

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	32
Program Memory Size	3KB (2K x 12)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	134 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f59-i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Name	Function		Output	Description					
RAO	RAO		CMOS	Bidirectional I/O nin					
RA1	RA0 RA1		CMOS	Bidirectional I/O pin					
RA2	RA2	тті	CMOS	Bidirectional I/O pin					
RA3	RA3	тті	CMOS	Bidirectional I/O pin					
RB0	RB0	TTL	CMOS	Bidirectional I/O pin					
RB1	RB1	TTL	CMOS	Bidirectional I/O pin					
RB2	RB2	TTL	CMOS	Bidirectional I/O pin					
RB3	RB3	TTL	CMOS	Bidirectional I/O pin					
RB4	RB4	TTL	CMOS	Bidirectional I/O pin					
RB5	RB5	TTL	CMOS	Bidirectional I/O pin					
RB6/ICSPCLK	RB6	TTL	CMOS	Bidirectional I/O pin					
	ICSPCLK	ST	—	Serial programming clock					
RB7/ICSPDAT	RB7	TTL	CMOS	Bidirectional I/O pin					
	ICSPDAT	ST	CMOS	Serial programming I/O					
RC0	RC0	TTL	CMOS	Bidirectional I/O pin					
RC1	RC1	TTL	CMOS	Bidirectional I/O pin					
RC2	RC2	TTL	CMOS	Bidirectional I/O pin					
RC3	RC3	TTL	CMOS	Bidirectional I/O pin					
RC4	RC4	TTL	CMOS	Bidirectional I/O pin					
RC5	RC5	TTL	CMOS	Bidirectional I/O pin					
RC6	RC6	TTL	CMOS	Bidirectional I/O pin					
RC7	RC7	TTL	CMOS	Bidirectional I/O pin					
RD0	RD0	TTL	CMOS	Bidirectional I/O pin					
RD1	RD1	TTL	CMOS	Bidirectional I/O pin					
RD2	RD2	TTL	CMOS	Bidirectional I/O pin					
RD3	RD3	TTL	CMOS	Bidirectional I/O pin					
RD4	RD4	TTL	CMOS	Bidirectional I/O pin					
RD5	RD5	TTL	CMOS	Bidirectional I/O pin					
RD6	RD6	TTL	CMOS	Bidirectional I/O pin					
RD7	RD7	TTL	CMOS	Bidirectional I/O pin					
RE4	RE4	TTL	CMOS	Bidirectional I/O pin					
RE5	RE5	TTL	CMOS	Bidirectional I/O pin					
RE6	RE6	TTL	CMOS	Bidirectional I/O pin					
RE7	RE7	TTL	CMOS	Bidirectional I/O pin					
TOCKI	TOCKI	ST	_	Clock input to Timer0. Must be tied to Vss or VDD, if not in use, to reduce current consumption.					
MCLR/Vpp	MCLR	ST	-	Active-low Reset to device. Voltage on the MCLR/VPP pin must not exceed VDD to avoid unintended entering of Programming mode.					
	Vpp	ΗV	_	Programming voltage input					
OSC1/CLKIN	OSC1	XTAL	_	Oscillator crystal input					
	CLKIN	ST	—	External clock source input					
OSC2/CLKOUT	OSC2	—	XTAL	Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode.					
	CLKOUT	—	CMOS	In RC mode, OSC2 pin outputs CLKOUT, which has 1/4 the frequency of OSC1.					
Vdd	VDD	Power		Positive supply for logic and I/O pins					
Vss	Vss	Power	_	Ground reference for logic and I/O pins					
Legend: I = in O = ou ST = S	put utput chmitt Trigger i	nput	I/O = — = TTL =	input/outputCMOS= CMOS outputNot UsedXTAL= Crystal input/outputTTL inputHV= High Voltage					

TABLE 2-3: PIC16F59 PINOUT DESCRIPTION

3.3 **STATUS Register**

bi

bi

This register contains the arithmetic status of the ALU, the Reset status and the page preselect bits for program memories larger than 512 words.

The STATUS register can be the destination for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS will clear the upper three bits and set the Z bit. This leaves the STATUS register as 000u uluu (where u = unchanged).

Therefore, it is recommended that only BCF, BSF, MOVWF and SWAPF instructions be used to alter the STATUS register because these instructions do not affect the Z, DC or C bits from the STATUS register. For other instructions which do affect Status bits, see Section 9.0 "Instruction Set Summary".

