

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Obsolete
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	52
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	96K x 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj128gb206t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		Pin Number			Input	
Function	64-Pin TQFP/QFN	100-Pin TQFP	121-Pin BGA	I/O	Buffer	Description
AN0	16	25	K2	1	ANA	
AN1	15	24	K1	I	ANA	
AN2	14	23	J2	I	ANA	
AN3	13	22	J1	Ι	ANA	
AN4	12	21	H2	I	ANA	
AN5	11	20	H1	I	ANA	
AN6	17	26	L1	I	ANA	
AN7	18	27	J3	Ι	ANA	
AN8	21	32	K4	Ι	ANA	
AN9	22	33	L4	Ι	ANA	
AN10	23	34	L5	I	ANA	
AN11	24	35	J5	I	ANA	
AN12	27	41	J7	I	ANA	A/D Analog Inputs.
AN13	28	42	L7	I	ANA	
AN14	29	43	K7	I	ANA	
AN15	30	44	L8	I	ANA	
AN16	_	9	E1	I	ANA	
AN17	_	10	E3	I	ANA	
AN18	—	11	F4	Ι	ANA	
AN19	—	12	F2	I	ANA	
AN20	—	14	F3	Ι	ANA	
AN21	—	19	G2	I	ANA	
AN22	—	92	B5	Ι	ANA	
AN23	—	91	C5	Ι	ANA	
AVdd	19	30	J4	Р	—	Positive Supply for Analog modules.
AVss	20	31	L3	Р	_	Ground Reference for Analog modules.
C1INA	11	20	H1	I	ANA	Comparator 1 Input A.
C1INB	12	21	H2	I	ANA	Comparator 1 Input B.
C1INC	5	11	F4	I	ANA	Comparator 1 Input C.
C1IND	4	10	E3	Ι	ANA	Comparator 1 Input D.
C2INA	13	22	J1	I	ANA	Comparator 2 Input A.
C2INB	14	23	J2	I	ANA	Comparator 2 Input B.
C2INC	8	14	F3	I	ANA	Comparator 2 Input C.
C2IND	6	12	F2	Ι	ANA	Comparator 2 Input D.
C3INA	55	84	C7	I	ANA	Comparator 3 Input A.
C3INB	54	83	D7	I	ANA	Comparator 3 Input B.
C3INC	48	74	B11	I	ANA	Comparator 3 Input C.
C3IND	47	73	C10	I	ANA	Comparator 3 Input D.
CLKI	39	63	F9	I	ST	Main Clock Input Connection.
CLKO	40	64	F11	0		System Clock Output.
-	TTL = TTL inp ANA = Analog		put			Schmitt Trigger input buffer = I ² C/SMBus input buffer

TABLE 1-3: PIC24FJ256GB210 FAMILY PINOUT DESCRIPTIONS

2: The PMSC2 signal will replace the PMA15 signal on the 15-pin PMA when CSF<1:0> = 01 or 10.

3: The PMCS1 signal will replace the PMA14 signal on the 14-pin PMA when CSF<1:0> = 10.

4: The alternate VREF pins selected when the ALTVREF (CW1<5>) bit is programmed to '0'.

2.7 Configuration of Analog and Digital Pins During ICSP Operations

If an ICSP compliant emulator is selected as a debugger, it automatically initializes all of the A/D input pins (ANx) as "digital" pins. Depending on the particular device, this is done by clearing all bit in the ANSx registers.

All PIC24FJ devices will have several ANSx registers (one for each port). Refer to (**Section 10.0 "I/O Ports**") for more specific information.

The bits in these registers that correspond to the A/D pins that initialized the emulator must not be changed by the user application firmware; otherwise, communication errors will result between the debugger and the device.

If your application needs to use certain A/D pins as analog input pins during the debug session, the user application must modify the appropriate bits during initialization of the ADC module, as follows:

• Set the bits corresponding to the pin(s) to be configured as analog. Do not change any other bits, particularly those corresponding to the PGECx/PGEDx pair, at any time.

When a Microchip debugger/emulator is used as a programmer, the user application firmware must correctly configure the ANSx registers. Automatic initialization of this register is only done during debugger operation. Failure to correctly configure the register(s) will result in all A/D pins being recognized as analog input pins, resulting in the port value being read as a logic '0', which may affect user application functionality.

