PICSTART Plus Development Programmer is an easy-to-use, low-cost, prototype programmer. It connects to the PC via a COM (RS-232) port. MPLAB Integrated Development Environment software makes using the programmer simple and efficient. The PICSTART Plus Development Programmer supports most PIC devices in DIP packages up to 40 pins. Larger pin count devices, such as the PIC16C92X and PIC17C76X, may be supported with an adapter socket. The PICSTART Plus Development Programmer is CE compliant.

10.12 PICkit 2 Development Programmer

The PICkit[™] 2 Development Programmer is a low-cost programmer and selected Flash device debugger with an easy-to-use interface for programming many of Microchip's baseline, mid-range and PIC18F families of Flash memory microcontrollers. The PICkit 2 Starter Kit includes a prototyping development board, twelve sequential lessons, software and HI-TECH's PICC[™] Lite C compiler, and is designed to help get up to speed quickly using PIC[®] microcontrollers. The kit provides everything needed to program, evaluate and develop applications using Microchip's powerful, mid-range Flash memory family of microcontrollers.

10.13 Demonstration, Development and Evaluation Boards

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart[®] battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Check the Microchip web page (www.microchip.com) and the latest *"Product Selector Guide"* (DS00148) for the complete list of demonstration, development and evaluation kits.

11.4 Timing Parameter Symbology and Load Conditions

The timing parameter symbols have been created with one of the following formats:

- 1. TppS2ppS
- 2. TppS

2. TppS						
Т						
F	Frequency	T Time				
Lowercase letters (pp) and their meanings:						
рр						
2	to	mc MCLR				
ck	CLKOUT	osc oscillator				
су	cycle time	os OSC1				
drt	device reset timer	t0 T0CKI				
io	I/O port	wdt watchdog timer				
Uppercase letters and their meanings:						
S						
F	Fall	P Period				
н	High	R Rise				
Т	Invalid (High-impedance)	V Valid				
L	Low	Z High-impedance				

FIGURE 11-2: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS – PIC16F5X

11.5 Timing Diagrams and Specifications

FIGURE 11-3: EXTERNAL CLOCK TIMING

12.0 PACKAGING INFORMATION

12.1 Package Marketing Information

* Standard PIC device marking consists of Microchip part number, year code, week code, and traceability code. For PIC device marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.

40-Lead Plastic Dual In-Line (P) – 600 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		INCHES		
Dimension Limits		MIN	NOM	MAX
Number of Pins	Ν	40		
Pitch	е	.100 BSC		
Top to Seating Plane	Α	-	-	.250
Molded Package Thickness	A2	.125	-	.195
Base to Seating Plane	A1	.015	-	-
Shoulder to Shoulder Width	Е	.590	-	.625
Molded Package Width	E1	.485	-	.580
Overall Length	D	1.980	-	2.095
Tip to Seating Plane	L	.115	-	.200
Lead Thickness	С	.008	-	.015
Upper Lead Width	b1	.030	-	.070
Lower Lead Width	b	.014	-	.023
Overall Row Spacing §		-	-	.700

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-016B