REGISTER 3-1: STATUS REGISTER (ADDRESS: 03h)

	R/W-0	R/W-0	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x
	PA2	PA1	PA0	TO	PD	Z	DC	С
	bit 7	·						bit 0
bit 7	PA2 : Reserv Use of the Pa compatibility	ved, do not us A2 bit as a ge v with future p	se neral purpos roducts.	e read/write I	oit is not re	commended, sin	ce this may af	fect upward
bit 6-5	PA<1:0>: Pr 00 = Page 0 01 = Page 1 10 = Page 2 11 = Page 3 Each page is not use them future produ	rogram Page) (000h-1FFh) (200h-3FFh) 2 (400h-5FFh) 3 (600h-7FFh) s 512 words. n for program cts.	Preselect bi)) Using the PA page presel	ts (PIC16F57 A<1:0> bits as ect is not reco	/PIC16F5 s general p ommended	9) burpose read/writ d. This may affect	e bits in devic upward comp	es which do batibility with
bit 4	TO : Time-Ou 1 = After pov 0 = A WDT 1	ut bit wer-up, CLRW time-out occu	DT instructio	on or SLEEP	nstruction			
bit 3	PD : Power-I 1 = After pov 0 = By exect	Down bit wer-up or by t ution of the s	the CLRWDT LEEP instruc	instruction ction				
bit 2	Z : Zero bit 1 = The resu 0 = The resu	ult of an arithr ult of an arithr	netic or logio	c operation is c operation is	zero not zero			
bit 1	DC: Digit Carry/Borrow bit (for ADDWF and SUBWF instructions) ADDWF 1 = A carry to the 4th low order bit of the result occurred 0 = A carry from the 4th low order bit of the result did not occur SUBWF 1 = A borrow to the 4th low order bit of the result did not occur 0 = A borrow from the 4th low order bit of the result did not occur							
bit 0	C : Carry/Boo <u>ADDWF</u> 1 = A carry o 0 = A carry o	rrow bit (for A occurred did not occur	DDWF, SUBW <u>SUBWI</u> 1 = A bo 0 = A bo	F and RRF, R 	LF instruc E occur L ed	tions) <u>RRF or RLF</u> .oaded with LSb	or MSb, resp	ectively
	Legend:							
	R = Readab	le bit	W = W	ritable bit	U = U	nimplemented bi	t, read as '0'	
	- n = Value a	at POR	'1' = B	it is set	'0' = E	Bit is cleared	x = Bit is un	iknown

3.4 Option Register

The Option register is a 6-bit wide, write-only register which contains various control bits to configure the Timer0/WDT prescaler and Timer0.

By executing the OPTION instruction, the contents of the W register will be transferred to the Option register. A Reset sets the Option<5:0> bits.

REGISTER 3-2: OPTION REGISTER

	U-0	U-0	W-1	W-1	W-1	W-1	W-1	W-1
		—	TOCS	T0SE	PSA	PS2	PS1	PS0
bit	7							bit 0

bit 7-6 Unimplemented: Read as '0'

bit 5	TOCS: Timer0 Clock	T0CS: Timer0 Clock Source Select bit							
1 = Transition on T0CKI pin0 = Internal instruction cycle clock (CLKOUT)									
bit 4	TOSE: Timer0 Sour	ce Edge Sele	ct bit						
	 1 = Increment on high-to-low transition on T0CKI pin 0 = Increment on low-to-high transition on T0CKI pin 								
bit 3	PSA: Prescaler Ass	ignment bit							
 1 = Prescaler assigned to the WDT 0 = Prescaler assigned to Timer0 									
bit 2-0	PS<2:0>: Prescaler	rate select bi	ts						
	Bit Value	Timer0 Rate	WDT Rate						
	000	1:2	1:1						

000	1:2	1:1
001	1:4	1:2
010	1:8	1:4
011	1:16	1:8
100	1:32	1:16
101	1:64	1:32
110	1 : 128	1:64
111	1 : 256	1 : 128

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

3.5 Program Counter

As a program instruction is executed, the Program Counter (PC) will contain the address of the next program instruction to be executed. The PC value is increased by one, every instruction cycle, unless an instruction changes the PC.

For a GOTO instruction, bits 8:0 of the PC are provided by the GOTO instruction word. The PC Latch (PCL) is mapped to PC<7:0> (Figure 3-6 and Figure 3-7).

For the PIC16F57 and PIC16F59, a page number must be supplied as well. Bit 5 and bit 6 of the STATUS register provide page information to bit 9 and bit 10 of the PC (Figure 3-6 and Figure 3-7).