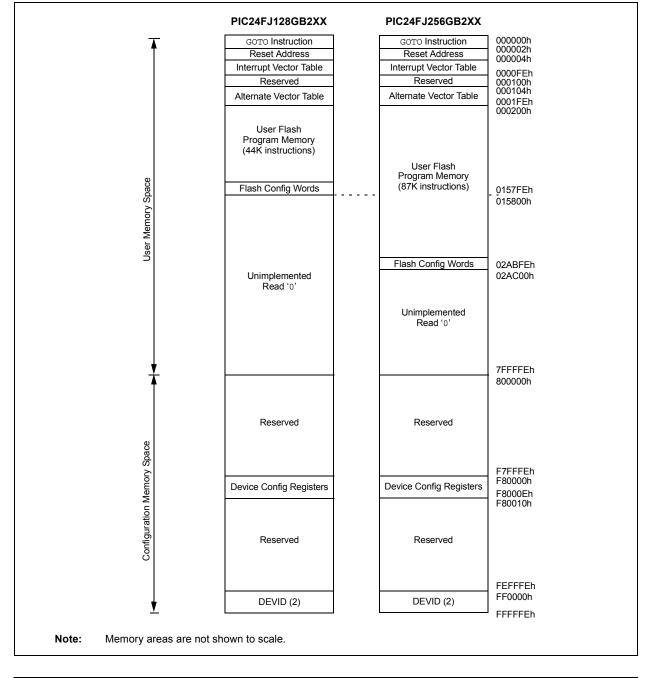
2.8 Unused I/Os

Unused I/O pins should be configured as outputs and driven to a logic low state. Alternatively, connect a 1 k Ω to 10 k Ω resistor to Vss on unused pins and drive the output to logic low.

4.0 MEMORY ORGANIZATION

As Harvard architecture devices, PIC24F microcontrollers feature separate program and data memory spaces and busses. This architecture also allows direct access of program memory from the data space during code execution.

4.1 **Program Memory Space**


The program address memory space of the PIC24FJ256GB210 family devices is 4M instructions. The space is addressable by a 24-bit value derived

from either the 23-bit Program Counter (PC) during program execution, or from table operation or data space remapping, as described in **Section 4.3 "Interfacing Program and Data Memory Spaces"**.

User access to the program memory space is restricted to the lower half of the address range (000000h to 7FFFFFh). The exception is the use of TBLRD/TBLWT operations, which use TBLPAG<7> to permit access to the Configuration bits and Device ID sections of the configuration memory space.

Memory maps for the PIC24FJ256GB210 family of devices are shown in Figure 4-1.

FIGURE 4-1: PROGRAM SPACE MEMORY MAP FOR PIC24FJ256GB210 FAMILY DEVICES

TABLE	4-6:	INT	ERRUP	т солт	ROLLE	R REG	ISTER N	IAP										
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
INTCON1	0080	NSTDIS	_	_	_	_	_	_	-	_	_	_	MATHERR	ADDRERR	STKERR	OSCFAIL	_	0000
INTCON2	0082	ALTIVT	DISI	_	—	_	_	_	_	_	_	—	INT4EP	INT3EP	INT2EP	INT1EP	INT0EP	0000
IFS0	0084	_	_	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPF1IF	T3IF	T2IF	OC2IF	IC2IF	_	T1IF	OC1IF	IC1IF	INTOIF	0000
IFS1	0086	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	_	IC8IF	IC7IF	_	INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF	0000
IFS2	8800		_	PMPIF	OC8IF	OC7IF	OC6IF	OC5IF	IC6IF	IC5IF	IC4IF	IC3IF	_	_	_	SPI2IF	SPF2IF	0000
IFS3	008A	_	RTCIF	_	—	_	_	_	_	_	INT4IF	INT3IF	_	—	MI2C2IF	SI2C2IF	_	0000
IFS4	008C	-	_	CTMUIF	_	_	_	_	LVDIF	_	_	_	_	CRCIF	U2ERIF	U1ERIF	_	0000
IFS5	008E		_	IC9IF	OC9IF	SPI3IF	SPF3IF	U4TXIF	U4RXIF	U4ERIF	USB1IF	MI2C3IF	SI2C3IF	U3TXIF	U3RXIF	U3ERIF	_	0000
IEC0	0094	_		AD1IE	U1TXIE	U1RXIE	SPI1IE	SPF1IE	T3IE	T2IE	OC2IE	IC2IE	_	T1IE	OC1IE	IC1IE	INT0IE	0000
IEC1	0096	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	-	IC8IE	IC7IE	—	INT1IE	CNIE	CMIE	MI2C1IE	SI2C1IE	0000
IEC2	0098		_	PMPIE	OC8IE	OC7IE	OC6IE	OC5IE	IC6IE	IC5IE	IC4IE	IC3IE	_	_	_	SPI2IE	SPF2IE	0000
IEC3	009A	_	RTCIE	_	—		_	-	_	_	INT4IE	INT3IE	_	—	MI2C2IE	SI2C2IE	_	0000
IEC4	009C	-	_	CTMUIE	_	-	_	_	LVDIE	_	_	_	_	CRCIE	U2ERIE	U1ERIE	_	0000
IEC5	009E		_	IC9IE	OC9IE	SPI3IE	SPF3IE	U4TXIE	U4RXIE	U4ERIE	USB1IE	MI2C3IE	SI2C3IE	U3TXIE	U3RXIE	U3ERIE	_	0000
IPC0	00A4	_	T1IP2	T1IP1	T1IP0		OC1IP2	OC1IP1	OC1IP0	_	IC1IP2	IC1IP1	IC1IP0	—	INT0IP2	INT0IP1	INT0IP0	4444
IPC1	00A6	-	T2IP2	T2IP1	T2IP0		OC2IP2	OC2IP1	OC2IP0	—	IC2IP2	IC2IP1	IC2IP0	—	_	_	_	4440
IPC2	00A8		U1RXIP2	U1RXIP1	U1RXIP0	_	SPI1IP2	SPI1IP1	SPI1IP0	_	SPF1IP2	SPF1IP1	SPF1IP0	_	T3IP2	T3IP1	T3IP0	4444
IPC3	00AA	_		_	—		_	-	_	_	AD1IP2	AD1IP1	AD1IP0	—	U1TXIP2	U1TXIP1	U1TXIP0	0044
IPC4	00AC	-	CNIP2	CNIP1	CNIP0	-	CMIP2	CMIP1	CMIP0	_	MI2C1IP2	MI2C1IP1	MI2C1IP0	—	SI2C1IP2	SI2C1IP1	SI2C1IP0	4444
IPC5	00AE		IC8IP2	IC8IP1	IC8IP0	-	IC7IP2	IC7IP1	IC7IP0	—	—	—	—	—	INT1IP2	INT1IP1	INT1IP0	4404
IPC6	00B0	_	T4IP2	T4IP1	T4IP0		OC4IP2	OC4IP1	OC4IP0	—	OC3IP2	OC3IP1	OC3IP0	—	—	—	—	4440
IPC7	00B2	-	U2TXIP2	U2TXIP1	U2TXIP0		U2RXIP2	U2RXIP1	U2RXIP0	—	INT2IP2	INT2IP1	INT2IP0	—	T5IP2	T5IP1	T5IP0	4444
IPC8	00B4		-	—	—	-	-	-	-	—	SPI2IP2	SPI2IP1	SPI2IP0	—	SPF2IP2	SPF2IP1	SPF2IP0	0044
IPC9	00B6	_	IC5IP2	IC5IP1	IC5IP0		IC4IP2	IC4IP1	IC4IP0	_	IC3IP2	IC3IP1	IC3IP0	—	_	_	_	4440
IPC10	00B8	_	OC7IP2	OC7IP1	OC7IP0		OC6IP2	OC6IP1	OC6IP0	_	OC5IP2	OC5IP1	OC5IP0	_	IC6IP2	IC6IP1	IC6IP0	4444
IPC11	00BA	_	_	—	—	_	_	_	_	—	PMPIP2	PMPIP1	PMPIP0	_	OC8IP2	OC8IP1	OC8IP0	0044
IPC12	00BC	_	_	_	_	_	MI2C2IP2	MI2C2IP1	MI2C2IP0	_	SI2C2IP2	SI2C2IP1	SI2C2IP0	_		_		0440
IPC13	00BE	_	_	_	—	_	INT4IP2	INT4IP1	INT4IP0	_	INT3IP2	INT3IP1	INT3IP0	_	_	_	_	0440
IPC15	00C2	_	_	—	_	_	RTCIP2	RTCIP1	RTCIP0	—	_	_	_	_	_	_	_	0400

