

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	52
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	96K x 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj128gb206-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

High-Performance CPU

- Modified Harvard Architecture
- · Up to 16 MIPS Operation at 32 MHz
- 8 MHz Internal Oscillator
- 17-Bit x 17-Bit Single-Cycle Hardware Multiplier
- 32-Bit by 16-Bit Hardware Divider
- 16 x 16-Bit Working Register Array
- C Compiler Optimized Instruction Set Architecture with Flexible Addressing modes
- Linear Program Memory Addressing, up to 12 Mbytes
- Data Memory Addressing, up to 16 Mbytes:
 - 2K SFR space
 - 30K linear data memory
 - 66K extended data memory
 - Remaining (from 16 Mbytes) memory (external) can be accessed using extended data Memory (EDS) and EPMP (EDS is divided into 32-Kbyte pages)
- Two Address Generation Units for Separate Read and Write Addressing of Data Memory

Power Management:

- On-Chip Voltage Regulator of 1.8V
- · Switch between Clock Sources in Real Time
- Idle, Sleep and Doze modes with Fast Wake-up and Two-Speed Start-up
- Run Mode: 800 μA/MIPS, 3.3V Typical
- + Sleep mode Current Down to 20 $\mu\text{A},$ 3.3V Typical
- Standby Current with 32 kHz Oscillator: 22 $\mu\text{A},$ 3.3V Typical

Analog Features:

- 10-Bit, up to 24-Channel Analog-to-Digital (A/D) Converter at 500 ksps:
 - Operation is possible in Sleep mode
 - Band gap reference input feature
- Three Analog Comparators with Programmable
 Input/Output Configuration
- Charge Time Measurement Unit (CTMU):
 - Supports capacitive touch sensing for touch screens and capacitive switches
 - Minimum time measurement setting at 100 ps
- Available LVD Interrupt VLVD Level

Special Microcontroller Features:

- Operating Voltage Range of 2.2V to 3.6V
- 5.5V Tolerant Input (digital pins only)
- Configurable Open-Drain Outputs on Digital I/O Ports
- High-Current Sink/Source (18 mA/18 mA) on all I/O Ports
- Selectable Power Management modes:
- Sleep, Idle and Doze modes with fast wake-up
- Fail-Safe Clock Monitor (FSCM) Operation:
- Detects clock failure and switches to on-chip, FRC oscillator
- On-Chip LDO Regulator
- Power-on Reset (POR) and Oscillator Start-up Timer (OST)
- Brown-out Reset (BOR)
- Flexible Watchdog Timer (WDT) with On-Chip Low-Power RC Oscillator for Reliable Operation
- In-Circuit Serial Programming[™] (ICSP[™]) and In-Circuit Debug (ICD) via 2 Pins
- JTAG Boundary Scan Support
- Flash Program Memory:
 - 10,000 erase/write cycle endurance (minimum)
 - 20-year data retention minimum
 - Selectable write protection boundary
 - Self-reprogrammable under software control
 - Write protection option for Configuration Words

NOTES:

3.0 CPU

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the *"PIC24F Family Reference Manual"*, Section 44. "CPU with Extended Data Space (EDS)" (DS39732). The information in this data sheet supersedes the information in the FRM.

The PIC24F CPU has a 16-bit (data) modified Harvard architecture with an enhanced instruction set and a 24-bit instruction word with a variable length opcode field. The Program Counter (PC) is 23 bits wide and addresses up to 4M instructions of user program memory space. A single-cycle instruction prefetch mechanism is used to help maintain throughput and provides predictable execution. All instructions execute in a single cycle, with the exception of instructions that change the program flow, the double-word move (MOV.D) instruction and the table instructions. Overhead-free program loop constructs are supported using the REPEAT instructions, which are interruptible at any point.

PIC24F devices have sixteen, 16-bit working registers in the programmer's model. Each of the working registers can act as a data, address or address offset register. The 16th working register (W15) operates as a Software Stack Pointer for interrupts and calls.

The lower 32 Kbytes of the data space can be accessed linearly. The upper 32 Kbytes of the data space are referred to as extended data space to which the extended data RAM, EPMP memory space or program memory can be mapped.