For a CALL instruction, or any instruction where the PCL is the destination, bits 7:0 of the PC again are provided by the instruction word. However, PC<8> does not come from the instruction word, but is always cleared (Figure 3-6 and Figure 3-7).

Instructions where the PCL is the destination or modify PCL instructions, include <code>MOVWF PCL</code>, <code>ADDWF PCL</code>, and <code>BSF PCL</code>, <code>5</code>.

For the PIC16F57 and PIC16F59, a page number again must be supplied. Bit 5 and bit 6 of the STATUS register provide page information to bit 9 and bit 10 of the PC (Figure 3-6 and Figure 3-7).

Note:	Because PC<8> is cleared in the CALL
	instruction or any modified PCL instruc-
	tion, all subroutine calls or computed
	jumps are limited to the first 256 locations
	of any program memory page (512 words
	long).

FIGURE 3-6:

LOADING OF PC BRANCH INSTRUCTIONS-PIC16F54

FIGURE 3-7:

LOADING OF PC BRANCH INSTRUCTIONS-PIC16F57 AND PIC16F59

3.5.1 PAGING CONSIDERATIONS PIC16F57 AND PIC16F59

If the PC is pointing to the last address of a selected memory page, when it increments, it will cause the program to continue in the next higher page. However, the page preselect bits in the STATUS register will not be updated. Therefore, the next GOTO, CALL or MODIFY PCL instruction will send the program to the page specified by the page preselect bits (PA0 or PA<1:0>).

For example, a NOP at location 1FFh (page 0) increments the PC to 200h (page 1). A GOTO xxx at 200h will return the program to address xxh on page 0 (assuming that PA<1:0> are clear).

To prevent this, the page preselect bits must be updated under program control.

3.5.2 EFFECTS OF RESET

The PC is set upon a Reset, which means that the PC addresses the last location in the last page (i.e., the Reset vector).

The STATUS register page preselect bits are cleared upon a Reset, which means that page 0 is preselected.

Therefore, upon a Reset, a GOTO instruction at the Reset vector location will automatically cause the program to jump to page 0.

3.6 Stack

The PIC16F54 device has a 9-bit wide, two-level hardware PUSH/POP stack. The PIC16F57 and PIC16F59 devices have an 11-bit wide, two-level hardware PUSH/POP stack.

A CALL instruction will PUSH the current value of stack 1 into stack 2 and then PUSH the current program counter value, incremented by one, into stack level 1. If more than two sequential CALL's are executed, only the most recent two return addresses are stored.

A RETLW instruction will POP the contents of stack level 1 into the program counter and then copy stack level 2 contents into level 1. If more than two sequential RETLW's are executed, the stack will be filled with the address previously stored in level 2.

Note:	The W register will be loaded with the								
	literal value specified in the instruction.								
	This is particularly useful for the								
	implementation of data look-up tables								
	within the program memory.								

For the RETLW instruction, the PC is loaded with the Top-of-Stack (TOS) contents. All of the devices covered in this data sheet have a two-level stack. The stack has the same bit width as the device PC, therefore, paging is not an issue when returning from a subroutine.

3.7 Indirect Data Addressing; INDF and FSR Registers

The INDF register is not a physical register. Addressing INDF actually addresses the register whose address is contained in the FSR Register (FSR is a *pointer*). This is indirect addressing.

EXAMPLE 3-1: INDIRECT ADDRESSING

- Register file 08 contains the value 10h
- Register file 09 contains the value 0Ah
- Load the value 08 into the FSR register
- A read of the INDF register will return the value of 10h
- Increment the value of the FSR register by one (FSR = 09h)
- A read of the INDF register now will return the value of 0Ah.

Reading INDF itself indirectly (FSR = 0) will produce 00h. Writing to the INDF register indirectly results in a no-operation (although Status bits may be affected).

A simple program to clear RAM locations 10h-1Fh using indirect addressing is shown in Example 3-2.

EXAMPLE 3-2: HOW TO CLEAR RAM USING INDIRECT ADDRESSING

NEXT	MOVLW MOVWF CLRF INCF	H'10' FSR INDF FSR,F	;initialize pointer ;to RAM ;clear INDF Register ;inc pointer
	BTFSC	FSR,4	;all done?
	GOTO	NEXT	;NO, clear next
CONTINUE			
	:		;YES, continue

The FSR is either a 5-bit (PIC16F54), 7-bit (PIC16F57) or 8-bit (PIC16F59) wide register. It is used in conjunction with the INDF register to indirectly address the data memory area.