DS39975A-page 50

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-18: PORTF REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13 ⁽¹⁾	Bit 12 ⁽¹⁾	Bit 11	Bit 10	Bit 9	Bit 8 ⁽¹⁾	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2 ⁽¹⁾	Bit 1	Bit 0	All Resets
TRISF	02E8	_		TRISF13	TRISF12	_	_	_	TRISF8	TRISF7		TRISF5	TRISF4	TRISF3	TRISF2	TRISF1	TRISF0	31BF
PORTF	02EA	_	_	RF13	RF12		_	_	RF8	RF7	_	RF5	RF4	RF3	RF2	RF1	RF0	xxxx
LATF	02EC	-		LATF13	LATF12	-	-		LATF8	LATF7		LATF5	LATF4	LATF3	LATF2	LATF1	LATF0	xxxx
ODCF	02EE	—	_	ODF13	ODF12	_	_	_	ODF8	ODF7	_	ODF5	ODF4	ODF3	ODF2	ODF1	ODF0	0000

 Legend:
 - = unimplemented, read as '0'. Reset values are shown in hexadecimal. Reset values shown are for 100-pin devices.

 Note
 1:
 Bits are unimplemented in 64-pin devices; read as '0'.

TABLE 4-19: PORTG REGISTER MAP

File Name	Addr	Bit 15 ⁽¹⁾	Bit 14 ⁽¹⁾	Bit 13 ⁽¹⁾	Bit 12 ⁽¹⁾	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1 ⁽¹⁾	Bit 0 ⁽¹⁾	All Resets
TRISG	02F0	TRISG15	TRISG14	TRISG13	TRISG12	_	_	TRISG9	TRISG8	TRISG7	TRISG6	_	_	TRISG3	TRISG2	TRISG1	TRISG0	F3CF
PORTG	02F2	RG15	RG14	RG13	RG12	_	_	RG9	RG8	RG7	RG6	_	_	RG3	RG2	RG1	RG0	xxxx
LATG	02F4	LATG15	LATG14	LATG13	LATG12	_	_	LATG9	LATG8	LATG7	LATG6	_	_	LATG3	LATG2	LATG1	LATG0	xxxx
ODCG	02F6	ODG15	ODG14	ODG13	ODG12		_	ODG9	ODG8	ODG7	ODG6	_	_	ODG3	ODG2	ODG1	ODG0	0000