The Instruction Set Architecture (ISA) has been significantly enhanced beyond that of the PIC18, but maintains an acceptable level of backward compatibility. All PIC18 instructions and addressing modes are supported, either directly, or through simple macros. Many of the ISA enhancements have been driven by compiler efficiency needs. The core supports Inherent (no operand), Relative, Literal, Memory Direct Addressing modes along with three groups of addressing modes. All modes support Register Direct and various Register Indirect modes. Each group offers up to seven addressing modes. Instructions are associated with predefined addressing modes depending upon their functional requirements.

For most instructions, the core is capable of executing a data (or program data) memory read, a working register (data) read, a data memory write and a program (instruction) memory read per instruction cycle. As a result, three parameter instructions can be supported, allowing trinary operations (that is, A + B = C) to be executed in a single cycle.

A high-speed, 17-bit x 17-bit multiplier has been included to significantly enhance the core arithmetic capability and throughput. The multiplier supports Signed, Unsigned and Mixed mode, 16-bit x 16-bit or 8-bit x 8-bit, integer multiplication. All multiply instructions execute in a single cycle.

The 16-bit ALU has been enhanced with integer divide assist hardware that supports an iterative non-restoring divide algorithm. It operates in conjunction with the REPEAT instruction looping mechanism and a selection of iterative divide instructions to support 32-bit (or 16-bit), divided by 16-bit, integer signed and unsigned division. All divide operations require 19 cycles to complete but are interruptible at any cycle boundary.

The PIC24F has a vectored exception scheme with up to 8 sources of non-maskable traps and up to 118 interrupt sources. Each interrupt source can be assigned to one of seven priority levels.

A block diagram of the CPU is shown in Figure 3-1.

3.1 Programmer's Model

The programmer's model for the PIC24F is shown in Figure 3-2. All registers in the programmer's model are memory mapped and can be manipulated directly by instructions. A description of each register is provided in Table 3-1. All registers associated with the programmer's model are memory mapped.

TABLE 4-6: INTERRUPT CONTROLLER REGISTER MAP (CONTINUED)

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IPC16	00C4		CRCIP2	CRCIP1	CRCIP0		U2ERIP2	U2ERIP1	U2ERIP0		U1ERIP2	U1ERIP1	U1ERIP0		—	—	—	4440
IPC18	00C8	_	_	_	—			_	_		_	_	—		LVDIP2	LVDIP1	LVDIP0	0004
IPC19	00CA		_		—				_		CTMUIP2	CTMUIP1	CTMUIP0		—	—	—	0040
IPC20	00CC	_	U3TXIP2	U3TXIP1	U3TXIP0		U3RXIP2	U3RXIP1	U3RXIP0		U3ERIP2	U3ERIP1	U3ERIP0	_	_	_	_	4440
IPC21	00CE		U4ERIP2	U4ERIP1	U4ERIP0		USB1IP2	USB1IP1	USB1IP0		MI2C3IP2	MI2C3IP1	MI2C3IP0		SI2C3IP2	SI2C3IP1	SI2C3IP0	4444
IPC22	00D0		SPI3IP2	SPI3IP1	SPI3IP0		SPF3IP2	SPF3IP1	SPF3IP0		U4TXIP2	U4TXIP1	U4TXIP0		U4RXIP2	U4RXIP1	U4RXIP0	4444
IPC23	00D2	_	_	_	_	_	_	_	_	_	IC9IP2	IC9IP1	IC9IP0	_	OC9IP2	OC9IP1	OC9IP0	0044
INTTREG	00E0	CPUIRQ	_	VHOLD	—	ILR3	ILR2	ILR1	ILR0	-	VECNUM6	VECNUM5	VECNUM4	VECNUM3	VECNUM2	VECNUM1	VECNUM0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-7: TIMER REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TMR1	0100	Timer1 Register								0000								
PR1	0102		Timer1 Period Register							FFFF								
T1CON	0104	TON	_	TSIDL	—	_	_	_	_	_	TGATE	TCKPS1	TCKPS0	_	TSYNC	TCS	_	0000
TMR2	0106		Timer2 Register								0000							
TMR3HLD	0108		Timer3 Holding Register (for 32-bit timer operations only) 0								0000							
TMR3	010A		Timer3 Register 01								0000							
PR2	010C	Timer2 Period Register							FFFF									
PR3	010E								Timer3 Peri	od Register								FFFF
T2CON	0110	TON	_	TSIDL	—	_	_	_	_	_	TGATE	TCKPS1	TCKPS0	T32	_	TCS	_	0000
T3CON	0112	TON	_	TSIDL	—	_	_	_	_	_	TGATE	TCKPS1	TCKPS0	—	_	TCS	_	0000
TMR4	0114								Timer4 I	Register								0000
TMR5HLD	0116						Т	imer5 Holdir	ng Register (for 32-bit op	erations only	()						0000
TMR5	0118								Timer5 I	Register								0000
PR4	011A								Timer4 Peri	od Register								FFFF
PR5	011C								Timer5 Peri	od Register								FFFF
T4CON	011E	TON	_	TSIDL	_	_	_	_	_	_	TGATE	TCKPS1	TCKPS0	T45	_	TCS		0000
T5CON	0120	TON	_	TSIDL	_	_	_	_	_	_	TGATE	TCKPS1	TCKPS0	_	_	TCS	_	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

FIGURE 4-10: PROGRAM SPACE VISIBILITY OPERATION TO ACCESS LOWER WORD

FIGURE 4-11: PROGRAM SPACE VISIBILITY OPERATION TO ACCESS HIGHER WORD

REGISTER 7-6: IFS1: INTERRUPT FLAG STATUS REGISTER 1 (CONTINUED)

bit 5	Unimplemented: Read as '0'
bit 4	INT1IF: External Interrupt 1 Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred
bit 3	CNIF: Input Change Notification Interrupt Flag Status bit 1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 2	CMIF: Comparator Interrupt Flag Status bit
	1 = Interrupt request has occurred0 = Interrupt request has not occurred
bit 1	MI2C1IF: Master I2C1 Event Interrupt Flag Status bit
	1 = Interrupt request has occurred0 = Interrupt request has not occurred
bit 0	SI2C1IF: Slave I2C1 Event Interrupt Flag Status bit
	1 = Interrupt request has occurred0 = Interrupt request has not occurred

REGISTER 7-7: IFS2: INTERRUPT FLAG STATUS REGISTER 2

U-0	U-0	R/W-0, HS					
—	—	PMPIF	OC8IF	OC7IF	OC6IF	OC5IF	IC6IF
bit 15							bit 8

R/W-0, HS	R/W-0, HS	R/W-0, HS	U-0	U-0	U-0	R/W-0, HS	R/W-0, HS
IC5IF	IC4IF	IC3IF	—	—	—	SPI2IF	SPF2IF
bit 7							bit 0

Legend:	HS = Hardware Settable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13	PMPIF: Parallel Master Port Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 12	OC8IF: Output Compare Channel 8 Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 11	OC7IF: Output Compare Channel 7 Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 10	OC6IF: Output Compare Channel 6 Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 9	OC5IF: Output Compare Channel 5 Interrupt Flag Status bit
	 Interrupt request has occurred
	0 = Interrupt request has not occurred

REGISTER 7-16: IEC5: INTERRUPT ENABLE CONTROL REGISTER 5 (CONTINUED)

- **U3ERIE:** UART3 Error Interrupt Enable bit
 - 1 = Interrupt request is enabled
 - 0 = Interrupt request is not enabled
- bit 0 Unimplemented: Read as '0'

bit 1

REGISTER 7-17: IPC0: INTERRUPT PRIORITY CONTROL REGISTER 0

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—	T1IP2	T1IP1	T1IP0	—	OC1IP2	OC1IP1	OC1IP0
bit 15							bit 8

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—	IC1IP2	IC1IP1	IC1IP0	—	INT0IP2	INT0IP1	INT0IP0
bit 7		•					bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	Unimplemented: Read as '0'
bit 14-12	T1IP<2:0>: Timer1 Interrupt Priority bits
	111 = Interrupt is priority 7 (highest priority interrupt)
	•
	•
	• 001 - Interrupt is priority 1
	000 = Interrupt source is disabled
bit 11	Unimplemented: Read as '0'
bit 10-8	OC1IP<2:0>: Output Compare Channel 1 Interrupt Priority bits
	111 = Interrupt is priority 7 (highest priority interrupt)
	•
	•
	•
	001 = Interrupt is priority 1
hit 7	Unimplemented: Bood on '0'
bit 6-4	IC1IP<2:0>: Input Capture Channel 1 Interrupt Priority bits
	111 = Interrupt is priority 7 (highest priority interrupt)
	•
	001 = Interrupt is priority 1
	000 = Interrupt source is disabled
bit 3	Unimplemented: Read as '0'
bit 2-0	INT0IP<2:0>: External Interrupt 0 Priority bits
	111 = Interrupt is priority 7 (highest priority interrupt)
	•
	•
	001 = Interrupt is priority 1
	000 = Interrupt source is disabled

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0	
_	U3TXIP2	U3TXIP1	U3TXIP0	_	U3RXIP2	U3RXIP1	U3RXIP0	
bit 15							bit 8	
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0	
	U3ERIP2	U3ERIP1	U3ERIP0	<u> </u>			—	
bit 7							bit 0	
Legend:								
R = Readab	ole bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'		
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown	
bit 15	Unimplemen	ted: Read as '	0'					
bit 14-12	U3TXIP<2:0>	: UART3 Trans	smitter Interrup	ot Priority bits				
	111 = Interru	pt is priority 7 (highest priority	interrupt)				
	•							
	•							
	001 = Interru	pt is priority 1 pt source is dis	abled					
bit 11	Unimplemen	ted: Read as '	0'					
bit 10-8	U3RXIP<2:0	: UART3 Rece	eiver Interrupt F	Priority bits				
	111 = Interru	pt is priority 7 (highest priority	interrupt)				
	•	, , ,	0 1 3	1,				
	•							
	001 = Interru	pt is priority 1						
	000 = Interru	pt source is dis	abled					
bit 7	Unimplemen	ted: Read as '	0'					
bit 6-4	U3ERIP<2:0>	: UART3 Error	Interrupt Prior	rity bits				
	111 = Interru	pt is priority 7 (highest priority	interrupt)				
	•							
	•							
	001 = Interru	pt is priority 1						
	000 = Interru	pt source is dis	abled					
bit 3-0	Unimplemen	Unimplemented: Read as '0'						

REGISTER 7-35: IPC20: INTERRUPT PRIORITY CONTROL REGISTER 20

REGISTER 7-38: IPC23: INTERRUPT PRIORITY CONTROL REGISTER 23

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—	IC9IP2	IC9IP1	IC9IP0	—	OC9IP2	OC9IP1	OC9IP0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as 'O'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-7 bit 6-4	Unimplemented: Read as '0' IC9IP<2:0>: Input Capture Channel 9 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt)
	000 = Interrupt source is disabled
bit 3	Unimplemented: Read as '0'
bit 2-0	OC9IP<2:0>: Output Compare Channel 9 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) 001 = Interrupt is priority 1 000 = Interrupt source is disabled
	-

REGISTER 7-39: INTTREG: INTERRUPT CONTROLLER TEST REGISTER

R-0, HSC	U-0	R/W-0	U-0	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC
CPUIRQ	—	VHOLD	—	ILR3	ILR2	ILR1	ILR0
bit 15							bit 8
U-0	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC
_	VECNUM6	VECNUM5	VECNUM4	VECNUM3	VECNUM2	VECNUM1	VECNUM0
bit 7							bit 0
Legend:		HSC = Hardw	are Settable/C	learable bit			
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value at POR '1' = Bit is set				'0' = Bit is clea	ared	x = Bit is unkr	iown
bit 15	CPUIRQ: Inte	errupt Request	from Interrupt (Controller CPU	bit		
	1 = An interru	upt request has	s occurred but	has not yet bee	en Acknowledg	ed by the CPU	; this happens
	when the	CPU priority is	s higher than th	e interrupt prio	rity		
hit 14		tod: Pood as '	,	u .			
bit 13		or Number Car	oture Configura	ation bit			
bit 15	1 = The VEC	NUM bits conta	ain the value of	the highest pri	iority pendina i	nterrunt	
	0 = The VEC	NUM bits conta	ain the value of	the last Ackno	wledged interr	upt (i.e., the las	t interrupt that
	has occu	rred with highe	r priority than t	he CPU, even i	if other interrup	ots are pending)
bit 12	Unimplemen	ted: Read as '	כי				
bit 11-8	ILR<3:0>: Ne	w CPU Interru	ot Priority Leve	l bits			
	1111 = CPU	Interrupt Priorit	y Level is 15				
	•						
	•						
	0001 = CPU	Interrupt Priorit	y Level is 1				
	0000 = CPU	Interrupt Priorit	y Level is 0				
bit 7	Unimplemen	ted: Read as ')'				
bit 6-0	VECNUM<5:0	D>: Vector Num	ber of Pending	g Interrupt or La	ast Acknowledg	ged Interrupt bit	S
	VHOLD = 1: VHOLD = 0:	The VECNUM The VECNUM currently being	bits indicate the bits indicate the handled	e vector numbe he vector num	er (from 0 to 118 ber (from 0 to	3) of the last int 118) of the int	errupt to occur errupt request

OSCTUN: FRC OSCILLATOR TUNE REGISTER

REGISTER 8-3:

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
		—		_	—	—	_
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		TUN5 ⁽¹⁾	TUN4 ⁽¹⁾	TUN3 ⁽¹⁾	TUN2 ⁽¹⁾	TUN1 ⁽¹⁾	TUN0 ⁽¹⁾
bit 7	•			•	•	•	bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
bit 15-6	Unimplemen	ted: Read as '	0'				
bit 5-0	TUN<5:0>: F	RC Oscillator T	uning bits ⁽¹⁾				
	011111 = Ma	aximum freque	ncy deviation				
	011110 =						
	•						
	000001 =						
	000000 = Ce	enter frequency	, oscillator is r	unning at factor	y calibrated fre	quency	
	111111 =						
	•						
	100001 =						
	100000 = Mi	inimum frequer	ncy deviation				
		•	-				

Note 1: Increments or decrements of TUN<5:0> may not change the FRC frequency in equal steps over the FRC tuning range and may not be monotonic.

To set up the SPI module for the Enhanced Buffer Master mode of operation:

- 1. If using interrupts:
 - a) Clear the SPIxIF bit in the respective IFS register.
 - b) Set the SPIxIE bit in the respective IEC register.
 - c) Write the SPIxIP bits in the respective IPC register.
- Write the desired settings to the SPIxCON1 and SPIxCON2 registers with MSTEN (SPIxCON1<5>) = 1.
- 3. Clear the SPIROV bit (SPIxSTAT<6>).
- 4. Select Enhanced Buffer mode by setting the SPIBEN bit (SPIxCON2<0>).
- Enable SPI operation by setting the SPIEN bit (SPIxSTAT<15>).
- 6. Write the data to be transmitted to the SPIxBUF register. Transmission (and reception) will start as soon as data is written to the SPIxBUF register.

To set up the SPI module for the Enhanced Buffer Slave mode of operation:

- 1. Clear the SPIxBUF register.
- 2. If using interrupts:
 - a) Clear the SPIxIF bit in the respective IFS register.
 - b) Set the SPIxIE bit in the respective IEC register.
 - c) Write the SPIxIP bits in the respective IPC register to set the interrupt priority.
- Write the desired settings to the SPIxCON1 and SPIxCON2 registers with MSTEN (SPIxCON1<5>) = 0.
- 4. Clear the SMP bit.
- 5. If the CKE bit is set, then the SSEN bit must be set, thus enabling the SSx pin.
- 6. Clear the SPIROV bit (SPIxSTAT<6>).
- 7. Select Enhanced Buffer mode by setting the SPIBEN bit (SPIxCON2<0>).
- 8. Enable SPI operation by setting the SPIEN bit (SPIxSTAT<15>).

FIGURE 15-2: SPIX MODULE BLOCK DIAGRAM (ENHANCED MODE)

REGISTER 15-2: SPIXCON1: SPIX CONTROL REGISTER 1 (CONTINUED)

- bit 4-2 SPRE<2:0>: Secondary Prescale bits (Master mode)
 - 111 = Secondary prescale 1:1
 - 110 = Secondary prescale 2:1
 - .

 - 000 = Secondary prescale 8:1
- bit 1-0 **PPRE<1:0>:** Primary Prescale bits (Master mode)
 - 11 = Primary prescale 1:1
 - 10 = Primary prescale 4:1
 - 01 = Primary prescale 16:1
 - 00 = Primary prescale 64:1
- Note 1: If DISSCK = 0, SCKx must be configured to an available RPn pin. See Section 10.4 "Peripheral Pin Select (PPS)" for more information.
 - 2: If DISSDO = 0, SDOx must be configured to an available RPn pin. See Section 10.4 "Peripheral Pin Select (PPS)" for more information.
 - **3:** The CKE bit is not used in the Framed SPI modes. The user should program this bit to '0' for the Framed SPI modes (FRMEN = 1).
 - 4: If SSEN = 1, SSx must be configured to an available RPn/PRIn pin. See Section 10.4 "Peripheral Pin Select (PPS)" for more information.

REGISTER 20-6: WKDYHR: WEEKDAY AND HOURS VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	R/W-x, HSC	R/W-x, HSC	R/W-x, HSC
—	—	—	—	—	WDAY2	WDAY1	WDAY0
bit 15							bit 8

U-0	U-0	R/W-x, HSC					
—	—	HRTEN1	HRTEN0	HRONE3	HRONE2	HRONE1	HRONE0
bit 7							bit 0

Legend:	HSC = Hardware Settable/Clearable bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknown			

bit 15-11	Unimplemented: Read as '0'
bit 10-8	WDAY<2:0>: Binary Coded Decimal Value of Weekday Digit bits
	Contains a value from 0 to 6.
bit 7-6	Unimplemented: Read as '0'
bit 5-4	HRTEN<1:0>: Binary Coded Decimal Value of Hour's Tens Digit bits
	Contains a value from 0 to 2.
bit 3-0	HRONE<3:0>: Binary Coded Decimal Value of Hour's Ones Digit bits
	Contains a value from 0 to 9.

Note 1: A write to this register is only allowed when RTCWREN = 1.

REGISTER 20-7: MINSEC: MINUTES AND SECONDS VALUE REGISTER

U-0	R/W-x, HSC						
—	MINTEN2	MINTEN1	MINTEN0	MINONE3	MINONE2	MINONE1	MINONE0
bit 15							bit 8

U-0	R/W-x, HSC						
—	SECTEN2	SECTEN1	SECTEN0	SECONE3	SECONE2	SECONE1	SECONE0
bit 7							bit 0

Legend:	HSC = Hardware Settable/Clearable bit				
R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15	Unimplemented: Read as '0'
bit 14-12	MINTEN<2:0>: Binary Coded Decimal Value of Minute's Tens Digit bits
	Contains a value from 0 to 5.
bit 11-8	MINONE<3:0>: Binary Coded Decimal Value of Minute's Ones Digit bits
	Contains a value from 0 to 9.
bit 7	Unimplemented: Read as '0'
bit 6-4	SECTEN<2:0>: Binary Coded Decimal Value of Second's Tens Digit bits
	Contains a value from 0 to 5.
bit 3-0	SECONE<3:0>: Binary Coded Decimal Value of Second's Ones Digit bits
	Contains a value from 0 to 9.

FIGURE 20-2:	ALARM MASK SETTINGS

Alarm Mask Setting (AMASK<3:0>)	Day of the Week	Month Day	Hours Minutes Seconds
0000 – Every half second 0001 – Every second			
0010 - Every 10 seconds			
0011 – Every minute			
0100 – Every 10 minutes			m : s s
0101 – Every hour			
0110 – Every day			h h ; m m ; s s
0111 – Every week	d		h h : m m : s s
1000 – Every month		/ d_ d	h h ; m m ; s s
1001 – Every year ⁽¹⁾		m m / d d	h h : m m : s s
Note 1: Annually, except when co	nfigured for I	February 29.	

NOTES:

REGISTER 21-4: CRCXORH: CRC XOR HIGH REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
X31	X30	X29	X28	X27	X26	X25	X24
bit 15			·		·	·	bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
X23	X22	X21	X20	X19	X18	X17	X16
bit 7							bit 0
Legend:							
			1. 11				

R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 15-0 X<31:16>: XOR of Polynomial Term xⁿ Enable bits

REGISTER 21-5: CRCDATL: CRC DATA LOW REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
DATA15	DATA14	DATA13	DATA12	DATA11	DATA10	DATA9	DATA8
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| DATA7 | DATA6 | DATA5 | DATA4 | DATA3 | DATA2 | DATA1 | DATA0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 DATA<15:0>: CRC Input Data bits

Writing to this register fills the FIFO; reading from this register returns '0'.

REGISTER 21-6: CRCDATH: CRC DATA HIGH REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
DATA15	DATA14	DATA13	DATA12	DATA11	DATA10	DATA9	DATA8
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
DATA7	DATA6	DATA5	DATA4	DATA3	DATA2	DATA1	DATA0
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bit		U = Unimplemented bit, read as '0'			
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	

bit 15-0 DATA<15:0>: CRC Input Data bits

Writing to this register fills the FIFO; reading from this register returns '0'.

22.0 10-BIT HIGH-SPEED A/D CONVERTER

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "PIC24F Family Reference Manual", Section 17. "10-Bit A/D Converter" (DS39705). The information in this data sheet supersedes the information in the FRM.

The 10-bit A/D Converter has the following key features:

- · Successive Approximation (SAR) conversion
- · Conversion speeds of up to 500 ksps
- 24 analog input pins (PIC24FJXXXGBX10 devices) and 16 analog input pins (PIC24FJXXXGBX06 devices)
- External voltage reference input pins
- Internal band gap reference inputs
- · Automatic Channel Scan mode
- · Selectable conversion trigger source
- 32-word conversion result buffer
- · Selectable Buffer Fill modes
- · Four result alignment options
- · Operation during CPU Sleep and Idle modes

On all PIC24FJ256GB210 family devices, the 10-bit A/D Converter has 24 analog input pins, designated AN0 through AN23. In addition, there are two analog input pins for external voltage reference connections (VREF+ and VREF-). These voltage reference inputs may be shared with other analog input pins.

A block diagram of the A/D Converter is shown in Figure 22-1.

To perform an A/D conversion:

- 1. Configure the A/D module:
 - Configure the port pins as analog inputs and/or select band gap reference inputs (ANCFG registers).
 - b) Select the voltage reference source to match the expected range on analog inputs (AD1CON2<15:13>).
 - c) Select the analog conversion clock to match the desired data rate with the processor clock (AD1CON3<7:0>).
 - d) Select the appropriate sample/conversion sequence (AD1CON1<7:5> and AD1CON3<12:8>).
 - e) Select how the conversion results are presented in the buffer (AD1CON1<9:8>).
 - f) Select the interrupt rate (AD1CON2<6:2>).
 - g) Turn on the A/D module (AD1CON1<15>).
- 2. Configure the A/D interrupt (if required):
 - a) Clear the AD1IF bit.
 - b) Select the A/D interrupt priority.

TABLE 29-6: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

DC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Parameter No.	Typical ⁽¹⁾	Мах	Units	its Conditions				
Power-Down Current (IPD) ⁽²⁾								
DC60D	20.0	45	μA	-40°C				
DC60E	20.0	45	μA	+25°C	<u>2 2∖/(3)</u>	Rase newer down current(4)		
DC60H	55.0	105	μA	+60°C	3.3007	Base power-down current		
DC60F	95.0	185	μA	+85°C				
DC61D	1.0	3.5	μA	-40°C		31 kHz LPRC oscillator with RTCC, WDT or Timer1: ∆lLPRC ⁽⁴⁾		
DC61E	1.0	3.5	μA	+25°C	3 31/(3)			
DC61H	1.0	3.5	μA	+60°C	5.500			
DC61F	2.5	6.5	μA	+85°C				
DC62D	1.5	6	μA	-40°C				
DC62E	1.5	6	μA	+25°C	3 31/(3)	Low drive strength, 32 kHz crystal		
DC62H	1.5	6	μA	+60°C	3.30 ()	SOSCSEL<1:0> = $01^{(4)}$		
DC62F	8.0	18	μA	+85°C				
DC63D	4.0	18	μΑ	-40°C				
DC63E	4.0	18	μA	+25°C	3 3\/(3)	32 kHz crystal		
DC63H	6.5	18	μA	+60°C	5.5000	SOSCSEL<1:0> = 11(4)		
DC63F	12.0	25	μA	+85°C				

Note 1: Data in the Typical column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: Base IPD is measured with the device in Sleep mode (all peripherals and clocks are shut down). All I/Os are configured as inputs and pulled high. WDT, etc., are all switched off, PMSLP bit is clear and the Peripheral Module Disable (PMD) bits for all unused peripherals are set.

3: On-chip voltage regulator enabled (ENVREG tied to VDD). Brown-out Reset (BOR) is enabled.

4: The △ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.

30.0 **PACKAGING INFORMATION**

30.1 **Package Marking Information**

64-Lead TQFP (10x10x1 mm)

NNN Alphanumeric traceability code (e3) Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package.

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.