The FSR<4:0> bits are used to select data memory addresses 00h to 1Fh.

PIC16F54: This does not use banking. FSR<7:5> bits are unimplemented and read as '1's.

PIC16F57: FSR<7> bit is unimplemented and read as '1'. FSR<6:5> are the bank select bits and are used to select the bank to be addressed (00 = Bank 0, 01 = Bank 1, 10 = Bank 2, 11 = Bank 3).

PIC16F59: FSR<7:5> are the bank select bits and are used to select the bank to be addressed (000 = Bank 0, 001 = Bank 1, 010 = Bank 2,

011 = Bank 3, 100 = Bank 4, 101 = Bank 5, 110 = Bank 6, 111 = Bank 7).

Note: A CLRF FSR instruction may not result in an FSR value of 00h if there are unimplemented bits present in the FSR.

5.0 RESET

The PIC16F5X devices may be reset in one of the following ways:

- Power-on Reset (POR)
- MCLR Reset (normal operation)
- MCLR Wake-up Reset (from Sleep)
- WDT Reset (normal operation)
- WDT Wake-up Reset (from Sleep)

Table 5-1 shows these Reset conditions for the PCL and STATUS registers.

Some registers are not affected in any Reset condition. Their status is unknown on POR and unchanged in any other Reset. Most other registers are reset to a "Reset state" on Power-on Reset (POR), MCLR or WDT Reset. A MCLR or WDT wake-up from Sleep also results in a device Reset and not a continuation of operation before Sleep. The $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits (STATUS <4:3>) are set or cleared depending on the different Reset conditions (Table 5-1). These bits may be used to determine the nature of the Reset.

Table 5-3 lists a full description of Reset states of all registers. Figure 5-1 shows a simplified block diagram of the on-chip Reset circuit.

TABLE 5-1:STATUS BITS AND THEIR SIGNIFICANCE

Condition	то	PD
Power-on Reset	1	1
MCLR Reset (normal operation)	u	u
MCLR Wake-up (from Sleep)	1	0
WDT Reset (normal operation)	0	1
WDT Wake-up (from Sleep)	0	0

Legend: u = unchanged, x = unknown, — = unimplemented read as '0'.

TABLE 5-2: SUMMARY OF REGISTERS ASSOCIATED WITH RESET

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	<u>Value</u> on MCLR and WDT Reset
03h	STATUS	PA2	PA1	PA0	TO	PD	Z	DC	С	0001 1xxx	000q quuu

Legend: u = unchanged, x = unknown, q = see Table 5-1 for possible values.

6.0 I/O PORTS

As with any other register, the I/O registers can be written and read under program control. However, read instructions (e.g., MOVF PORTB, W) always read the I/O pins independent of the pin's Input/Output modes. On Reset, all I/O ports are defined as input (inputs are at high-impedance), since the I/O control registers (TRISA, TRISB, TRISC, TRISD and TRISE) are all set.

6.1 PORTA

PORTA is a 4-bit I/O register. Only the low order 4 bits are used (PORTA<3:0>). The high order 4 bits (PORTA<7:4>) are unimplemented and read as '0's.

6.2 PORTB

PORTB is an 8-bit I/O register (PORTB<7:0>).

6.3 PORTC

PORTC is an 8-bit I/O register (PORTC<7:0>) for the PIC16F57 and PIC16F59.

PORTC is a General Purpose Register for the PIC16F54.

6.4 PORTD

PORTD is an 8-bit I/O register (PORTD<7:0>) for the PIC16F59.

PORTD is a General Purpose Register for the PIC16F54 and PIC16F57.

6.5 PORTE

PORTE is an 4-bit I/O register for the PIC16F59. Only the high order 4 bits are used (PORTE<7:4>). The low order 4 bits (PORTE<3:0>) are unimplemented and read as '0's.

PORTE is a General Purpose Register for the PIC16F54 and PIC16F57.

6.6 TRIS Registers

The output driver control registers are loaded with the contents of the W register by executing the TRIS f instruction. A '1' from a TRIS register bit puts the corresponding output driver in a High-Impedance (Input) mode. A '0' puts the contents of the output data latch on the selected pins, enabling the output buffer.

Note:	A read of the ports reads the pins, not the			
	output data latches. That is, if an output			
	driver on a pin is enabled and driven high,			
	but the external system is holding it low, a			
	read of the port will indicate that the pin is			
	low.			

The TRIS registers are "write-only" and are set (output drivers disabled) upon Reset.