- = unimplemented, read as '0'. Reset values are shown in hexadecimal. Reset values shown are for 100-pin devices. Legend:

Bits are unimplemented in 64-pin devices; read as '0'. Note 1:

TABLE 4-20: PAD CONFIGURATION REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PADCFG	02FC	_	_		_				_		_	_				RTSECSEL	PMPTTL	0000

Legend: - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—	IC8IP2	IC8IP1	IC8IP0		IC7IP2	IC7IP1	IC7IP0
bit 15	·			·	·	·	bit
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
	_	_		_	INT1IP2	INT1IP1	INT1IP0
bit 7			•				bit
Legend:							
R = Readat	ole bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	Unimploment		o'				
bit 15	-	ited: Read as '					
bit 14-12				rrupt Priority bit	S		
		pt is priority 7 (nignest priorit	y interrupt)			
	•						
	•						
		pt is priority 1	ablad				
	000 = Interful	pt source is dis	aoleo				
L:1 1 1		-					
bit 11	-	ted: Read as '	0'				
bit 11 bit 10-8	IC7IP<2:0>:	ited: Read as ' Input Capture C	^{0'} Channel 7 Inte	rrupt Priority bit	S		
	IC7IP<2:0>:	ted: Read as '	^{0'} Channel 7 Inte		S		
	IC7IP<2:0>:	ited: Read as ' Input Capture C	^{0'} Channel 7 Inte		S		
	IC7IP<2:0>: 111 = Interru	ited: Read as f Input Capture C Ipt is priority 7 (^{0'} Channel 7 Inte		S		
	IC7IP<2:0>: 1 111 = Interru 001 = Interru	Input Capture C Input Capture C Inpt is priority 7 (Inpt is priority 1	^{0'} Channel 7 Inte highest priorit		S		
bit 10-8	IC7IP<2:0>: 1 111 = Interru	Inted: Read as f Input Capture C Inpt is priority 7 (Inpt is priority 1 Inpt source is dis	^{0'} Channel 7 Inte highest priorit sabled		S		
bit 10-8 bit 7-3	IC7IP<2:0>: 1 111 = Interru	Input Capture C Input Capture C Inpt is priority 7 (Inpt is priority 1 Inpt source is dis Inted: Read as f	^{0'} Channel 7 Inte highest priorit sabled 0'	y interrupt)	S		
	IC7IP<2:0>: 1 111 = Interru 001 = Interru 000 = Interru Unimplemen INT1IP<2:0>	Input Capture C Input Capture C Input is priority 7 (Input is priority 1 Input source is dis Inted: Read as fi External Intern	^{0'} Channel 7 Inte highest priorit sabled 0' rupt 1 Priority	y interrupt)	S		
bit 10-8 bit 7-3	IC7IP<2:0>: 1 111 = Interru 001 = Interru 000 = Interru Unimplemen INT1IP<2:0>	Input Capture C Input Capture C Inpt is priority 7 (Inpt is priority 1 Inpt source is dis Inted: Read as f	^{0'} Channel 7 Inte highest priorit sabled 0' rupt 1 Priority	y interrupt)	S		
bit 10-8 bit 7-3	IC7IP<2:0>: 1 111 = Interru 001 = Interru 000 = Interru Unimplemen INT1IP<2:0>	Input Capture C Input Capture C Input is priority 7 (Input is priority 1 Input source is dis Inted: Read as fi External Intern	^{0'} Channel 7 Inte highest priorit sabled 0' rupt 1 Priority	y interrupt)	S		
bit 10-8 bit 7-3	IC7IP<2:0>: 1 111 = Interru 001 = Interru 000 = Interru Unimplemen INT1IP<2:0> 111 = Interru	hted: Read as f Input Capture C opt is priority 7 (opt is priority 1 opt source is dis hted: Read as f External Intern opt is priority 7 (^{0'} Channel 7 Inte highest priorit sabled 0' rupt 1 Priority	y interrupt)	S		
bit 10-8 bit 7-3	IC7IP<2:0>: 1 111 = Interru 001 = Interru 000 = Interru Unimplemen INT1IP<2:0> 111 = Interru	Input Capture C Input Capture C Input is priority 7 (Input is priority 1 Input source is dis Inted: Read as fi External Intern	^{0'} Channel 7 Inte highest priorit sabled 0' upt 1 Priority highest priorit	y interrupt)	S		

