

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	52
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	96K × 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-VQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj128gb206t-i-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

64/100-Pin, 16-Bit Flash Microcontrollers with USB On-The-Go (OTG)

Universal Serial Bus Features:

- · USB v2.0 On-The-Go (OTG) Compliant
- Dual Role Capable Can act as either Host or Peripheral
- Low-Speed (1.5 Mbps) and Full-Speed (12 Mbps) USB Operation in Host mode
- Full-Speed USB Operation in Device mode
- High-Precision PLL for USB
- · Supports up to 32 Endpoints (16 bidirectional):
- USB module can use the internal RAM location from 0x800 to 0xFFFF as USB endpoint buffers
- On-Chip USB Transceiver with Interface for Off-Chip Transceiver
- Supports Control, Interrupt, Isochronous and Bulk Transfers
- On-Chip Pull-up and Pull-Down Resistors

Peripheral Features:

- Enhanced Parallel Master Port/Parallel Slave Port (EPMP/PSP):
 - Direct access from CPU with an Extended Data Space (EDS) interface
 - 4, 8 and 16-bit wide data bus
 - Up to 23 programmable address lines
 - Up to 2 chip select lines
 - Up to 2 Acknowledgement lines (one per chip select)
 - Programmable address/data multiplexing
 - Programmable address and data Wait states
 - Programmable polarity on control signals

Peripheral Features (Continued):

- Peripheral Pin Select:
 Up to 44 available pins (100-pin devices)
- Three 3-Wire/4-Wire SPI modules (supports 4 Frame modes)
- Three I²C[™] modules Supporting Multi-Master/Slave modes and 7-Bit/10-Bit Addressing
- Four UART modules:
 Supports RS-485, RS-232, LIN/J2602 protocols and IrDA[®]
- Five 16-Bit Timers/Counters with Programmable
 Prescaler
- Nine 16-Bit Capture Inputs, each with a Dedicated Time Base
- Nine 16-Bit Compare/PWM Outputs, each with a Dedicated Time Base
- Hardware Real-Time Clock and Calendar (RTCC)
- Enhanced Programmable Cyclic Redundancy Check (CRC) Generator
- · Up to 5 External Interrupt Sources

				R	emappa	able Per	ipheral	S							
PIC24FJ Device	Pins	Program Memory (bytes)	SRAM (bytes)	Remappable Pins	16-Bit Timers	IC/OC PWM	UART w/IrDA [®]	IdS	I²C™	10-Bit A/D (ch)	Comparators	стми	dSd/dWdЭ	RTCC	USB OTG
PIC24FJ128GB206	64	128K	96K	29	5	9/9	4	3	3	16	3	Y	Y	Y	Y
PIC24FJ256GB206	64	256K	96K	29	5	9/9	4	3	3	16	3	Y	Y	Υ	Y
PIC24FJ128GB210	100/121	128K	96K	44	5	9/9	4	3	3	24	3	Y	Y	Υ	Y
PIC24FJ256GB210	100/121	256K	96K	44	5	9/9	4	3	3	24	3	Y	Y	Y	Y

1.0 DEVICE OVERVIEW

This document contains device-specific information for the following devices:

- PIC24FJ128GB206
- PIC24FJ256GB206
- PIC24FJ128GB210
- PIC24FJ256GB210

The PIC24FJ256GB210 family enhances on the existing line of Microchip's 16-bit microcontrollers, adding a large data RAM, up to 96 Kbytes. The PIC24FJ256GB210 family allows the CPU to fetch data directly from an external memory device using the EPMP module.

1.1 Core Features

1.1.1 16-BIT ARCHITECTURE

Central to all PIC24F devices is the 16-bit modified Harvard architecture, first introduced with Microchip's dsPIC[®] Digital Signal Controllers (DSCs). The PIC24F CPU core offers a wide range of enhancements, such as:

- 16-bit data and 24-bit address paths with the ability to move information between data and memory spaces
- Linear addressing of up to 12 Mbytes (program space) and 32 Kbytes (data)
- A 16-element working register array with built-in software stack support
- A 17 x 17 hardware multiplier with support for integer math
- Hardware support for 32 by 16-bit division
- An instruction set that supports multiple addressing modes and is optimized for high-level languages, such as 'C'
- Operational performance up to 16 MIPS

1.1.2 POWER-SAVING TECHNOLOGY

All of the devices in the PIC24FJ256GB210 family incorporate a range of features that can significantly reduce power consumption during operation. Key items include:

• **On-the-Fly Clock Switching:** The device clock can be changed under software control to the Timer1 source or the internal, low-power RC oscillator during operation, allowing the user to incorporate power-saving ideas into their software designs.

- **Doze Mode Operation:** When timing-sensitive applications, such as serial communications, require the uninterrupted operation of peripherals, the CPU clock speed can be selectively reduced, allowing incremental power savings without missing a beat.
- Instruction-Based Power-Saving Modes: The microcontroller can suspend all operations, or selectively shut down its core while leaving its peripherals active with a single instruction in software.

1.1.3 OSCILLATOR OPTIONS AND FEATURES

All of the devices in the PIC24FJ256GB210 family offer five different oscillator options, allowing users a range of choices in developing application hardware. These include:

- Two Crystal modes using crystals or ceramic resonators.
- Two External Clock modes offering the option of a divide-by-2 clock output.
- A Fast Internal Oscillator (FRC) with a nominal 8 MHz output, which can also be divided under software control to provide clock speeds as low as 31 kHz.
- A Phase Lock Loop (PLL) frequency multiplier, available to the external oscillator modes and the FRC oscillator, which allows clock speeds of up to 32 MHz.
- A separate Low-Power Internal RC Oscillator (LPRC) with a fixed 31 kHz output, which provides a low-power option for timing-insensitive applications.

The internal oscillator block also provides a stable reference source for the Fail-Safe Clock Monitor (FSCM). This option constantly monitors the main clock source against a reference signal provided by the internal oscillator and enables the controller to switch to the internal oscillator, allowing for continued low-speed operation or a safe application shutdown.

1.1.4 EASY MIGRATION

Regardless of the memory size, all devices share the same rich set of peripherals, allowing for a smooth migration path as applications grow and evolve. The consistent pinout scheme used throughout the entire family also aids in migrating from one device to the next larger, or even in jumping from 64-pin to 100-pin devices.

The PIC24F family is pin compatible with devices in the dsPIC33 family, and shares some compatibility with the pinout schema for PIC18 and dsPIC30. This extends the ability of applications to grow from the relatively simple, to the powerful and complex, yet still selecting a Microchip device.

		Pin Number			Incost	
Function	64-Pin TQFP/QFN	100-Pin TQFP	121-Pin BGA	I/O	Input Buffer	Description
CN40	_	92	B5	Ι	ST	
CN41	_	28	L2	I	ST	
CN42	—	29	K3	Ι	ST	
CN43	—	66	E11	I	ST	
CN44	—	67	E8	Ι	ST	
CN45	—	6	D1	Ι	ST	
CN46	—	7	E4	Ι	ST	
CN47	—	8	E2	Ι	ST	
CN48	—	9	E1	Ι	ST	
CN49	46	72	D9	Ι	ST	
CN50	49	76	A11	Ι	ST	
CN51	50	77	A10	Ι	ST	
CN52	51	78	B9	Ι	ST	
CN53	42	68	E9	Ι	ST	
CN54	43	69	E10	Ι	ST	
CN55	44	70	D11	Ι	ST	
CN56	45	71	C11	Ι	ST	
CN57	—	79	A9	Ι	ST	
CN58	60	93	A4	Ι	ST	
CN59	61	94	B4	Ι	ST	Interrupt-on-Change Inputs
CN60	62	98	B3	Ι	ST	
CN61	63	99	A2	Ι	ST	
CN62	64	100	A1	Ι	ST	
CN63	1	3	D3	I	ST	
CN64	2	4	C1	Ι	ST	
CN65	3	5	D2	Ι	ST	
CN66	—	18	G1	I	ST	
CN67	—	19	G2	Ι	ST	
CN68	58	87	B6	I	ST	
CN69	59	88	A6		ST	
CN70	—	52	K11		ST	
CN71	33	51	K10		ST	
CN73	—	54	H8		ST	
CN74	—	53	J10	I	ST	
CN75	—	40	K6	I	ST	
CN76	—	39	L6		ST	
CN77	—	90	A5		ST	
CN78	—	89	E6		ST	
CN79	—	96	C3	I	ST	
CN80	—	97	A3	I	ST	
Legend:	TTL = TTL inp ANA = Analog	ut buffer level input/out	put		ST = I ² C™	Schmitt Trigger input buffer = I ² C/SMBus input buffer

TABLE 1-3: PIC24FJ256GB210 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

Note 1: The alternate EPMP pins are selected when the ALTPMP (CW3<12>) bit is programmed to '0'.

2: The PMSC2 signal will replace the PMA15 signal on the 15-pin PMA when CSF<1:0> = 01 or 10.

3: The PMCS1 signal will replace the PMA14 signal on the 14-pin PMA when CSF<1:0> = 10.

4: The alternate VREF pins selected when the ALTVREF (CW1<5>) bit is programmed to '0'.

3.0 CPU

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the *"PIC24F Family Reference Manual"*, Section 44. "CPU with Extended Data Space (EDS)" (DS39732). The information in this data sheet supersedes the information in the FRM.

The PIC24F CPU has a 16-bit (data) modified Harvard architecture with an enhanced instruction set and a 24-bit instruction word with a variable length opcode field. The Program Counter (PC) is 23 bits wide and addresses up to 4M instructions of user program memory space. A single-cycle instruction prefetch mechanism is used to help maintain throughput and provides predictable execution. All instructions execute in a single cycle, with the exception of instructions that change the program flow, the double-word move (MOV.D) instruction and the table instructions. Overhead-free program loop constructs are supported using the REPEAT instructions, which are interruptible at any point.

PIC24F devices have sixteen, 16-bit working registers in the programmer's model. Each of the working registers can act as a data, address or address offset register. The 16th working register (W15) operates as a Software Stack Pointer for interrupts and calls.

The lower 32 Kbytes of the data space can be accessed linearly. The upper 32 Kbytes of the data space are referred to as extended data space to which the extended data RAM, EPMP memory space or program memory can be mapped.

The Instruction Set Architecture (ISA) has been significantly enhanced beyond that of the PIC18, but maintains an acceptable level of backward compatibility. All PIC18 instructions and addressing modes are supported, either directly, or through simple macros. Many of the ISA enhancements have been driven by compiler efficiency needs. The core supports Inherent (no operand), Relative, Literal, Memory Direct Addressing modes along with three groups of addressing modes. All modes support Register Direct and various Register Indirect modes. Each group offers up to seven addressing modes. Instructions are associated with predefined addressing modes depending upon their functional requirements.

For most instructions, the core is capable of executing a data (or program data) memory read, a working register (data) read, a data memory write and a program (instruction) memory read per instruction cycle. As a result, three parameter instructions can be supported, allowing trinary operations (that is, A + B = C) to be executed in a single cycle.

A high-speed, 17-bit x 17-bit multiplier has been included to significantly enhance the core arithmetic capability and throughput. The multiplier supports Signed, Unsigned and Mixed mode, 16-bit x 16-bit or 8-bit x 8-bit, integer multiplication. All multiply instructions execute in a single cycle.

The 16-bit ALU has been enhanced with integer divide assist hardware that supports an iterative non-restoring divide algorithm. It operates in conjunction with the REPEAT instruction looping mechanism and a selection of iterative divide instructions to support 32-bit (or 16-bit), divided by 16-bit, integer signed and unsigned division. All divide operations require 19 cycles to complete but are interruptible at any cycle boundary.

The PIC24F has a vectored exception scheme with up to 8 sources of non-maskable traps and up to 118 interrupt sources. Each interrupt source can be assigned to one of seven priority levels.

A block diagram of the CPU is shown in Figure 3-1.

3.1 Programmer's Model

The programmer's model for the PIC24F is shown in Figure 3-2. All registers in the programmer's model are memory mapped and can be manipulated directly by instructions. A description of each register is provided in Table 3-1. All registers associated with the programmer's model are memory mapped.

REGISTER 7-10: IFS5: INTERRUPT FLAG STATUS REGISTER 5 (CONTINUED)

bit 1	U3ERIF: UART3 Error Interrupt Flag Status bit
	 Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 0	Unimplemented: Read as '0'

REGISTER 7-11: IEC0: INTERRUPT ENABLE CONTROL REGISTER 0

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPF1IE	T3IE
bit 15							bit 8
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
T2IE	OC2IE	IC2IE		T1IE	OC1IE	IC1IE	INTOIE
bit 7							bit 0
Logond							
R - Readable	a hit	W = Writable	bit		nented hit read	1 26 '0'	
n = Value at		'1' = Bit is set	bit	$0^{\circ} = \text{Bit is clear}$	ared	v = Bitis unkn	own
	TOR				arco		0001
bit 15-14	Unimplemen	ted: Read as ')'				
bit 13	AD1IE: A/D C	Conversion Con	nplete Interrupt	Enable bit			
	1 = Interrupt	request is enat	bled				
	0 = Interrupt	request is not e	enabled				
bit 12	U1TXIE: UAR	RT1 Transmitter	Interrupt Enat	ole bit			
	1 = Interrupt	request is enab	bled				
bit 11		TT1 Pocoivor Ir	torrunt Enable	hit			
DICTI		request is enab		DI			
	0 = Interrupt	request is not e	enabled				
bit 10	SPI1IE: SPI1	Transfer Comp	olete Interrupt E	Enable bit			
	1 = Interrupt	request is enab	bled				
	0 = Interrupt	request is not e	enabled				
bit 9	SPF1IE: SPI1	Fault Interrup	t Enable bit				
	1 = Interrupt	request is enab	bled				
bit 8	T3IE: Timer3	Interrunt Enabl					
bit o	1 = Interrunt	request is enab	oled				
	0 = Interrupt	request is not e	enabled				
bit 7	T2IE: Timer2	Interrupt Enabl	e bit				
	1 = Interrupt	request is enat	bled				
	0 = Interrupt	request is not e	enabled				
bit 6	OC2IE: Outpu	ut Compare Ch	annel 2 Interru	pt Enable bit			
	1 = Interrupt	request is enab	bled				
hit 5		anture Channe	al 2 Interrunt F	nahle hit			
	1 = nterrunt	request is enal	oled				
	0 = Interrupt	request is not e	enabled				
bit 4	Unimplemen	ted: Read as '	כי				

REGISTER 7-11: IEC0: INTERRUPT ENABLE CONTROL REGISTER 0 (CONTINUED)

bit 3	T1IE: Timer1 Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 2	OC1IE: Output Compare Channel 1 Interrupt Enable bit
	1 = Interrupt request is enabled0 = Interrupt request is not enabled
bit 1	IC1IE: Input Capture Channel 1 Interrupt Enable bit
	1 = Interrupt request is enabled0 = Interrupt request is not enabled
bit 0	INTOIE: External Interrupt 0 Enable bit
	1 = Interrupt request is enabled

0 = Interrupt request is not enabled

REGISTER 7-12: IEC1: INTERRUPT ENABLE CONTROL REGISTER 1

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
U2TXIE	U2RXIE	INT2IE ⁽¹⁾	T5IE	T4IE	OC4IE	OC3IE	—
bit 15							bit 8

R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IC8IE	IC7IE	—	INT1IE ⁽¹⁾	CNIE	CMIE	MI2C1IE	SI2C1IE
bit 7	-				•	•	bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	U2TXIE: UART2 Transmitter Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 14	U2RXIE: UART2 Receiver Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 13	INT2IE: External Interrupt 2 Enable bit ⁽¹⁾ 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 12	<pre>T5IE: Timer5 Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled</pre>
bit 11	T4IE: Timer4 Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 10	OC4IE: Output Compare Channel 4 Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled

Note 1: If an external interrupt is enabled, the interrupt input must also be configured to an available RPx or RPIx pin. See **Section 10.4 "Peripheral Pin Select (PPS)**" for more information.

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	T2IP2	T2IP1	T2IP0		OC2IP2	OC2IP1	OC2IP0
bit 15	·			•			bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
—	IC2IP2	IC2IP1	IC2IP0	—	—	—	—
bit 7							bit 0
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'	
-n = Value a	at POR	'1' = Bit is set	:	'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15	Unimplemen	ted: Read as '	0'				
bit 14-12	T2IP<2:0>: ⊤	imer2 Interrupt	Priority bits				
	111 = Interru	pt is priority 7	(highest priorit	y interrupt)			
	•						
	•						
	001 = Interru 000 = Interru	pt is priority 1 pt source is dis	sabled				
bit 11	Unimplemen	ted: Read as '	0'				
bit 10-8	OC2IP<2:0>:	Output Compa	are Channel 2	Interrupt Priori	ty bits		
	111 = Interru	pt is priority 7 (highest priorit	y interrupt)			
	•						
	•						
	001 = Interru	pt is priority 1					
	000 = Interru	pt source is dis	sabled				
bit 7	Unimplemen	ted: Read as '	0'				
bit 6-4	IC2IP<2:0>:	nput Capture (Channel 2 Inte	rrupt Priority bi	ts		
	111 = Interru	pt is priority 7	(highest priorit	y interrupt)			
	•						
	•						
	001 = Interru	pt is priority 1	ablad				
h it 0 0		pi source is dis					
DIT 3-0	Unimplemen	ted: Read as '	0				

REGISTER 7-18: IPC1: INTERRUPT PRIORITY CONTROL REGISTER 1

REGISTER 7-36: IPC21: INTERRUPT PRIORITY CONTROL REGISTER 21

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
	U4ERIP2	U4ERIP1	U4ERIP0		USB1IP2	USB1IP1	USB1IP0
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—	MI2C3IP2	MI2C3IP1	MI2C3IP0		SI2C3IP2	SI2C3IP1	SI2C3IP0
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	Unimplemer	nted: Read as '	o'				
bit 14-12	U4ERIP<2:0	>: UART4 Error	Interrupt Prior	rity bits			
	111 = Interru	pt is priority 7 (l	highest priority	interrupt)			
	•						
	•						
	001 = Interru	pt is priority 1					
	000 = Interru	ipt source is dis	abled				
bit 11	Unimplemer	ited: Read as '	0'				
bit 10-8	USB1IP<2:0	>: USB1 (USB	OTG) Interrupt	Priority bits			
	111 = Interru	ipt is priority 7 (I	highest priority	interrupt)			
	•						
	•						
	001 = Interru	ipt is priority 1	ablad				
hit 7			ableu				
bit 6 4	MI2C2ID-2:0	Neator 12C2	Event Interrur	at Driarity hita			
Dit 0-4	111 = Interru	nt is priority 7 (highest priority				
	•		ingrics: priority	interrupt)			
	•						
	• 001 = Interru	unt is priority 1					
	000 = Interru	ipt source is dis	abled				
bit 3	Unimplemer	nted: Read as '	o'				
bit 2-0	SI2C3IP<2:0	>: Slave I2C3 E	Event Interrupt	Priority bits			
	111 = Interru	pt is priority 7 (highest priority	interrupt)			
	•	, (- · · ·	. /			
	•						
	001 = Interru	pt is priority 1					
	000 = Interru	pt source is dis	abled				

15.0 SERIAL PERIPHERAL INTERFACE (SPI)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the *"PIC24F Family Reference Manual"*, Section 23. "Serial Peripheral Interface (SPI)" (DS39699). The information in this data sheet supersedes the information in the FRM.

The Serial Peripheral Interface (SPI) module is a synchronous serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, shift registers, display drivers, A/D Converters, etc. The SPI module is compatible with the SPI and SIOP Motorola[®] interfaces. All devices of the PIC24FJ256GB210 family include three SPI modules.

The module supports operation in two buffer modes. In Standard mode, data is shifted through a single serial buffer. In Enhanced Buffer mode, data is shifted through an 8-level FIFO buffer.

Note:	Do not perform read-modify-write opera-							
	tions (such as bit-oriented instructions) on							
	the SPIxBUF register in either Standard or							
	Enhanced Buffer mode.							

The module also supports a basic framed SPI protocol while operating in either Master or Slave mode. A total of four framed SPI configurations are supported.

The SPI serial interface consists of four pins:

- SDIx: Serial Data Input
- SDOx: Serial Data Output
- SCKx: Shift Clock Input or Output
- SSx: Active-Low Slave Select or Frame Synchronization I/O Pulse

The SPI module can be configured to operate using 2, 3 or 4 pins. In the 3-pin mode, SSx is not used. In the 2-pin mode, both SDOx and SSx are not used.

Block diagrams of the module in Standard and Enhanced modes are shown in Figure 15-1 and Figure 15-2.

Note: In this section, the SPI modules are referred to together as SPIx or separately as SPI1, SPI2 or SPI3. Special Function Registers will follow a similar notation. For example, SPIxCON1 and SPIxCON2 refer to the control registers for any of the 3 SPI modules.

REGISTER 15-1: SPIx STATUS AND CONTROL REGISTER

R/W-0	U-0	R/W-0	U-0	U-0	R-0, HSC	R-0, HSC	R-0, HSC			
SPIEN ⁽¹⁾	—	SPISIDL	—	_	SPIBEC2	SPIBEC1	SPIBEC0			
bit 15 bit 8										
R-0, HSC	R/C-0, HS	R-0, HSC	R/W-0	R/W-0	R/W-0	R-0, HSC	R-0, HSC			
SRMPT	SPIROV	SRXMPT	SISEL2	SISEL1	SISEL0	SPITBF	SPIRBF			
bit 7							bit 0			
Larand: C = Clearable bit HS - Hardware Sattable bit										
R = Readable	Legena: $U = Ulearable bit$ $HS = Hardware Settable bit$									
-n = Value at l	POR	(1) = Bit is set		0' = Bit is clea	ared	x = Bit is unkn	own			
HSC = Hardw	/are Settable/C	learable bit		o Bitloolo		X Dit io uniti	own			
							J			
bit 15	SPIEN: SPIX	Enable bit ⁽¹⁾								
	1 = Enables t	he module and	configures SC	CKx, SDOx, SD	Ix and \overline{SSx} as	serial port pins				
	0 = Disables	themodule								
bit 14	Unimplement	ted: Read as '0)'							
bit 13	SPISIDL: Stop	p in Idle Mode I	Dit 							
	1 = Discontin0 = Continue	module operat	ion in Idle mod	evice enters idi de	e mode					
bit 12-11	Unimplement	ted: Read as 'd)'							
bit 10-8	SPIBEC<2:0>	SPIx Buffer E	Element Count	bits (valid in E	nhanced Buffer	mode)				
	Master mode:					,				
	Number of SF	PI transfers pen	ding.							
	Slave mode:	l transfers unr	hee							
bit 7		Perister (SPIv	5au. SP) Empty bit	(valid in Enhar	aced Buffer mo	de)				
bit i	1 = SPIx Shift	t register (SF IX	otv and readv	to send or rece	ive					
	0 = SPIx Shift	t register is not	empty							
bit 6	SPIROV: Rec	eive Overflow I	-lag bit							
	1 = A new by	te/word is comp	letely received	and discarded	l					
	(The user soft 0 = No overfle	ware has not re ow has occurre	ad the previou	s data in the SF	PIxBUF register	.)				
bit 5	SRXMPT: Red	ceive FIFO Em	∽ otv bit (valid in	Enhanced Buf	ffer mode)					
	1 = Receive I	FIFO is empty								
	0 = Receive I	FIFO is not emp	oty							
bit 4-2	SISEL<2:0>:	SPIx Buffer Inte	errupt Mode bi	its (valid in Enh	anced Buffer m	node)				
	111 = Interru	pt when the SP	Ix transmit but	ffer is full (SPIT	BF bit is set)					
	110 = Interru	pt when the las nt when the las	t bit is shifted i t bit is shifted (INTO SPIXSR; as	s a result, the I	X FIFO is emp nit is complete	ty			
	100 = Interru	pt when one da	ita is shifted in	to the SPIxSR;	as a result, the	e TX FIFO has	one open spot			
	011 = Interru	pt when the SP	Ix receive buff	er is full (SPIR	BF bit set)					
	010 = Interru	pt when the SP	Ix receive buff	er is 3/4 or mo	re full	a a a t				
	001 = Interrupt when data is available in the receive buffer is read; as a result, the buffer is empty (SRYMPT)									
	bit set)						.r-) (e. 0 um 1			

Note 1: If SPIEN = 1, these functions must be assigned to available RPn/RPIn pins before use. See Section 10.4 "Peripheral Pin Select (PPS)" for more information.

REGISTER '	16-1: I2CxC	CON: I2Cx CC	ONTROL REC	GISTER					
R/W-0	U-0	R/W-0	R/W-1, HC	R/W-0	R/W-0	R/W-0	R/W-0		
I2CEN		I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN		
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC		
GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN		
bit 7							bit 0		
Legend:		HC = Hardwa	re Clearable bi	t					
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown		
bit 15	12CEN: I2Cx 1 = Enables 0 = Disables	Enable bit the I2Cx modul the I2Cx modu	le and configure le; all l ² C™ pir	es the SDAx ar	nd SCLx pins a d by port functi	s serial port pir ons	IS		
bit 14	Unimplemen	ted: Read as '	כי						
bit 13	I2CSIDL: Sto	p in Idle Mode	bit						
	1 = Discontin	ues module op	eration when d	levice enters a	n Idle mode				
hit 12			ntrol bit (when	operating as I ²	C slave)				
Dit 12	bit 12 SCLREL: SCLx Release Control bit (when operating as I ² C slave) 1 = Releases SCLx clock 0 = Holds SCLx clock low (clock stretch) If STREN = 1: Bit is R/W (i.e., software may write '0' to initiate stretch and write '1' to release clock). Hardware is clear at the beginning of slave transmission. Hardware is clear at the end of slave reception. If STREN = 0: Bit is R/S (i.e., software may only write '1' to release clock). Hardware is clear at the beginning of slave								
bit 11	IPMIEN: Intelligent Platform Management Interface (IPMI) Enable bit								
	1 = IPMI Sup 0 = IPMI mod	port mode is e de is disabled	nabled; all add	resses are Ack	nowledged				
bit 10	A10M: 10-Bit	Slave Address	ing bit						
	1 = I2CxADE 0 = I2CxADE) is a 10-bit slav) is a 7-bit slave	ve address e address						
bit 9	DISSLW: Disa	able Slew Rate	Control bit						
	1 = Slew rate 0 = Slew rate	e control is disa e control is enal	bled bled						
bit 8	SMEN: SMBL	is Input Levels	bit						
	1 = Enables 0 = Disables	I/O pin thresho the SMBus inp	lds compliant w out thresholds	vith SMBus spe	ecifications				
bit 7	 GCEN: General Call Enable bit (when operating as I²C slave) 1 = Enables interrupt when a general call address is received in the I2CxRSR (module is enabled for reception) a = General call address disabled 								
bit 6	STREN: SCL	x Clock Stretch	Enable bit (wh	ien operating a	s I ² C slave)				
	Used in conju 1 = Enables 0 = Disables	nction with the software or rec software or rec	SCLREL bit. eive clock stret eive clock stre	ching					

BUSY	—	ERROR	TIMEOUT	—	—	—	—			
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
RADDR23	RADDR22	RADDR21	RADDR20	RADDR19	RADDR18	RADDR17	RADDR16			
bit 7							bit 0			
r										
Legend:		HS = Hardware	e Settable bit	HSC = Hardwar	e Settable/Clearat	ole bit				
R = Reada	ble bit	W = Writable b	bit	U = Unimplemer	nted bit, read as '0'	C = Clearable	e bit			
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cleare	ed	x = Bit is unk	nown			
bit 15	BUSY: Busy	bit (Master mod	de only)							
	1 = Port is be	usy								
	0 = Port is no	ot busy								
bit 14	Unimplemen	ted: Read as '	0'							
bit 13	ERROR: Error bit									
	1 = Transact	ion error (illega	I transaction v	vas requested)						
	0 = Transact	ion completed	successfully							
bit 12	TIMEOUT: Ti	me-Out bit								
	1 = Transaction timed out									
	0 = Transaction completed successfully									
bit 11-8	Unimplemen	ted: Read as '	0'							
bit 7-0	RADDR<23:	16>: Parallel M	aster Port Res	served Address S	space bits ⁽¹⁾					
Note 1:	If RADDR<23:	16> = 000000	00, then the la	st EDS address	for Chip Select 2 v	vill be 0xFFFF	FF.			

U-0

U-0

U-0

U-0

REGISTER 19-2: PMCON2: EPMP CONTROL REGISTER 2

R/C-0, HS

R/C-0, HS

R-0, HSC

U-0

FIGURE 20-2:	ALARM MASK SETTINGS

Alarm Mask Setting (AMASK<3:0>)	Day of the Week	Month Day	Hours Minutes Seconds					
0000 – Every half second 0001 – Every second								
0010 - Every 10 seconds								
0011 – Every minute								
0100 – Every 10 minutes			m : s s					
0101 – Every hour								
0110 – Every day			h h ; m m ; s s					
0111 – Every week	d		h h : m m : s s					
1000 – Every month		/ d_ d	h h ; m m ; s s					
1001 – Every year ⁽¹⁾		m m / d d	h h : m m : s s					
Note 1: Annually, except when co	Note 1: Annually, except when configured for February 29.							

NOTES:

25.2 Measuring Time

Time measurements on the pulse width can be similarly performed using the A/D module's internal capacitor (CAD) and a precision resistor for current calibration. Figure 25-2 shows the external connections used for time measurements, and how the CTMU and A/D modules are related in this application. This example also shows both edge events coming from the external CTEDG pins, but other configurations using internal edge sources are possible. A detailed discussion on measuring capacitance and time with the CTMU module is provided in the "*PIC24F Family Reference Manual*".

25.3 Pulse Generation and Delay

The CTMU module can also generate an output pulse with edges that are not synchronous with the device's system clock. More specifically, it can generate a pulse with a programmable delay from an edge event input to the module. When the module is configured for pulse generation delay by setting the TGEN (CTMUCON<12>) bit, the internal current source is connected to the B input of Comparator 2. A capacitor (CDELAY) is connected to the Comparator 2 pin, C2INB, and the comparator voltage reference, CVREF, is connected to C2INA. CVREF is then configured for a specific trip point. The module begins to charge CDELAY when an edge event is detected. When CDELAY charges above the CVREF trip point, a pulse is output on CTPLS. The length of the pulse delay is determined by the value of CDELAY and the CVREF trip point.

Figure 25-3 shows the external connections for pulse generation, as well as the relationship of the different analog modules required. While CTEDG1 is shown as the input pulse source, other options are available. A detailed discussion on pulse generation with the CTMU module is provided in the "*PIC24F Family Reference Manual*".

FIGURE 25-2: TYPICAL CONNECTIONS AND INTERNAL CONFIGURATION FOR TIME MEASUREMENT

FIGURE 25-3: TYPICAL CONNECTIONS AND INTERNAL CONFIGURATION FOR PULSE DELAY GENERATION

26.2 On-Chip Voltage Regulator

All PIC24FJ256GB210 family devices power their core digital logic at a nominal 1.8V. This may create an issue for designs that are required to operate at a higher typical voltage, such as 3.3V. To simplify system design, all devices in the PIC24FJ256GB210 family incorporate an on-chip regulator that allows the device to run its core logic from VDD.

The regulator is controlled by the ENVREG pin. Tying VDD to the pin enables the regulator, which in turn, provides power to the core from the other VDD pins. When the regulator is enabled, a low-ESR capacitor (such as ceramic) must be connected to the VCAP pin (Figure 26-1). This helps to maintain the stability of the regulator. The recommended value for the filter capacitor (CEFC) is provided in **Section 29.1 "DC Characteristics"**.

26.2.1 VOLTAGE REGULATOR LOW-VOLTAGE DETECTION

When the on-chip regulator is enabled, it provides a constant voltage of 1.8V nominal to the digital core logic.

The regulator can provide this level from a VDD of about 2.1V, all the way up to the device's VDDMAX. It does not have the capability to boost VDD levels. In order to prevent "brown-out" conditions when the voltage drops too low for the regulator, the Brown-out Reset occurs. Then the regulator output follows VDD with a typical voltage drop of 300 mV.

To provide information about when the regulator voltage starts reducing, the on-chip regulator includes a simple Low-Voltage Detect circuit, which sets the Low-Voltage Detect Interrupt Flag, LVDIF (IFS4<8>). This can be used to generate an interrupt to trigger an orderly shutdown.

FIGURE 26-1: CONNECTIONS FOR THE ON-CHIP REGULATOR

26.2.2 ON-CHIP REGULATOR AND POR

When the voltage regulator is enabled, it takes approximately 10 μ s for it to generate output. During this time, designated as TVREG, code execution is disabled. TVREG is applied every time the device resumes operation after any power-down, including Sleep mode. TVREG is determined by the status of the VREGS bit (RCON<8>) and the WUTSEL Configuration bits (CW3<11:10>). Refer to **Section 29.0 "Electrical Characteristics"** for more information on TVREG.

26.2.3 ON-CHIP REGULATOR AND BOR

When the on-chip regulator is enabled, PIC24FJ256GB210 family devices also have a simple brown-out capability. If the voltage supplied to the regulator is inadequate to maintain the output level, the regulator Reset circuitry will generate a Brown-out Reset. This event is captured by the BOR (RCON<1>) flag bit. The brown-out voltage specifications are provided in **Section 7.** "**Reset**" (DS39712) in the "*PIC24F Family Reference Manual*".

Note:	For more information, see Section 29.0
	"Electrical Characteristics". The infor-
	mation in this data sheet supersedes the information in the FRM.

26.2.4 VOLTAGE REGULATOR STANDBY MODE

When enabled, the on-chip regulator always consumes a small incremental amount of current over IDD/IPD, including when the device is in Sleep mode, even though the core digital logic does not require power. To provide additional savings in applications where power resources are critical, the regulator can be made to enter Standby mode on its own whenever the device goes into Sleep mode. This feature is controlled by the VREGS bit (RCON<8>). Clearing the VREGS bit enables the Standby mode. When waking up from Standby mode, the regulator needs to wait for TVREG to expire before wake-up.

The regulator wake-up time required for Standby mode is controlled by the WUTSEL<1:0> (CW3<11:10>) Configuration bits. The regulator wake-up time is lower when WUTSEL<1:0> = 01, and higher when WUTSEL<1:0> = 11. Refer to the TVREG specification in Table 29-10 for regulator wake-up time.

When the regulator's Standby mode is turned off (VREGS = 1), the device wakes up without waiting for TVREG. However, with the VREGS bit set, the power consumption while in Sleep mode will be approximately 40 μ A higher than what it would be if the regulator was allowed to enter Standby mode.

26.4.3 CONFIGURATION REGISTER PROTECTION

The Configuration registers are protected against inadvertent or unwanted changes or reads in two ways. The primary protection method is the same as that of the RP registers – shadow registers contain a complimentary value which is constantly compared with the actual value. To safeguard against unpredictable events, Configuration bit changes resulting from individual cell level disruptions (such as ESD events) will cause a parity error and trigger a device Reset.

The data for the Configuration registers is derived from the Flash Configuration Words in program memory. When the GCP bit is set, the source data for device configuration is also protected as a consequence. Even if General Segment protection is not enabled, the device configuration can be protected by using the appropriate code segment protection setting.

Segment Configuration Bits		tion Bits	Write/Erase Protection of Code Segment					
WPDIS	WPEND	WPCFG						
1	X	x	No additional protection is enabled; all program memory protection is configured by GCP and GWRP.					
0	1	х	Addresses from the first address of the code page are defined by WPFP<7:0> through the end of implemented program memory (inclusive), write/erase protected, including Flash Configuration Words.					
0	0	1	Address 000000h through the last address of the code page is defined by WPFP<7:0> (inclusive), write/erase protected.					
0	0	0	Address 000000h through the last address of code page is defined by WPFP<7:0> (inclusive), write/erase protected and the last page, including Flash Configuration Words are write/erase protected.					

TABLE 26-2: CODE SEGMENT PROTECTION CONFIGURATION OPTIONS

26.5 JTAG Interface

PIC24FJ256GB210 family devices implement a JTAG interface, which supports boundary scan device testing.

26.6 In-Circuit Serial Programming™

PIC24FJ256GB210 family microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock (PGECx) and data (PGEDx), and three other lines for power (VDD), ground (VSS) and MCLR. This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

26.7 In-Circuit Debugger

When MPLAB[®] ICD 3 is selected as a debugger, the in-circuit debugging functionality is enabled. This function allows simple debugging functions when used with MPLAB IDE. Debugging functionality is controlled through the PGECx (Emulation/Debug Clock) and PGEDx (Emulation/Debug Data) pins.

To use the in-circuit debugger function of the device, the design must implement ICSP connections to \overline{MCLR} , VDD, VSS and the PGECx/PGEDx pin pair designated by the ICS Configuration bits. In addition, when the feature is enabled, some of the resources are not available for general use. These resources include the first 80 bytes of data RAM and two I/O pins.

TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Assembly Mnemonic	Assembly Syntax		Description	# of Words	# of Cycles	Status Flags Affected
PWRSAV	PWRSAV	#lit1	Go into Sleep or Idle mode	1	1	WDTO, Sleep
RCALL	RCALL Expr		Relative Call	1	2	None
	RCALL	Wn	Computed Call	1	2	None
REPEAT	REPEAT	#lit14	Repeat Next Instruction lit14 + 1 times	1	1	None
	REPEAT	Wn	Repeat Next Instruction (Wn) + 1 times	1	1	None
RESET	RESET		Software Device Reset	1	1	None
RETFIE	RETFIE		Return from Interrupt	1	3 (2)	None
RETLW	RETLW	#lit10,Wn	Return with Literal in Wn	1	3 (2)	None
RETURN	RETURN		Return from Subroutine	1	3 (2)	None
RLC	RLC	f	f = Rotate Left through Carry f	1	1	C, N, Z
	RLC	f,WREG	WREG = Rotate Left through Carry f	1	1	C, N, Z
	RLC	Ws,Wd	Wd = Rotate Left through Carry Ws	1	1	C, N, Z
RLNC	RLNC	f	f = Rotate Left (No Carry) f	1	1	N, Z
	RLNC	f,WREG	WREG = Rotate Left (No Carry) f	1	1	N, Z
	RLNC	Ws,Wd	Wd = Rotate Left (No Carry) Ws	1	1	N, Z
RRC	RRC	f	f = Rotate Right through Carry f	1	1	C, N, Z
	RRC	f,WREG	WREG = Rotate Right through Carry f	1	1	C, N, Z
	RRC	Ws,Wd	Wd = Rotate Right through Carry Ws	1	1	C, N, Z
RRNC	RRNC	f	f = Rotate Right (No Carry) f	1	1	N, Z
	RRNC	f,WREG	WREG = Rotate Right (No Carry) f	1	1	N, Z
	RRNC	Ws,Wd	Wd = Rotate Right (No Carry) Ws	1	1	N, Z
SE	SE	Ws,Wnd	Wnd = Sign-Extended Ws	1	1	C, N, Z
SETM	SETM	f	f = FFFFh	1	1	None
	SETM	WREG	WREG = FFFFh	1	1	None
	SETM	Ws	Ws = FFFFh	1	1	None
SL	SL	f	f = Left Shift f	1	1	C, N, OV, Z
	SL	f,WREG	WREG = Left Shift f	1	1	C, N, OV, Z
	SL	Ws,Wd	Wd = Left Shift Ws	1	1	C, N, OV, Z
	SL	Wb,Wns,Wnd	Wnd = Left Shift Wb by Wns	1	1	N, Z
	SL	Wb,#lit5,Wnd	Wnd = Left Shift Wb by lit5	1	1	N, Z
SUB	SUB	f	f = f – WREG	1	1	C, DC, N, OV, Z
	SUB	f,WREG	WREG = f – WREG	1	1	C, DC, N, OV, Z
	SUB	#lit10,Wn	Wn = Wn – lit10	1	1	C, DC, N, OV, Z
	SUB	Wb,Ws,Wd	Wd = Wb – Ws	1	1	C, DC, N, OV, Z
	SUB	Wb,#lit5,Wd	Wd = Wb – lit5	1	1	C, DC, N, OV, Z
SUBB	SUBB	f	$f = f - WREG - (\overline{C})$	1	1	C, DC, N, OV, Z
	SUBB	f.WREG	WREG = $f - WREG - (\overline{C})$	1	1	C. DC. N. OV. Z
	GIIBB	#lit10 Wm	$Wn = Wn - lit10 - (\overline{C})$	1	1	
	CUDD	Whe we we	$Wd = Wb$ Wc (\overline{C})	1	1	
	SUBB	wb,ws,wd	$\frac{1}{100} = \frac{1}{100} = \frac{1}$	1	1	C, DC, N, OV, Z
	SUBB	WD,#11t5,Wd	Wd = VVD - IIt5 - (C)	1	1	C, DC, N, OV, Z
SUBR	SUBR	I .		1	1	C, DC, N, OV, Z
	SUBR	I, WREG		1	1	C, DC, N, OV, Z
	SUBR	Wb,Ws,Wd		1	1	C, DC, N, OV, Z
	SUBR	WD,#11t5,Wd		1	1	C, DC, N, OV, Z
SUBBR	SUBBR	£	f = WREG - f - (C)	1	1	C, DC, N, OV, Z
	SUBBR	f,WREG	WREG = WREG $- f - (C)$	1	1	C, DC, N, OV, Z
	SUBBR	Wb,Ws,Wd	Wd = Ws - Wb - (C)	1	1	C, DC, N, OV, Z
	SUBBR	Wb,#lit5,Wd	$Wd = lit5 - Wb - (\overline{C})$	1	1	C, DC, N, OV, Z
SWAP	SWAP.b	Wn	Wn = Nibble Swap Wn	1	1	None
	SWAP	Wn	Wn = Byte Swap Wn	1	1	None
TBLRDH	TBLRDH	Ws,Wd	Read Prog<23:16> to Wd<7:0>	1	2	None

TABLE 29-6: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

DC CHARACTERISTICS			Standard Operating Conditions: 2.2V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
Parameter No.	Typical ⁽¹⁾	Мах	Units	its Conditions				
Power-Down Current (IPD) ⁽²⁾								
DC60D	20.0	45	μA	-40°C				
DC60E	20.0	45	μA	+25°C	<u>2 2∖/(3)</u>	Rase newer down current(4)		
DC60H	55.0	105	μA	+60°C	3.30	Base power-down current		
DC60F	95.0	185	μA	+85°C				
DC61D	1.0	3.5	μA	-40°C				
DC61E	1.0	3.5	μA	+25°C	3 31/(3)	31 kHz LPRC oscillator with RTCC, WDT or Timer1: ΔILPRC ⁽⁴⁾		
DC61H	1.0	3.5	μA	+60°C	5.500			
DC61F	2.5	6.5	μA	+85°C				
DC62D	1.5	6	μA	-40°C				
DC62E	1.5	6	μA	+25°C	3 31/(3)	Low drive strength, 32 kHz crystal with RTCC or Timer1: Δ Isosc; SOSCSEL <1:0> = 0.1 ⁽⁴⁾		
DC62H	1.5	6	μA	+60°C	3.30 ()			
DC62F	8.0	18	μA	+85°C				
DC63D	4.0	18	μA	-40°C				
DC63E	4.0	18	μA	+25°C	3 3\/(3)	32 kHz crystal		
DC63H	6.5	18	μA	+60°C	5.5000	SOSCSEL<1:0> = 11(4)		
DC63F	12.0	25	μA	+85°C				

Note 1: Data in the Typical column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: Base IPD is measured with the device in Sleep mode (all peripherals and clocks are shut down). All I/Os are configured as inputs and pulled high. WDT, etc., are all switched off, PMSLP bit is clear and the Peripheral Module Disable (PMD) bits for all unused peripherals are set.

3: On-chip voltage regulator enabled (ENVREG tied to VDD). Brown-out Reset (BOR) is enabled.

4: The △ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.

100-Lead Plastic Thin Quad Flatpack (PT) – 12x12x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-100B