6.7 I/O Interfacing

The equivalent circuit for an I/O port pin is shown in Figure 6-1. All ports may be used for both input and output operation. For input operations, these ports are non-latching. Any input must be present until read by an input instruction (e.g., MOVF PORTB, W). The outputs are latched and remain unchanged until the output latch is rewritten. To use a port pin as output, the corresponding direction control bit (in TRISA, TRISB, TRISC, TRISD and TRISE) must be cleared (= 0). For use as an input, the corresponding TRIS bit must be set. Any I/O pin can be programmed individually as input or output.

FIGURE 6-1:

EQUIVALENT CIRCUIT FOR A SINGLE I/O PIN

6.8 I/O Programming Considerations

6.8.1 BIDIRECTIONAL I/O PORTS

Some instructions operate internally as read followed by write operations. The BCF and BSF instructions, for example, read the entire port into the CPU, execute the bit operation and re-write the result. Caution must be used when these instructions are applied to a port where one or more pins are used as input/outputs. For example, a BSF operation on bit 5 of PORTB will cause all eight bits of PORTB to be read into the CPU, bit 5 to be set and the PORTB value to be written to the output latches. If another bit of PORTB is used as a bidirectional I/O pin (say bit '0'), and it is defined as an input at this time, the input signal present on the pin itself would be read into the CPU and rewritten to the data latch of this particular pin, overwriting the previous content. As long as the pin stays in the Input mode, no problem occurs. However, if bit '0' is switched into Output mode later on, the content of the data latch may now be unknown

Example 6-1 shows the effect of two sequential read-modify-write instructions (e.g., ${\tt BCF}, \ {\tt BSF}, \mbox{etc.})$ on an I/O port.

A pin actively outputting a high or a low should not be driven from external devices at the same time in order to change the level on this pin ("wired-or", "wired-and"). The resulting high output currents may damage the chip.

EXAMPLE 6-1: READ-MODIFY-WRITE INSTRUCTIONS ON AN I/O PORT

<pre>;Initial PORT Settings ;PORTB<7:4> Inputs ;PORTB<3:0> Outputs ;PORTB<7:6> have external pull-ups and are ;not connected to other circuitry</pre>
; ; PORT latch PORT pins
; BCF PORTB, 7 ;01pp pppp 11pp pppp
MOVLW H'3F' ; TRIS PORTE :10pp pppp 10pp pppp
; ; Note that the user may have expected the
pin ;values to be 00pp pppp. The 2nd BCF caused ;RB7 to be latched as the pin value (High).

6.8.2 SUCCESSIVE OPERATIONS ON I/O PORTS

The actual write to an I/O port happens at the end of an instruction cycle, whereas for reading, the data must be valid at the beginning of the instruction cycle (see Figure 6-2). Therefore, care must be exercised if a write followed by a read operation is carried out on the same I/O port. The sequence of instructions should allow the pin voltage to stabilize (load dependent) before the next instruction, which causes that file to be read into the CPU, is executed. Otherwise, the previous state of that pin may be read into the CPU rather than the new state. When in doubt, it is better to separate these instructions with a NOP or another instruction not accessing this I/O port.

© 2007 Microchip Technology Inc.

NOTES:

FIGURE 8-1: TYPICAL IN-CIRCUIT SERIAL PROGRAMMING[™] CONNECTION

PIC16F5X

COMF	Complement f					
Syntax:	[label]	COMF	f, d			
Operands:	$0 \le f \le 31$ $d \in [0,1]$					
Operation:	$(\overline{f}) \rightarrow (de$	est)				
Status Affected:	Z					
Encoding:	0010	01df	ffff			
Description.	complemented. If 'd' is '0', the result is stored in the W register. 'd' is '1', the result is stored back register 'f'.					
Words:	1					
Cycles:	1					
Example:	COMF	REG1,0				
Before Instruction						
REG1	= 0	(13				
After Instruct REG1	ion = 0x	(13 (FC				
vv	- 0/					

Deciei	nenti			
[label] DECF f, d				
$\begin{array}{l} 0 \leq f \leq 31 \\ d \in \ [0,1] \end{array}$				
(f) – 1 -	\rightarrow (dest)			
Z				
0000	11df	ffff		
Decrement register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.				
1				
1				
DECF	CNT,	1		
ction = = ion = =	0x01 0 0x00 1			
	$\begin{bmatrix} abel] \\ 0 \le f \le \\ d \in [0,] \\ \hline (f) - 1 - 2 \\ \hline 0000 \\ \hline Decrem \\ the res \\ registe \\ stored \\ 1 \\ DECF \\ ction \\ = \\ = \\ = \\ = \\ = \\ = \\ = \\ = \\ = \\ $	[label] DECF f, $0 \le f \le 31$ $d \in [0,1]$ (f) - 1 \rightarrow (dest) Z $\boxed{0000 11df}$ Decrement register the result is stored register. If 'd' is '1' stored back in reg 1 1 DECF CNT, ction = 0x00 = 0x00 = 1	$[label] DECF f, d$ $0 \le f \le 31$ $d \in [0,1]$ $(f) - 1 \rightarrow (dest)$ Z $\boxed{0000 11df ffff}$ Decrement register 'f'. If 'd' the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'. 1 1 $DECF CNT, 1$ $Ction$ $= 0x01$ $= 0$ ion = 0x00 $= 1$	

DECFSZ	Decrement f, Skip if 0			
Syntax:	[label] DECFSZ f, d			
Operands:	$\begin{array}{l} 0\leq f\leq 31\\ d\in \ [0,1] \end{array}$			
Operation:	(f) $- 1 \rightarrow d$; skip if result = 0			
Status Affected:	None			
Encoding:	0010 11df ffff			
Description:	The contents of register 'f' are decremented. If 'd' is '0', the result is placed in the W register. If 'd' is '1'. the result is placed back in register 'f'. If the result is '0', the next instruction, which is already fetched, is discarded and a NOP is executed instead making it a two-cycle instruction.			
Words:	1			
Cycles:	1(2)			
Example:	HERE DECFSZ CNT, 1 GOTO LOOP			
	CONTINUE • • •			
Before Instru	iction			
PC	= address (HERE)			
After Instruct	ion			
	= UNI - 1;			
	= U,			
	= address (CONTINUE); $\neq 0$			
PC	= address (HERE+1)			

PIC16F5X

XORLW	Exclusiv	e OR lite	ral with	W	
Syntax:	[label] XORLW k				
Operands:	$0 \le k \le 2$	55			
Operation:	(W) .XOF	R. $k \rightarrow (W$	/)		
Status Affected:	Z				
Encoding:	1111	kkkk	kkkk		
Description:	The contents of the W register are XOR'ed with the eight-bit literal 'k' The result is placed in the W register.				
Words:	1				
Cycles:	1				
Example:	XORLW	0xAF			
Before Instru W = After Instruct W =	ction 0xB5 ion 0x1A				

XORWF	Exclus	ive OR W	with f	
Syntax:	[label]	XORWF	f, d	
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in \ [0,1] \end{array}$			
Operation:	(W) .X0	$DR.(f) \to (f)$	dest)	
Status Affected:	Z			
Encoding:	0001	10df	ffff	
	W registers stored	ster with re result is st r. If 'd' is '1 back in reg	gister 'f'. If 'd' is ored in the W ', the result is ister 'f'.	
Words:	1			
Cycles:	1			
Example:	XORWF	REG,1		
Before Instru	iction			
REG	=	0xAF		
W	=	0xB5		
After Instruct	ion			
REG	=	0x1A		
W	=	0xB5		

10.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers are supported with a full range of hardware and software development tools:

- Integrated Development Environment
 - MPLAB® IDE Software
- Assemblers/Compilers/Linkers
 - MPASM[™] Assembler
 - MPLAB C18 and MPLAB C30 C Compilers
 - MPLINK[™] Object Linker/
 - MPLIB[™] Object Librarian
 - MPLAB ASM30 Assembler/Linker/Library
- Simulators
 - MPLAB SIM Software Simulator
- Emulators
 - MPLAB ICE 2000 In-Circuit Emulator
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debugger
 - MPLAB ICD 2
- Device Programmers
 - PICSTART[®] Plus Development Programmer
 - MPLAB PM3 Device Programmer
 - PICkit[™] 2 Development Programmer
- Low-Cost Demonstration and Development Boards and Evaluation Kits

10.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8/16-bit microcontroller market. The MPLAB IDE is a Windows[®] operating system-based application that contains:

- A single graphical interface to all debugging tools
 - Simulator
 - Programmer (sold separately)
 - Emulator (sold separately)
 - In-Circuit Debugger (sold separately)
- · A full-featured editor with color-coded context
- A multiple project manager
- Customizable data windows with direct edit of contents
- High-level source code debugging
- Visual device initializer for easy register initialization
- · Mouse over variable inspection
- Drag and drop variables from source to watch windows
- · Extensive on-line help
- Integration of select third party tools, such as HI-TECH Software C Compilers and IAR C Compilers

The MPLAB IDE allows you to:

- Edit your source files (either assembly or C)
- One touch assemble (or compile) and download to PIC MCU emulator and simulator tools (automatically updates all project information)
- Debug using:
 - Source files (assembly or C)
 - Mixed assembly and C
 - · Machine code

MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost-effective simulators, through low-cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increased flexibility and power.

10.11 PICSTART Plus Development Programmer

The PICSTART Plus Development Programmer is an easy-to-use, low-cost, prototype programmer. It connects to the PC via a COM (RS-232) port. MPLAB Integrated Development Environment software makes using the programmer simple and efficient. The PICSTART Plus Development Programmer supports most PIC devices in DIP packages up to 40 pins. Larger pin count devices, such as the PIC16C92X and PIC17C76X, may be supported with an adapter socket. The PICSTART Plus Development Programmer is CE compliant.

10.12 PICkit 2 Development Programmer

The PICkit[™] 2 Development Programmer is a low-cost programmer and selected Flash device debugger with an easy-to-use interface for programming many of Microchip's baseline, mid-range and PIC18F families of Flash memory microcontrollers. The PICkit 2 Starter Kit includes a prototyping development board, twelve sequential lessons, software and HI-TECH's PICC[™] Lite C compiler, and is designed to help get up to speed quickly using PIC[®] microcontrollers. The kit provides everything needed to program, evaluate and develop applications using Microchip's powerful, mid-range Flash memory family of microcontrollers.

10.13 Demonstration, Development and Evaluation Boards

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart[®] battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Check the Microchip web page (www.microchip.com) and the latest *"Product Selector Guide"* (DS00148) for the complete list of demonstration, development and evaluation kits.

11.0 ELECTRICAL SPECIFICATIONS FOR PIC16F59 (continued)

Absolute Maximum Ratings ^(†)	
Ambient Temperature under bias	40°C to +125°C
Storage Temperature	65°C to +150°C
Voltage on VDD with respect to VSS	0V to +6.5V
Voltage on MCLR with respect to Vss ⁽¹⁾	0V to +13.5V
Voltage on all other pins with respect to Vss	
Total power dissipation ⁽²⁾	900 mW
Max. current out of Vss pins	250 mA
Max. current into VDD pins	200 mA
Max. current into an input pin (T0CKI only)	±500 μA
Input clamp current, Iik (VI < 0 or VI > VDD)	±20 mA
Output clamp current, IOK (VO < 0 or VO > VDD)	±20 mA
Max. output current sunk by any I/O pin	25 mA
Max. output current sourced by any I/O pin	25 mA
Max. output current sourced by a single I/O port (PORTA, B, C, D or E)	100 mA
Max. output current sunk by a single I/O port (PORTA, B, C, D or E)	100 mA

- **Note 1:** Voltage spikes below Vss at the MCLR pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50 to 100Ω should be used when applying a "low" level to the MCLR pin rather than pulling this pin directly to Vss.
 - 2: Power Dissipation is calculated as follows: Pdis = VDD x {IDD Σ IOH} + Σ {(VDD VOH) x IOH} + Σ (VOL x IOL)

†NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

PIC16F5X

Standard Operating Conditions (unless otherwise specified)							
	JIERISTICS	Operating temperature $-40^{\circ}C \le 1A \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended					
Parameter No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
-	Fosc	External CLKIN Frequency ⁽¹⁾	DC		4.0	MHz	XT Osc mode
			DC	—	20	MHz	HS Osc mode
			DC	—	200	kHz	LP Osc mode
		Oscillator Frequency ⁽¹⁾	DC	—	4.0	MHz	RC Osc mode
			0.1	—	4.0	MHz	XT Osc mode
			4.0	—	20	MHz	HS Osc mode
			5.0	—	200	kHz	LP Osc mode
1	Tosc	External CLKIN Period ⁽¹⁾	250	—		ns	XT Osc mode
			50	—	—	ns	HS Osc mode
			5.0	—	_	μs	LP Osc mode
		Oscillator Period ⁽¹⁾	250	—	—	ns	RC Osc mode
			250	—	10,000	ns	XT Osc mode
			50	—	250	ns	HS Osc mode
			5.0	—	_	μs	LP Osc mode
2	TCY	Instruction Cycle Time ⁽²⁾	—	4/Fosc	_	—	
3	TosL, TosH	Clock in (OSC1) Low or High	50*	—	—	ns	XT oscillator
		Time	20*	—	—	ns	HS oscillator
			2.0*	—	_	μs	LP oscillator
4	TosR, TosF	Clock in (OSC1) Rise or Fall	_		25*	ns	XT oscillator
		Time	—	—	5*	ns	HS oscillator
			—	—	50*	ns	LP oscillator

TABLE 11-1: EXTERNAL CLOCK TIMING REQUIREMENTS

* These parameters are characterized but not tested.

† Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

2: Instruction cycle period (TCY) equals four times the input oscillator time base period.

APPENDIX A: DATA SHEET REVISION HISTORY

Revision D (04/2007)

Changed PICmicro to PIC; Replaced Dev. Tool Section; Updated Package Marking Information and replaced Package Drawings (Rev. AP)

Α

Absolute Maximum Ratings	
PIC1654/57	
PIC1659	
ADDWF	
ALU	7
ANDLW	
ANDWF	
Applications	5
Architectural Overview	7
Assembler	
MPASM Assembler	54

В

Block Diagram	
On-Chip Reset Circuit	
PIC16F5X Series	
Timer0	
TMR0/WDT Prescaler	
Watchdog Timer	
Brown-Out Protection Circuit	
BSF	
BTFSC	
BTFSS	

С

C Compilers	
MPLAB C18	54
MPLAB C30	54
CALL	
Carry (C) bit	7, 17
Clocking Scheme	
CLRF	45
CLRW	45
CLRWDT	45
Code Protection	
COMF	
Configuration Bits	
Customer Change Notification Service	
Customer Notification Service	83
Customer Support	83

D

DC Characteristics	
Commercial	62
Extended	61
Industrial	60, 62
DECF	
DECFSZ	
Development Support	
Device Reset Timer (DRT)	
Digit Carry (DC) bit	7, 17
DRT	

Е

Electrical Specifications	
PIC16F54/57	57
PIC16F59	
Errata	
External Power-On Reset Circuit	25

F

FSR Register	20
Value on Reset (PIC16F54)	
Value on Reset (PIC16F57)	
Value on Reset (PIC16F59)	24

G	
GOTO	47
······································	
Н	
High-Performance RISC CPU	. 1
1	
1	
I/O Interfacing	29
I/O Ports	29
I/O Programming Considerations	31
ID Locations	39
INCF	47
INCFSZ	47
INDF Register	20
Value on Reset2	24
Indirect Data Addressing 2	20
Instruction Cycle	12
Instruction Flow/Pipelining	12
Instruction Set Summary	41
Internet Address	83
IORLW	48
IORWF	48
L	
Loading of PC	19
м	
MCLR Reset	
Register values on 2	24
Memory Map	
PIC16F54	13
PIC16F57/59	13
Memory Organization	13
Microchip Internet Web Site 8	83
MOVF	48
MOVLW	48
MOVWF	49
MPLAB ASM30 Assembler, Linker, Librarian	54
MPLAB ICD 2 In-Circuit Debugger	55
MPLAB ICE 2000 High-Performance Universal	
In-Circuit Emulator	55
MPLAB Integrated Development Environment Software 5	53
MPLAB PM3 Device Programmer	55
MPLAB REAL ICE In-Circuit Emulator System	55
MPLINK Object Linker/MPLIB Object Librarian	54
NI .	
N	
NOP	49
0	
0	
Option	49
Option Register	18
Value on Reset	24
Oscillator Configurations	21
Oscillator Types	
HS	21
LP	21
RC	21
ХТ	21
P	
۲	
PA0 bit	17
PA1 bit	17
Paging	19
PC	19

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- **Product Support** Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com, click on Customer Change Notification and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support
- Development Systems Information Line

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

To:	Technical Publications Manager	Total Pages Sent			
RE:	Reader Response				
From	n: Name				
	Company				
	Address				
	City / State / ZIP / Country				
	Telephone: ()	FAX: ()			
Application (optional):					
Wou	ld you like a reply?YN				
Devi	ce: PIC16F5X	Literature Number: DS41213D			
Ques	stions:				
1. V	What are the best features of this do	ocument?			
_					
_					
2. H	How does this document meet your	hardware and software development needs?			
_					
_					
3. E	. Do you find the organization of this document easy to follow? If not, why?				
_					
4		in this lower dependent the structure and subject?			
4. V	what additions to the document do y	you think would enhance the structure and subject?			
-					
5. V	What deletions from the document c	could be made without affecting the overall usefulness?			
0					
_					
6. I	s there any incorrect or misleading i	information (what and where)?			
_					
7. H	How would you improve this docume	ent?			
_					
_					