REGISTER 7-22: IPC5: INTERRUPT PRIORITY CONTROL REGISTER 5

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	U2TXIP2	U2TXIP1	U2TXIP0		U2RXIP2	U2RXIP1	U2RXIP0
bit 15							bit
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—	INT2IP2	INT2IP1	INT2IP0	—	T5IP2	T5IP1	T5IP0
bit 7							bit
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15	Unimplemen	ted: Read as '	כ'				
bit 14-12	U2TXIP<2:0>	: UART2 Trans	smitter Interrup	ot Priority bits			
	111 = Interru	pt is priority 7 (highest priority	/ interrupt)			
	•						
	•						
	001 = Interru						
		pt source is dis					
bit 11	-	ted: Read as '					
bit 10-8		: UART2 Rece		-			
	111 = Interru	pt is priority 7 (nignest priority	/ interrupt)			
	•						
	• 001 = Interru	nt in priority 1					
		pt is priority i pt source is dis	abled				
bit 7		ted: Read as '					
bit 6-4	-	External Interr		oits			
		pt is priority 7 (
	•		0 1 2				
	•						
	001 = Interru	pt is priority 1					
	000 = Interru	pt source is dis	abled				
bit 3	Unimplemen	ted: Read as '	כי				
bit 2-0	T5IP<2:0>: ⊺	imer5 Interrupt	Priority bits				
	111 = Interru	pt is priority 7 (highest priority	/ interrupt)			
	•						
	•						
	001 = Interru		م ام ا م				
	000 = Interru	pt source is dis	apled				

REGISTER 7-24: IPC7: INTERRUPT PRIORITY CONTROL REGISTER 7

NOTES:

10.4.5 CONSIDERATIONS FOR PERIPHERAL PIN SELECTION

The ability to control Peripheral Pin Selection introduces several considerations into application design that could be overlooked. This is particularly true for several common peripherals that are available only as remappable peripherals.

The main consideration is that the Peripheral Pin Selects are not available on default pins in the device's default (Reset) state. Since all RPINRx registers reset to '111111' and all RPORx registers reset to '000000', all Peripheral Pin Select inputs are tied to Vss and all Peripheral Pin Select outputs are disconnected.

Note:	In tying Peripheral Pin Select inputs to
	RP63, RP63 need not exist on a device for
	the registers to be reset to it.

This situation requires the user to initialize the device with the proper peripheral configuration before any other application code is executed. Since the IOLOCK bit resets in the unlocked state, it is not necessary to execute the unlock sequence after the device has come out of Reset. For application safety, however, it is best to set IOLOCK and lock the configuration after writing to the control registers.

Because the unlock sequence is timing-critical, it must be executed as an assembly language routine in the same manner as changes to the oscillator configuration. If the bulk of the application is written in 'C', or another high-level language, the unlock sequence should be performed by writing in-line assembly.

Choosing the configuration requires the review of all Peripheral Pin Selects and their pin assignments, especially those that will not be used in the application. In all cases, unused pin-selectable peripherals should be disabled completely. Unused peripherals should have their inputs assigned to an unused RPn/RPIn pin function. I/O pins with unused RPn functions should be configured with the null peripheral output.

The assignment of a peripheral to a particular pin does not automatically perform any other configuration of the pin's I/O circuitry. In theory, this means adding a pin-selectable output to a pin may mean inadvertently driving an existing peripheral input when the output is driven. Users must be familiar with the behavior of other fixed peripherals that share a remappable pin and know when to enable or disable them. To be safe, fixed digital peripherals that share the same pin should be disabled when not in use. Along these lines, configuring a remappable pin for a specific peripheral does not automatically turn that feature on. The peripheral must be specifically configured for operation, and enabled as if it were tied to a fixed pin. Where this happens in the application code (immediately following device Reset and peripheral configuration or inside the main application routine) depends on the peripheral and its use in the application.

A final consideration is that Peripheral Pin Select functions neither override analog inputs nor reconfigure pins with analog functions for digital I/O. If a pin is configured as an analog input on device Reset, it must be explicitly reconfigured as digital I/O when used with a Peripheral Pin Select.

Example 10-3 shows a configuration for bidirectional communication with flow control using UART1. The following input and output functions are used:

- Input Functions: U1RX, U1CTS
- Output Functions: U1TX, U1RTS

EXAMPLE 10-3: CONFIGURING UART1 INPUT AND OUTPUT FUNCTIONS

// Unlock Regis	sters		
asm volatile("MOV	#OSCCON, w1	\n"
	"MOV	#0x46, w2	\n"
	"MOV	#0x57, w3	\n"
	"MOV.b	w2, [w1]	\n"
	"MOV.b	w3, [w1]	\n"
	"BCLR () SCCON , #6 ") ;	
// or use C30 k	ouilt-ir	n macro:	
// _builtin_wri	ite_OSCO	CONL (OSCCON &	0xbf);
// Configure Ir	nput Fur	nctions (Table	
Table 10-2))			
// Assign U	JRX To	Pin RPO	
RPINR18bits	.Ulrxr	= 0 <i>i</i>	
// Assign U			
RPINR18bits	.U1CTSR	= 1;	
// Configure Ou	-		≥ 10-4)
// Assign U RPOR1bits.R			
RPORIDIUS.R	PZR = 3	1	
// Assign U	יוסדפ דה	Din D2	
RPOR1bits.R			
111 011101105.11			
// Lock Registe	ers		
asm volatile		#OSCCON, w1	\n"
		#0x46, w2	\n"
			\n"
	"MOV.b	w2, [w1]\	n"
	"MOV.b	w3, [w1]	\n"
	"BSET	OSCCON, #6")	;
// or use C30 k	ouilt-ir	n macro:	
// _builtin_wri	ite_OSCO	CONL (OSCCON	0x40);
1			

NOTES:

R/W-0	U-0	R/W-0	R/W-1, HC	R/W-0	R/W-0	R/W-0	R/W-0
I2CEN	—	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC
GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN
bit 7							bit
Legend:		HC = Hardwa	are Clearable bit	t			
R = Readab	le bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value a	t POR	'1' = Bit is se	t	'0' = Bit is clea	ared	x = Bit is unkn	iown
bit 15	12CEN: 12Cx	Enable bit					
	1 = Enables 0 = Disables	the I2Cx modu	lle and configure ule; all l ² C™ pin	es the SDAx ar	nd SCLx pins a	s serial port pir ons	IS
bit 14		ited: Read as	-		a a) por ranea		
bit 13	-	p in Idle Mode					
			peration when d		n Idle mode		
			ation in Idle mo		_		
bit 12			ontrol bit (when	operating as I ²	C slave)		
	1 = Releases 0 = Holds S0	SCLX CIOCK	clock stretch)				
	If STREN = 1						
	•		y write '0' to initi			,	dware is clea
	If STREN = 0	-	nsmission. Hard	iware is clear a	at the end of sid	ave reception.	
		., software may	only write '1' to	release clock)	. Hardware is c	lear at the begi	inning of slav
bit 11	IPMIEN: Intel	lligent Platform	Management Ir	nterface (IPMI)	Enable bit		
		oport mode is e de is disabled	enabled; all addr	esses are Ack	nowledged		
bit 10	A10M: 10-Bit	Slave Addres	sing bit				
) is a 10-bit sla					
1.11.0) is a 7-bit slav					
bit 9		able Slew Rate e control is disa					
		e control is ena					
	SMEN: SMB	us Input Levels	bit				
bit 8			olds compliant w	ith SMBus spe	cifications		
DIT 8	0 = Disables	the SMRus in	out thresholds				
		-		?			
bit 8 bit 7	GCEN: Gene	eral Call Enable	bit (when operational colling	-		vDSD (modulo	is eachlad fo
	GCEN: Gene	eral Call Enable interrupt when	e bit (when opera a general call a	-		xRSR (module	is enabled fo
	GCEN: Gene 1 = Enables receptior	eral Call Enable interrupt when	a general call a	-		xRSR (module	is enabled fo
bit 7	GCEN: Gene 1 = Enables receptior 0 = General	ral Call Enable interrupt when ו) call address di	a general call a	address is rece	ived in the I2C	xRSR (module	is enabled fo
	GCEN: Gene 1 = Enables reception 0 = General STREN: SCL Used in conju	eral Call Enable interrupt when n) call address di x Clock Stretcl unction with the	a general call a sabled n Enable bit (wh	address is rece en operating a	ived in the I2C	xRSR (module	is enabled f

REGISTER 18	8-9: U1AD	DR: USB AD	DRESS REG	GISTER			
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	_	—	—	—			_
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
LSPDEN ⁽¹⁾	ADDR6	ADDR5	ADDR4	ADDR3	ADDR2	ADDR1	ADDR0
bit 7							bit
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown

bit 15-8	Unimplemented: Read as '0'
bit 7	LSPDEN: Low-Speed Enable Indicator bit ⁽¹⁾
	1 = USB module operates at low speed0 = USB module operates at full speed
bit 6-0	ADDR<6:0>: USB Device Address bits

Note 1: Host mode only. In Device mode, this bit is unimplemented and read as '0'.

REGISTER 18-10: U1TOK: USB TOKEN REGISTER (HOST MODE ONLY)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	—	_	_	_	—
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| PID3 | PID2 | PID1 | PID0 | EP3 | EP2 | EP1 | EP0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-4PID<3:0>: Token Type Identifier bits1101 = SETUP (TX) token type transaction⁽¹⁾1001 = IN (RX) token type transaction⁽¹⁾0001 = OUT (TX) token type transaction⁽¹⁾bit 3-0EP<3:0>: Token Command Endpoint Address bits

This value must specify a valid endpoint on the attached device.

Note 1: All other combinations are reserved and are not to be used.

REGISTER 18-16: U1IR: USB INTERRUPT STATUS REGISTER (DEVICE MODE ONLY)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	—	_	—	_	—	_
bit 15							bit 8
R/K-0, HS	U-0	R/K-0, HS	R/K-0, HS	R/K-0, HS	R/K-0, HS	R-0	R/K-0, HS
STALLIF		RESUMEIF	IDLEIF	TRNIF	SOFIF	UERRIF	URSTIF
bit 7							bit 0
Legend:		U = Unimplem			0 11 1 1 1		
R = Readab		K = Write '1' to	o clear bit		re Settable bit	D ¹¹	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown
bit 15-8	Unimplome	ented: Read as '0	,'				
bit 7	-	TALL Handshake					
		L handshake wa	•	eripheral durin	g the handshak	e phase of the	transaction in
	Device	mode		-	0	·	
		L handshake has		t			
bit 6	-	ented: Read as '0					
bit 5		: Resume Interru					· · · · · ·
	1 = A K-sta full spe	ite is observed on ed)	the D+ or D- p	bin for 2.5 μ s (d	ifferential '1' foi	r low speed, dif	terential '0' to
		tate is observed					
bit 4	IDLEIF: Idle	e Detect Interrupt	bit				
		ndition is detected	•	e state of 3 ms	or more)		
		condition is dete					
bit 3		en Processing Co	•	•			
		sing of the curren sing of the curren					
		TAT (clearing this				egister of load	
bit 2	SOFIF: Star	rt-of-Frame Toker	n Interrupt bit		-		
	1 = A Start-	-of-Frame token is	s received by t	he peripheral o	r the Start-of-F	rame threshold	l is reached by
	the hos	•		0			
L:1 4		rt-of-Frame token			ned		
bit 1		SB Error Conditio	•		atataa anablad	in the LI1EIE r	ogiator oon oo
	this bit	nasked error cond	IIIIOII HAS OCCU	freu, only error	states enabled		egister can se
		nasked error cond	dition has occu	irred			
bit 0	URSTIF: US	SB Reset Interrup	ot bit				
		SB Reset has oc	curred for at le	east 2.5 μs; Re	set state must l	be cleared before	ore this bit car
	be reas	sserted B Reset has occu	rrod Individua	hite can only	be cleared by	writing a '1' to t	he hit position
		of a word write of					
		to write to a singl					
	cleared	l.					
Note: Ir	ndividual bits c	an only be cleare	d by writing a '	1' to the bit pos	ition as part of	a word write or	peration on the
		Using Boolean in					
a	Il set bits at the	e moment of the	write to becom	e cleared.			

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—		—	_	—	—	—
bit 15							bit 8

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
BTSEE	—	DMAEE	BTOEE	DFN8EE	CRC16EE	CRC5EE	PIDEE
						EOFEE	
bit 7							bit 0

Legend:				
R = Readab	ole bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value a	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 15-8		mented: Read as '0'		
bit 7		Bit Stuff Error Interrupt Enab	ie dit	
		rupt is enabled rupt is disabled		
bit 6		mented: Read as '0'		
bit 5		DMA Error Interrupt Enable	bit	
		rupt is enabled		
		rupt is disabled		
bit 4	BTOEE:	Bus Turnaround Time-out Er	rror Interrupt Enable bit	
	1 = Inter	rupt is enabled		
	0 = Inter	rupt is disabled		
bit 3	DFN8EE	: Data Field Size Error Interr	upt Enable bit	
		rupt is enabled		
		rupt is disabled		
bit 2		E: CRC16 Failure Interrupt E	Enable bit	
		rupt is enabled rupt is disabled		
bit 1	For Device	•		
		CRC5 Host Error Interrupt	Enable bit	
		rupt is enabled		
		rupt is disabled		
	For Host			
		End-of-Frame Error interrupt	t Enable bit	
		rupt is enabled		
1.11.0		rupt is disabled	• • • • • • • • •	
bit 0		PID Check Failure Interrupt E	nadie dit	
	⊥ = inter	rupt is enabled		

REGISTER 22-2: AD1CON2: A/D CONTROL REGISTER 2

R/W-0	R/W-0	R/W-0	r-0	U-0	R/W-0	U-0	U-0
VCFG2	VCFG1	VCFG0	r	—	CSCNA		—
bit 15							bit 8

R-0, HSC	R/W-0						
BUFS	SMPI4	SMPI3	SMPI2	SMPI1	SMPI0	BUFM	ALTS
bit 7							bit 0

Legend:	r = Reserved bit	HSC = Hardware Setta	HSC = Hardware Settable/Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

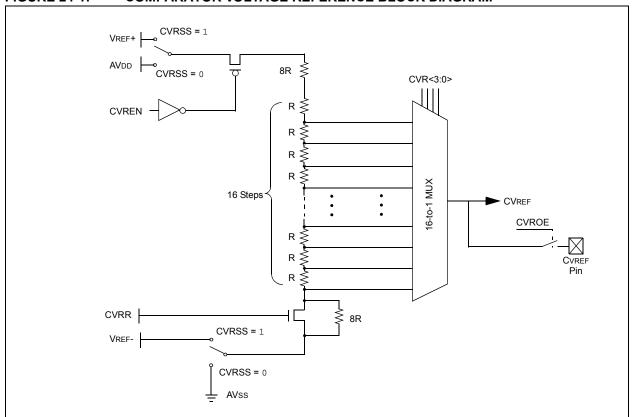
bit 15-13 VCFG<2:0>: Voltage Reference Configuration bits

VCFG<2:0>	VR+	VR-		
000	AVDD	AVss		
001	External VREF+ pin	AVss		
010	AVDD	External VREF- pin		
011	External VREF+ pin	External VREF- pin		
1xx	AVDD	AVss		

- bit 12 Reserved: Maintain as '0'
- bit 11 Unimplemented: Read as '0'
- bit 10 CSCNA: Scan Input Selections for the CH0+ S/H Input for MUX A Input Multiplexer Setting bit 1 = Scan inputs 0 = Do not scan inputs
- bit 9-8 Unimplemented: Read as '0'
- bit 7 **BUFS:** Buffer Fill Status bit (valid only when BUFM = 1)
 - 1 = A/D is currently filling buffer, 10-1F, user should access data in 00-0F
 - 0 = A/D is currently filling buffer, 00-0F, user should access data in 10-1F
- bit 6-2 SMPI<4:0>: Sample/Convert Sequences Per Interrupt Selection bits
 - 11111 = Interrupts at the completion of conversion for each 32nd sample/convert sequence
 - 11110 = Interrupts at the completion of conversion for each 31st sample/convert sequence
 - •
 - **.** 00001 = Interrupts at the completion of conversion for each 2nd sample/convert sequence 00000 = Interrupts at the completion of conversion for each sample/convert sequence **BUFM:** Buffer Mode Select bit
 - 1 = Buffer is configured as two 16-word buffers (ADC1BUFn<31:16> and ADC1BUFn<15:0>)
 - 0 = Buffer is configured as one 32-word buffer (ADC1BUFn<31:0>)
- bit 0 ALTS: Alternate Input Sample Mode Select bit
 - 1 = Uses MUX A input multiplexer settings for the first sample, then alternates between MUX B and MUX A input multiplexer settings for all subsequent samples
 - 0 = Always uses the MUX A input multiplexer settings

bit 1

24.0 COMPARATOR VOLTAGE REFERENCE


Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "PIC24F Family Reference Manual", Section 19. "Comparator Module" (DS39710). The information in this data sheet supersedes the information in the FRM.

24.1 Configuring the Comparator Voltage Reference

The voltage reference module is controlled through the CVRCON register (Register 24-1). The comparator voltage reference provides two ranges of output voltage, each with 16 distinct levels. The range to be used is selected by the CVRR bit (CVRCON<5>). The primary difference between the ranges is the size of the steps selected by the CVREF Selection bits (CVR<3:0>), with one range offering finer resolution.

The comparator reference supply voltage can come from either VDD and VSS, or the external VREF+ and VREF-. The voltage source is selected by the CVRSS bit (CVRCON<4>).

The settling time of the comparator voltage reference must be considered when changing the CVREF output.

FIGURE 24-1: COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM

AC CHARACTERISTICS					nditions: 2.2V to 3.6V (unless otherwise stated $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial		
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Мах	Units	Conditions
OS10	Fosc	External CLKI Frequency (External clocks allowed only in EC mode)	DC 4		32 48	MHz MHz	EC ECPLL
		Oscillator Frequency	3.5 4 10 10 31		10 8 32 32 33	MHz MHz MHz MHz kHz	XT XTPLL HS HSPLL SOSC
OS20	Tosc	Tosc = 1/Fosc	_	—	_	—	See parameter OS10 for Fosc value
OS25	Тсү	Instruction Cycle Time ⁽²⁾	62.5	_	DC	ns	
OS30	TosL, TosH	External Clock in (OSCI) High or Low Time	0.45 x Tosc	—	_	ns	EC
OS31	TosR, TosF	External Clock in (OSCI) Rise or Fall Time	—	—	20	ns	EC
OS40	TckR	CLKO Rise Time ⁽³⁾	—	6	10	ns	
OS41	TckF	CLKO Fall Time ⁽³⁾	_	6	10	ns	

TABLE 29-13: EXTERNAL CLOCK TIMING REQUIREMENTS

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

- 2: Instruction cycle period (Tcr) equals two times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "Min." values with an external clock applied to the OSCI/CLKI pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.
- **3:** Measurements are taken in EC mode. The CLKO signal is measured on the OSCO pin. CLKO is low for the Q1-Q2 period (1/2 TCY) and high for the Q3-Q4 period (1/2 TCY).

AC CH	ARACTE	RISTICS	Standard Operating Conditions: 2.2V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions	
OS50 F		PLL Input Frequency Range ⁽²⁾	4	—	48	MHz	ECPLL mode	
			4	_	32	MHz	HSPLL mode	
			4	_	8	MHz	XTPLL mode	
OS51	Fsys	PLL Output Frequency Range	95.76		96.24	MHz		
OS52	TLOCK	PLL Start-up Time (Lock Time)	-	—	200	μS		
OS53	DCLK	CLKO Stability (Jitter)	-0.25		0.25	%		

Note 1: These parameters are characterized but not tested in manufacturing.

^{2:} Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

AC CHARACTERISTICS			Standard Operating Conditions: 2.2V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$					
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions	
Clock Parameters								
AD50	Tad	ADC Clock Period	75	—	—	ns	Tcy = 75 ns, AD1CON3 in default state	
AD51	tRC	ADC Internal RC Oscillator Period	—	250	—	ns		
		Con	version R	ate	•			
AD55	tCONV	Conversion Time	_	12	_	TAD		
AD56	FCNV	Throughput Rate	_		500	ksps	AVDD > 2.7V	
AD57	tSAMP	Sample Time	—	1	—	Tad		
		Cloc	k Parame	ters				
AD61	tPSS	Sample Start Delay from Setting Sample bit (SAMP)	2	—	3	Tad		

TABLE 29-20: ADC CONVERSION TIMING REQUIREMENTS⁽¹⁾

Note 1: Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity performance, especially at elevated temperatures.

NOTES: