

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

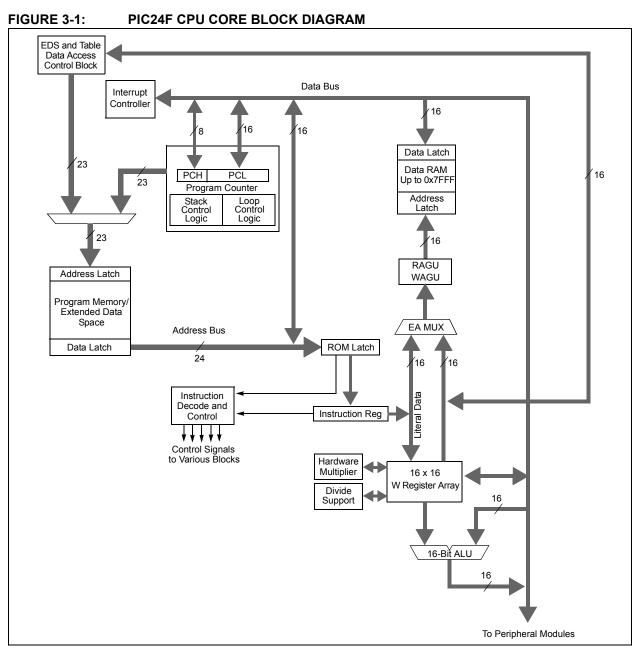
E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	84
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	96K x 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 3.6V
Data Converters	A/D 24x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	121-TFBGA
Supplier Device Package	121-TFBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj128gb210t-i-bg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		Pin Number	in Number			
Function	64-Pin TQFP/QFN	100-Pin TQFP	121-Pin BGA	I/O	Input Buffer	Description
PMD0	60	93	A4	I/O	ST/TTL	
PMD1	61	94	B4	I/O	ST/TTL	
PMD2	62	98	B3	I/O	ST/TTL	
PMD3	63	99	A2	I/O	ST/TTL	
PMD4	64	100	A1	I/O	ST/TTL	
PMD5	1	3	D3	I/O	ST/TTL	
PMD6	2	4	C1	I/O	ST/TTL	
PMD7	3	5	D2	I/O	ST/TTL	Devellet Menter Devt Dete kite (45:0)
PMD8	_	90	A5	I/O	ST/TTL	Parallel Master Port Data bits<15:0>.
PMD9		89	E6	I/O	ST/TTL	
PMD10	_	88	A6	I/O	ST/TTL	
PMD11		87	B6	I/O	ST/TTL	
PMD12		79	A9	I/O	ST/TTL	
PMD13	—	80	D8	I/O	ST/TTL	
PMD14	—	83	D7	I/O	ST/TTL	
PMD15	—	84	C7	I/O	ST/TTL	
PMRD	53	82	B8	I/O	ST/TTL	Parallel Master Port Read Strobe.
PMWR	52	81	C8	I/O	ST/TTL	Parallel Master Port Write Strobe.
RA0	—	17	G3	I/O	ST	
RA1	—	38	J6	I/O	ST	
RA2	—	58	H11	I/O	ST	
RA3	—	59	G10	I/O	ST	
RA4	—	60	G11	I/O	ST	
RA5	—	61	G9	I/O	ST	PORTA Digital I/O.
RA6	_	91	C5	I/O	ST	
RA7	—	92	B5	I/O	ST	
RA9	—	28	L2	I/O	ST	
RA10	—	29	K3	I/O	ST	
RA14	—	66	E11	I/O	ST	
RA15	—	67	E8	I/O	ST	
	TTL = TTL inpu ANA = Analog		put	 -	ST = I ² C™	Schmitt Trigger input buffer = I ² C/SMBus input buffer


TABLE 1-3: PIC24FJ256GB210 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

Note 1: The alternate EPMP pins are selected when the ALTPMP (CW3<12>) bit is programmed to '0'.

2: The PMSC2 signal will replace the PMA15 signal on the 15-pin PMA when CSF<1:0> = 01 or 10.

3: The PMCS1 signal will replace the PMA14 signal on the 14-pin PMA when CSF<1:0> = 10.

4: The alternate VREF pins selected when the ALTVREF (CW1<5>) bit is programmed to '0'.

TABLE 3-1:CPU CORE REGISTERS

Register(s) Name	Description	
W0 through W15	Working Register Array	
PC	23-Bit Program Counter	
SR	ALU STATUS Register	
SPLIM	Stack Pointer Limit Value Register	
TBLPAG	Table Memory Page Address Register	
RCOUNT	Repeat Loop Counter Register	
CORCON	CPU Control Register	
DISICNT	Disable Interrupt Count Register	
DSRPAG	Data Space Read Page Register	
DSWPAG	Data Space Write Page Register	

TABLE 4-31: SYSTEM REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RCON	0740	TRAPR	IOPUWR	_	_	_	_	CM	VREGS	EXTR	SWR	SWDTEN	WDTO	SLEEP	IDLE	BOR	POR	Note 1
OSCCON	0742	_	COSC2	COSC1	COSC0	_	NOSC2	NOSC1	NOSC0	CLKLOCK	IOLOCK	LOCK	_	CF	POSCEN	SOSCEN	OSWEN	Note 2
CLKDIV	0744	ROI	DOZE2	DOZE1	DOZE0	DOZEN	RCDIV2	RCDIV1	RCDIV0	CPDIV1	CPDIV0	PLLEN	r	_	—	_	-	0100
OSCTUN	0748		_	_	_	_	_	_	_	_	_	TUN5	TUN4	TUN3	TUN2	TUN1	TUN0	0000
REFOCON	074E	ROEN	—	ROSSLP	ROSEL	RODIV3	RODIV2	RODIV1	RODIV0	_	—	_	—	-	—	_	-	0000

- = unimplemented, read as '0', r = Reserved. Reset values are shown in hexadecimal. Legend:

Note 1:

The Reset value of the RCON register is dependent on the type of Reset event. See Section 6.0 "Resets" for more information. The Reset value of the OSCCON register is dependent on both the type of Reset event and the device configuration. See Section 8.0 "Oscillator Configuration" for more information. 2:

TABLE 4-32: NVM REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
NVMCON	0760	WR	WREN	WRERR	_	_	_	_	_	-	ERASE	_	_	NVMOP3	NVMOP2	NVMOP1	NVMOP0	0000 (1)
NVMKEY	0766	_		-		—			_	NVMKEY Register<7:0>					0000			

Legend: - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: Reset value shown is for POR only. Value on other Reset states is dependent on the state of memory write or erase operations at the time of Reset.

TABLE 4-33: PMD REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0770	T5MD	T4MD	T3MD	T2MD	T1MD	-	—	_	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	—	_	ADC1MD	0000
PMD2	0772	IC8MD	IC7MD	IC6MD	IC5MD	IC4MD	IC3MD	IC2MD	IC1MD	OC8MD	OC7MD	OC6MD	OC5MD	OC4MD	OC3MD	OC2MD	OC1MD	0000
PMD3	0774	-	_	_	_	_	CMPMD	RTCCMD	PMPMD	CRCMD	_	_	_	U3MD	I2C3MD	I2C2MD	_	0000
PMD4	0776		_	_	_	_	_	_	_	_	UPWMMD	U4MD	_	REFOMD	CTMUMD	LVDMD	USB1MD	0000
PMD5	0778		_	_	_	_	_	_	IC9MD	_	_	_	_	_	_	_	OC9MD	0000
PMD6	077A			_	_	_		_	_		_		_	_	_	_	SPI3MD	0000

- = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

EXAMPLE 5-2: ERASING A PROGRAM MEMORY BLOCK ('C' LANGUAGE CODE)

<pre>// C example using MPLAB C30 unsigned long progAddr = 0xXXXXXX; unsigned int offset;</pre>	// Address of row to write
//Set up pointer to the first memory location t	o be written
TBLPAG = progAddr>>16;	// Initialize PM Page Boundary SFR
offset = progAddr & 0xFFFF;	<pre>// Initialize lower word of address</pre>
<pre>builtin_tblwtl(offset, 0x0000);</pre>	// Set base address of erase block
	// with dummy latch write
NVMCON = 0×4042 ;	// Initialize NVMCON
asm("DISI #5");	<pre>// Block all interrupts with priority <7</pre>
	// for next 5 instructions
builtin_write_NVM();	// check function to perform unlock
	// sequence and set WR

EXAMPLE 5-3: LOADING THE WRITE BUFFERS

; Set up NVMCON for row programming operation	22
MOV #0x4001, W0	;
MOV W0, NVMCON	, ; Initialize NVMCON
; Set up a pointer to the first program memo	
; program memory selected, and writes enable	
MOV #0x0000, W0	;
MOV W0, TBLPAG	, ; Initialize PM Page Boundary SFR
MOV #0x6000, W0	; An example program memory address
; Perform the TBLWT instructions to write th	
; Oth program word	
MOV #LOW_WORD_0, W2	i
MOV #HIGH_BYTE_0, W3	;
TBLWTL W2, [W0]	, ; Write PM low word into program latch
TBLWTH W3, [W0++]	; Write PM high byte into program latch
; lst_program_word	, write in high byte into program faton
MOV #LOW_WORD_1, W2	i
MOV #HIGH BYTE 1, W3	;
TBLWTL W2, [W0]	; Write PM low word into program latch
TBLWTH W3, [W0++]	; Write PM high byte into program latch
; 2nd program word	
MOV #LOW_WORD_2, W2	i
MOV #HIGH_BYTE_2, W3	i
TBLWTL W2, [W0]	; Write PM low word into program latch
TBLWTH W3, [W0++]	; Write PM high byte into program latch
•	
•	
•	
; 63rd_program_word	
MOV #LOW_WORD_63, W2	;
MOV #HIGH_BYTE_63, W3	;
TBLWTL W2, [W0]	; Write PM low word into program latch
TBLWTH W3, [W0]	; Write PM high byte into program latch

EXAMPLE 5-4: INITIATING A PROGRAMMING SEQUENCE

DISI	#5	; Block all interrupts with priority <7
		; for next 5 instructions
MOV.B	#0x55, W0	
MOV	W0, NVMKEY	; Write the 0x55 key
MOV.B	#0xAA, W1	;
MOV	W1, NVMKEY	; Write the OxAA key
BSET	NVMCON, #WR	; Start the programming sequence
NOP		; Required delays
NOP		
BTSC	NVMCON, #15	; and wait for it to be
BRA	\$-2	; completed

R/W-0	R-0, HSC	U-0	U-0	U-0	U-0	U-0	U-0						
ALTIVT	DISI		_	—	—	—	—						
bit 15							bit 8						
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
		—	INT4EP	INT3EP	INT2EP	INT1EP	INT0EP						
bit 7							bit 0						
Legend:		HSC = Hardw	ISC = Hardware Settable/Clearable bit V = Writable bit U = Unimplemented bit, read as '0'										
R = Readable		W = Writable	l as '0'										
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown							
bit 15			terrupt Vector 7	lable bit									
	1 = Use Alternate Interrupt Vector Table												
bit 14	0 = Use standard (default) vector table DISI: DISI Instruction Status bit												
DIL 14		truction is activ											
		truction is not a	-										
bit 13-5	Unimplemen	ted: Read as '	0'										
bit 4	INT4EP: Exte	ernal Interrupt 4	Edge Detect F	Polarity Select b	pit								
		on negative ed											
	0 = Interrupt	on positive edg	ge										
bit 3			•	Polarity Select b	bit								
		on negative ed											
bit 2	•	on positive edg		Palarity Calaat k	.:+								
DIL Z		on negative ed	•	Polarity Select b	JIL								
		on positive ed											
bit 1	•			Polarity Select b	oit								
	1 = Interrupt on negative edge												
	0 = Interrupt	on positive edg	ge										
bit 0		•	•	Polarity Select b	pit								
		on negative ed											
	0 = Interrupt	on positive edo	je										

REGISTER 7-4: INTCON2: INTERRUPT CONTROL REGISTER 2

REGISTER 7-12: IEC1: INTERRUPT ENABLE CONTROL REGISTER 1 (CONTINUED)

bit 9	OC3IE: Output Compare Channel 3 Interrupt Enable bit
	1 = Interrupt request is enabled
	0 = Interrupt request is not enabled
bit 8	Unimplemented: Read as '0'
bit 7	IC8IE: Input Capture Channel 8 Interrupt Enable bit
	1 = Interrupt request is enabled
	0 = Interrupt request is not enabled
bit 6	IC7IE: Input Capture Channel 7 Interrupt Enable bit
	1 = Interrupt request is enabled
	0 = Interrupt request is not enabled
bit 5	Unimplemented: Read as '0'
bit 4	INT1IE: External Interrupt 1 Enable bit ⁽¹⁾
	1 = Interrupt request is enabled
	0 = Interrupt request is not enabled
bit 3	CNIE: Input Change Notification Interrupt Enable bit
	1 = Interrupt request is enabled
	0 = Interrupt request is not enabled
bit 2	CMIE: Comparator Interrupt Enable bit
	1 = Interrupt request is enabled
	0 = Interrupt request is not enabled
bit 1	MI2C1IE: Master I2C1 Event Interrupt Enable bit
	1 = Interrupt request is enabled
	0 = Interrupt request is not enabled
bit 0	SI2C1IE: Slave I2C1 Event Interrupt Enable bit
	1 = Interrupt request is enabled
	0 = Interrupt request is not enabled

Note 1: If an external interrupt is enabled, the interrupt input must also be configured to an available RPx or RPIx pin. See **Section 10.4 "Peripheral Pin Select (PPS)**" for more information.

REGISTER 7-16: IEC5: INTERRUPT ENABLE CONTROL REGISTER 5 (CONTINUED)

- **U3ERIE:** UART3 Error Interrupt Enable bit
 - 1 = Interrupt request is enabled
 - 0 = Interrupt request is not enabled
- bit 0 Unimplemented: Read as '0'

bit 1

REGISTER 7-17: IPC0: INTERRUPT PRIORITY CONTROL REGISTER 0

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—	T1IP2	T1IP1	T1IP0	—	OC1IP2	OC1IP1	OC1IP0
bit 15							bit 8

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	IC1IP2	IC1IP1	IC1IP0	—	INT0IP2	INT0IP1	INT0IP0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	Unimplemented: Read as '0'
bit 14-12	T1IP<2:0>: Timer1 Interrupt Priority bits
	111 = Interrupt is priority 7 (highest priority interrupt)
	•
	•
	001 = Interrupt is priority 1
	000 = Interrupt source is disabled
bit 11	Unimplemented: Read as '0'
bit 10-8	OC1IP<2:0>: Output Compare Channel 1 Interrupt Priority bits
	111 = Interrupt is priority 7 (highest priority interrupt)
	•
	001 = Interrupt is priority 1
	000 = Interrupt source is disabled
bit 7	Unimplemented: Read as '0'
bit 7 bit 6-4	Unimplemented: Read as '0' IC1IP<2:0>: Input Capture Channel 1 Interrupt Priority bits
	-
	IC1IP<2:0>: Input Capture Channel 1 Interrupt Priority bits
	IC1IP<2:0>: Input Capture Channel 1 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt)
	IC1IP<2:0>: Input Capture Channel 1 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) 001 = Interrupt is priority 1
bit 6-4	IC1IP<2:0>: Input Capture Channel 1 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) 001 = Interrupt is priority 1 000 = Interrupt source is disabled
	IC1IP<2:0>: Input Capture Channel 1 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) 001 = Interrupt is priority 1 000 = Interrupt source is disabled Unimplemented: Read as '0'
bit 6-4	IC1IP<2:0>: Input Capture Channel 1 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) 001 = Interrupt is priority 1 000 = Interrupt source is disabled
bit 6-4 bit 3	IC1IP<2:0>: Input Capture Channel 1 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) 001 = Interrupt is priority 1 000 = Interrupt source is disabled Unimplemented: Read as '0'
bit 6-4 bit 3	IC1IP<2:0>: Input Capture Channel 1 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) 001 = Interrupt is priority 1 000 = Interrupt source is disabled Unimplemented: Read as '0' INTOIP<2:0>: External Interrupt 0 Priority bits
bit 6-4 bit 3	IC1IP<2:0>: Input Capture Channel 1 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) 001 = Interrupt is priority 1 000 = Interrupt source is disabled Unimplemented: Read as '0' INTOIP<2:0>: External Interrupt 0 Priority bits
bit 6-4 bit 3	IC1IP<2:0>: Input Capture Channel 1 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) 001 = Interrupt is priority 1 000 = Interrupt source is disabled Unimplemented: Read as '0' INTOIP<2:0>: External Interrupt 0 Priority bits
bit 6-4 bit 3	IC1IP<2:0>: Input Capture Channel 1 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) 001 = Interrupt is priority 1 000 = Interrupt source is disabled Unimplemented: Read as '0' INTOIP<2:0>: External Interrupt 0 Priority bits 111 = Interrupt is priority 7 (highest priority interrupt)

7.4 Interrupt Setup Procedures

7.4.1 INITIALIZATION

To configure an interrupt source:

- 1. Set the NSTDIS (INTCON1<15>) control bit if nested interrupts are not desired.
- Select the user-assigned priority level for the interrupt source by writing the control bits in the appropriate IPCx register. The priority level will depend on the specific application and type of interrupt source. If multiple priority levels are not desired, the IPCx register control bits for all enabled interrupt sources may be programmed to the same non-zero value.

Note:	At a device Reset, the IPCx registers are				
	initialized, such that all user interrupt				
	sources are assigned to Priority Level 4.				

- 3. Clear the interrupt flag status bit associated with the peripheral in the associated IFSx register.
- 4. Enable the interrupt source by setting the interrupt enable control bit associated with the source in the appropriate IECx register.

7.4.2 INTERRUPT SERVICE ROUTINE (ISR)

The method that is used to declare an Interrupt Service Routine (ISR) and initialize the IVT with the correct vector address will depend on the programming language (i.e., 'C' or assembler) and the language development toolsuite that is used to develop the application. In general, the user must clear the interrupt flag in the appropriate IFSx register for the source of the interrupt that the ISR handles. Otherwise, the ISR will be re-entered immediately after exiting the routine. If the ISR is coded in assembly language, it must be terminated using a RETFIE instruction to unstack the saved PC value, SRL value and old CPU priority level.

7.4.3 TRAP SERVICE ROUTINE (TSR)

A Trap Service Routine (TSR) is coded like an ISR, except that the appropriate trap status flag in the INTCON1 register must be cleared to avoid re-entry into the TSR.

7.4.4 INTERRUPT DISABLE

All user interrupts can be disabled using the following procedure:

- 1. Push the current SR value onto the software stack using the PUSH instruction.
- 2. Force the CPU to Priority Level 7 by inclusive ORing the value 0Eh with SRL.

To enable user interrupts, the POP instruction may be used to restore the previous SR value.

Note that only user interrupts with a priority level of 7 or less can be disabled. Trap sources (Levels 8-15) cannot be disabled.

The DISI instruction provides a convenient way to disable interrupts of Priority Levels, 1-6, for a fixed period of time. Level 7 interrupt sources are not disabled by the DISI instruction.

REGISTER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER (CONTINUED)

bit 7	CLKLOCK: Clock Selection Lock Enabled bit
	If FSCM is enabled (FCKSM1 = 1):
	1 = Clock and PLL selections are locked
	0 = Clock and PLL selections are not locked and may be modified by setting the OSWEN bit
	If FSCM is disabled (FCKSM1 = 0):
	Clock and PLL selections are never locked and may be modified by setting the OSWEN bit.
bit 6	IOLOCK: I/O Lock Enable bit ⁽²⁾
	1 = I/O lock is active
	0 = I/O lock is not active
bit 5	LOCK: PLL Lock Status bit ⁽³⁾
	1 = PLL module is in lock or PLL module start-up timer is satisfied
	0 = PLL module is out of lock, PLL start-up timer is running or PLL is disabled
bit 4	Unimplemented: Read as '0'
bit 3	CF: Clock Fail Detect bit
	1 = FSCM has detected a clock failure
	0 = No clock failure has been detected
bit 2	POSCEN: Primary Oscillator Sleep Enable bit
	1 = Primary Oscillator continues to operate during Sleep mode
	0 = Primary Oscillator is disabled during Sleep mode
bit 1	SOSCEN: 32 kHz Secondary Oscillator (SOSC) Enable bit
	1 = Enable the Secondary Oscillator
	0 = Disable the Secondary Oscillator
bit 0	OSWEN: Oscillator Switch Enable bit
	1 = Initiate an oscillator switch to the clock source specified by the NOSC<2:0> bits
	0 = Oscillator switch is complete
Note 1:	Reset values for these bits are determined by the FNOSC Configuration bits.

- 2: The state of the IOLOCK bit can only be changed once an unlocking sequence has been executed. In addition, if the IOL1WAY Configuration bit is '1', once the IOLOCK bit is set, it cannot be cleared.
- 3: Also resets to '0' during any valid clock switch or whenever a non PLL Clock mode is selected.

10.4.5 CONSIDERATIONS FOR PERIPHERAL PIN SELECTION

The ability to control Peripheral Pin Selection introduces several considerations into application design that could be overlooked. This is particularly true for several common peripherals that are available only as remappable peripherals.

The main consideration is that the Peripheral Pin Selects are not available on default pins in the device's default (Reset) state. Since all RPINRx registers reset to '111111' and all RPORx registers reset to '000000', all Peripheral Pin Select inputs are tied to Vss and all Peripheral Pin Select outputs are disconnected.

Note:	In tying Peripheral Pin Select inputs to				
	RP63, RP63 need not exist on a device for				
	the registers to be reset to it.				

This situation requires the user to initialize the device with the proper peripheral configuration before any other application code is executed. Since the IOLOCK bit resets in the unlocked state, it is not necessary to execute the unlock sequence after the device has come out of Reset. For application safety, however, it is best to set IOLOCK and lock the configuration after writing to the control registers.

Because the unlock sequence is timing-critical, it must be executed as an assembly language routine in the same manner as changes to the oscillator configuration. If the bulk of the application is written in 'C', or another high-level language, the unlock sequence should be performed by writing in-line assembly.

Choosing the configuration requires the review of all Peripheral Pin Selects and their pin assignments, especially those that will not be used in the application. In all cases, unused pin-selectable peripherals should be disabled completely. Unused peripherals should have their inputs assigned to an unused RPn/RPIn pin function. I/O pins with unused RPn functions should be configured with the null peripheral output.

The assignment of a peripheral to a particular pin does not automatically perform any other configuration of the pin's I/O circuitry. In theory, this means adding a pin-selectable output to a pin may mean inadvertently driving an existing peripheral input when the output is driven. Users must be familiar with the behavior of other fixed peripherals that share a remappable pin and know when to enable or disable them. To be safe, fixed digital peripherals that share the same pin should be disabled when not in use. Along these lines, configuring a remappable pin for a specific peripheral does not automatically turn that feature on. The peripheral must be specifically configured for operation, and enabled as if it were tied to a fixed pin. Where this happens in the application code (immediately following device Reset and peripheral configuration or inside the main application routine) depends on the peripheral and its use in the application.

A final consideration is that Peripheral Pin Select functions neither override analog inputs nor reconfigure pins with analog functions for digital I/O. If a pin is configured as an analog input on device Reset, it must be explicitly reconfigured as digital I/O when used with a Peripheral Pin Select.

Example 10-3 shows a configuration for bidirectional communication with flow control using UART1. The following input and output functions are used:

- Input Functions: U1RX, U1CTS
- Output Functions: U1TX, U1RTS

EXAMPLE 10-3: CONFIGURING UART1 INPUT AND OUTPUT FUNCTIONS

// Unlock Regis	sters		
asm volatile("MOV	#OSCCON, w1	\n"
	"MOV	#0x46, w2	\n"
	"MOV	#0x57, w3	\n"
	"MOV.b	w2, [w1]	\n"
	"MOV.b	w3, [w1]	\n"
	"BCLR () SCCON , #6 ") ;	
// or use C30 k	ouilt-ir	n macro:	
// _builtin_wri	ite_OSCO	CONL (OSCCON &	0xbf);
// Configure Ir	nput Fur	nctions (Table	
Table 10-2))			
// Assign U	JRX To	Pin RPO	
RPINR18bits	.Ulrxr	= 0 <i>i</i>	
// Assign U			
RPINR18bits	.U1CTSR	= 1;	
// Configure Ou	-		≥ 10-4)
// Assign U RPOR1bits.R			
RPORIDIUS.R	PZR = 3	1	
// Assign U	יוסדפ דה	Din D2	
RPOR1bits.R			
111 011101105.11			
// Lock Registe	ers		
asm volatile		#OSCCON, w1	\n"
		#0x46, w2	\n"
			\n"
	"MOV.b	w2, [w1]\	n"
	"MOV.b	w3, [w1]	\n"
	"BSET	OSCCON, #6")	;
// or use C30 k	ouilt-ir	n macro:	
// _builtin_wri	ite_OSCO	CONL (OSCCON	0x40);
1			

'1' = Bit is set

REGISTER 10-29: RPOR0: PERIPHERAL PIN SELECT OUTPUT REGISTER 0

bit 15 U-0 U- bit 7 Legend:						
U-0 U-						
U-0 U-						bit 0
	– RP0R5	RP0R4	RP0R3	RP0R2	RP0R1	RP0R0
bit 15	-0 R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 15						
						bit 8
U-0 U-	– RP1R5	RP1R4	RP1R3	RP1R2	RP1R1	RP1R0

bit 15-14 Unimplemented: Read as '0'

-n = Value at POR

 bit 13-8
 RP1R<5:0>: RP1 Output Pin Mapping bits

 Peripheral output number n is assigned to pin, RP1 (see Table 10-4 for peripheral function numbers).

 bit 7-6
 Unimplemented: Read as '0'

 bit 5.0
 RP2D (5:0) = RP0 Output Pin Mapping bits

'0' = Bit is cleared

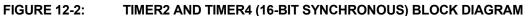
x = Bit is unknown

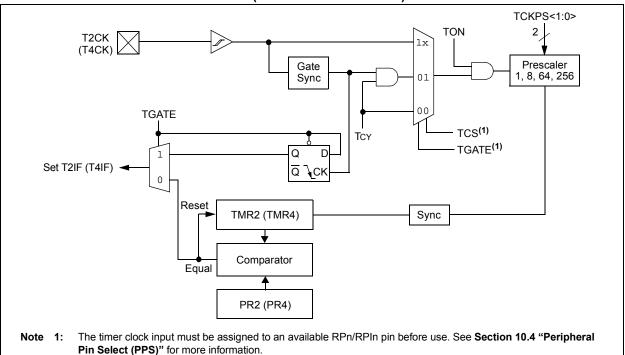
bit 5-0 **RP0R<5:0>:** RP0 Output Pin Mapping bits Peripheral output number n is assigned to pin, RP0 (see Table 10-4 for peripheral function numbers).

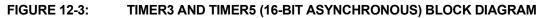
REGISTER 10-30: RPOR1: PERIPHERAL PIN SELECT OUTPUT REGISTER 1

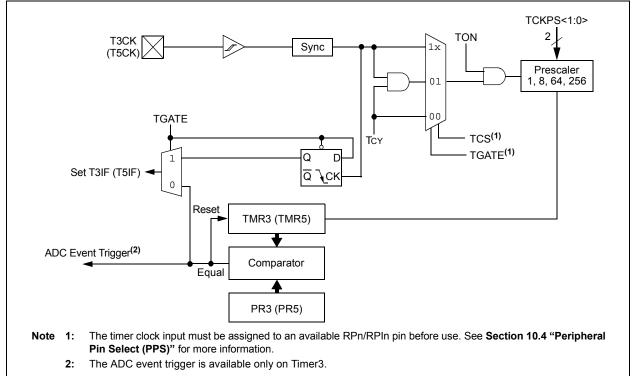
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP3R5	RP3R4	RP3R3	RP3R2	RP3R1	RP3R0
bit 15		•					bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP2R5	RP2R4	RP2R3	RP2R2	RP2R1	RP2R0
bit 7							bit 0

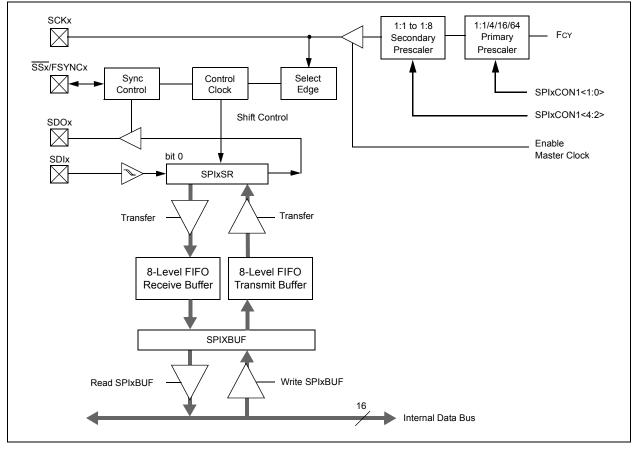

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown


bit 15-14 Unimplemented: Read as '0'


bit 13-8 **RP3R<5:0>:** RP3 Output Pin Mapping bits


Peripheral output number n is assigned to pin, RP3 (see Table 10-4 for peripheral function numbers).

- bit 7-6 Unimplemented: Read as '0'
- bit 5-0 **RP2R<5:0>:** RP2 Output Pin Mapping bits Peripheral output number n is assigned to pin, RP2 (see Table 10-4 for peripheral function numbers).


To set up the SPI module for the Enhanced Buffer Master mode of operation:

- 1. If using interrupts:
 - a) Clear the SPIxIF bit in the respective IFS register.
 - b) Set the SPIxIE bit in the respective IEC register.
 - c) Write the SPIxIP bits in the respective IPC register.
- Write the desired settings to the SPIxCON1 and SPIxCON2 registers with MSTEN (SPIxCON1<5>) = 1.
- 3. Clear the SPIROV bit (SPIxSTAT<6>).
- 4. Select Enhanced Buffer mode by setting the SPIBEN bit (SPIxCON2<0>).
- Enable SPI operation by setting the SPIEN bit (SPIxSTAT<15>).
- 6. Write the data to be transmitted to the SPIxBUF register. Transmission (and reception) will start as soon as data is written to the SPIxBUF register.

To set up the SPI module for the Enhanced Buffer Slave mode of operation:

- 1. Clear the SPIxBUF register.
- 2. If using interrupts:
 - a) Clear the SPIxIF bit in the respective IFS register.
 - b) Set the SPIxIE bit in the respective IEC register.
 - c) Write the SPIxIP bits in the respective IPC register to set the interrupt priority.
- Write the desired settings to the SPIxCON1 and SPIxCON2 registers with MSTEN (SPIxCON1<5>) = 0.
- 4. Clear the SMP bit.
- 5. If the CKE bit is set, then the SSEN bit must be set, thus enabling the SSx pin.
- 6. Clear the SPIROV bit (SPIxSTAT<6>).
- 7. Select Enhanced Buffer mode by setting the SPIBEN bit (SPIxCON2<0>).
- 8. Enable SPI operation by setting the SPIEN bit (SPIxSTAT<15>).

FIGURE 15-2: SPIX MODULE BLOCK DIAGRAM (ENHANCED MODE)

REGISTER 17-1: UXMODE: UARTX MODE REGISTER (CONTINUED)

- bit 4 **RXINV:** Receive Polarity Inversion bit
 - 1 = UxRX Idle state is '0'
 - 0 = UxRX Idle state is '1'
- bit 3 BRGH: High Baud Rate Enable bit
 - 1 = High-Speed mode (4 BRG clock cycles per bit)
 - 0 = Standard-Speed mode (16 BRG clock cycles per bit)
- bit 2-1 **PDSEL<1:0>:** Parity and Data Selection bits
 - 11 = 9-bit data, no parity
 - 10 = 8-bit data, odd parity
 - 01 = 8-bit data, even parity
 - 00 = 8-bit data, no parity
- bit 0 STSEL: Stop Bit Selection bit
 - 1 = Two Stop bits
 - 0 = One Stop bit
- Note 1: If UARTEN = 1, the peripheral inputs and outputs must be configured to an available RPn/RPIn pin. See Section 10.4 "Peripheral Pin Select (PPS)" for more information.
 - **2:** This feature is only available for the 16x BRG mode (BRGH = 0).

EQUATION 18-1: ESTIMATING USB TRANSCEIVER CURRENT CONSUMPTION

 $\mathsf{IXCVR} = \frac{40 \text{ mA} \cdot \mathsf{VUSB} \cdot \mathsf{PZERO} \cdot \mathsf{PIN} \cdot \mathsf{LCABLE}}{3.3 \text{ V} \cdot 5 \text{ m}} + \mathsf{IPULLUP}$

Legend: VUSB – Voltage applied to the VUSB pin in volts (3.0V to 3.6V).

PZERO – Percentage (in decimal) of the IN traffic bits sent by the PIC[®] microcontroller that are a value of '0'.

PIN – Percentage (in decimal) of total bus bandwidth that is used for IN traffic.

LCABLE – Length (in meters) of the USB cable. The *"USB 2.0 OTG Specification"* requires that full-speed applications use cables no longer than 5m.

 $\mbox{IPULLUP}$ – Current which the nominal, 1.5 k Ω pull-up resistor (when enabled) must supply to the USB cable.

ALWDHR: ALARM WEEKDAY AND HOURS VALUE REGISTER⁽¹⁾ REGISTER 20-9:

U-0	U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x
—	_	—	—	—	WDAY2	WDAY1	WDAY0
bit 15 bit 8							
U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	_	HRTEN1	HRTEN0	HRONE3	HRONE2	HRONE1	HRONE0
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			bit	U = Unimplen	nented hit read	l as '0'	

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-11	Unimplemented: Read as '0'
bit 10-8	WDAY<2:0>: Binary Coded Decimal Value of Weekday Digit bits
	Contains a value from 0 to 6.
bit 7-6	Unimplemented: Read as '0'
bit 5-4	HRTEN<1:0>: Binary Coded Decimal Value of Hour's Tens Digit bits
	Contains a value from 0 to 2.
bit 3-0	HRONE<3:0>: Binary Coded Decimal Value of Hour's Ones Digit bits
	Contains a value from 0 to 9.

Note 1: A write to this register is only allowed when RTCWREN = 1.

REGISTER 20-10: ALMINSEC: ALARM MINUTES AND SECONDS VALUE REGISTER

U-0	R/W-x						
_	MINTEN2	MINTEN1	MINTEN0	MINONE3	MINONE2	MINONE1	MINONE0
bit 15							bit 8
U-0	R/W-x						
—	SECTEN2	SECTEN1	SECTEN0	SECONE3	SECONE2	SECONE1	SECONE0
bit 7							bit 0

Legend: R = Readable bit U = Unimplemented bit, read as '0' W = Writable bit '0' = Bit is cleared -n = Value at POR '1' = Bit is set x = Bit is unknown

bit 15	Unimplemented: Read as '0'
bit 14-12	MINTEN<2:0>: Binary Coded Decimal Value of Minute's Tens Digit bits
	Contains a value from 0 to 5.
bit 11-8	MINONE<3:0>: Binary Coded Decimal Value of Minute's Ones Digit bits
	Contains a value from 0 to 9.
bit 7	Unimplemented: Read as '0'
bit 6-4	SECTEN<2:0>: Binary Coded Decimal Value of Second's Tens Digit bits
	Contains a value from 0 to 5.
bit 3-0	SECONE<3:0>: Binary Coded Decimal Value of Second's Ones Digit bits
	Contains a value from 0 to 9.

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
_	—	DWIDTH4	DWIDTH3	DWIDTH2	DWIDTH1	DWIDTH0	
		·		•		bit 8	
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	—	PLEN4	PLEN3	PLEN2	PLEN1	PLEN0	
						bit 0	
R = Readable bit W = Writable b		bit	U = Unimplemented bit, read as '0'				
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
			— — DWIDTH4 U-0 U-0 R/W-0 — — PLEN4 bit W = Writable bit	— — DWIDTH4 DWIDTH3 U-0 U-0 R/W-0 R/W-0 — — PLEN4 PLEN3 bit W = Writable bit U = Unimplem	— — DWIDTH4 DWIDTH3 DWIDTH2 U-0 U-0 R/W-0 R/W-0 R/W-0 — — PLEN4 PLEN3 PLEN2 bit W = Writable bit U = Unimplemented bit, read	— — DWIDTH4 DWIDTH3 DWIDTH2 DWIDTH1 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 — — PLEN4 PLEN3 PLEN2 PLEN1 bit W = Writable bit U = Unimplemented bit, read as '0'	

bit 15-13	Unimplemented: Read as '0'
bit 12-8	DWIDTH<4:0>: Data Word Width Configuration bits
	Configures the width of the data word (data word width – 1).
bit 7-5	Unimplemented: Read as '0'
bit 4-0	PLEN<4:0>: Polynomial Length Configuration bits
	Configures the length of the polynomial (polynomial length – 1).

REGISTER 21-3: CRCXORL: CRC XOR POLYNOMIAL REGISTER, LOW BYTE

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
X15	X14	X13	X12	X11	X10	X9	X8
bit 15		•				·	bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
X7	X6	X5	X4	X3	X2	X1	
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bit		U = Unimplemented bit, read as '0'			
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	

bit 15-1 X<15:1>: XOR of Polynomial Term xⁿ Enable bits

bit 0 Unimplemented: Read as '0'

REGISTER 22-5: ANCFG: A/D BAND GAP REFERENCE CONFIGURATION REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	_			—	—	—	—	
bit 15 bit 8								

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
_	—			—	VBG6EN	VBG2EN	VBGEN
bit 7 bit 0							

Legend:

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-3	Unimplemented: Read as '0'
bit 2	VBG6EN: A/D Input VBG/6 Enable bit
	 1 = Band gap voltage divided-by-six reference (VBG/6) is enabled 0 = Band gap divided-by-six reference (VBG/6) is disabled
bit 1	VBG2EN: A/D Input VBG/2 Enable bit
	 1 = Band gap voltage divided-by-two reference (VBG/2) is enabled 0 = Band gap divided-by-two reference (VBG/2) is disabled
bit 0	VBGEN: A/D Input VBG Enable bit
	1 = Band gap voltage reference (VBG) is enabled0 = Band gap reference (VBG) is disabled

REGISTER 22-6: AD1CSSL: A/D INPUT SCAN SELECT REGISTER (LOW)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CSSL15	CSSL14	CSSL13	CSSL12	CSSL11	CSSL10	CSSL9	CSSL8
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| CSSL7 | CSSL6 | CSSL5 | CSSL4 | CSSL3 | CSSL2 | CSSL1 | CSSL0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 CSSL<15:0>: A/D Input Pin Scan Selection bits

1 = Corresponding analog channel is selected for input scan

0 = Analog channel is omitted from input scan

REGISTER 23-1: CMxCON: COMPARATOR x CONTROL REGISTERS (COMPARATORS 1 THROUGH 3)

	•			•					
R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0, HS	R-0, HSC		
CEN	COE	CPOL	—	—	-	CEVT	COUT		
bit 15							bit 8		
R/W-0	R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0		
EVPOL1	EVPOL0	—	CREF		_	CCH1	CCH0		
bit 7							bit 0		
Legend:	nd: HS = Hardware Settable bit HSC = Hardware Settable/Clearable bit								
R = Readab	le bit	W = Writable b	it	U = Unimpler	mented bit, re	ad as '0'			
-n = Value a	t POR	'1' = Bit is set	'0' = Bit is cle	ared	x = Bit is unkr	iown			
bit 15	CEN: Compa	arator Enable bit							
	1 = Compara	1 = Comparator is enabled							
	0 = Compara	ator is disabled							
bit 14		arator Output En							
		 1 = Comparator output is present on the CxOUT pin 0 = Comparator output is internal only 							
h:1 40	•	•	,	:.					
bit 13		parator Output Pe ator output is inve	2	nt					
		ator output is not							
bit 12-10	-	nted: Read as '0							
bit 9	-	EVT: Comparator Event bit							
	•	1 = Comparator event that is defined by EVPOL<1:0> has occurred; subsequent triggers and interrupts							
	are disabled until the bit is cleared								
	-	ator event has no							
bit 8	-	parator Output bi	t						
		$\frac{\text{When CPOL} = 0:}{1 = \text{VIN} + \text{VIN}}$							
	L = VIN + > VIN - 0 = VIN + < VIN - 0								
	When CPOL = 1:								
	1 = VIN+ < VIN-								
	0 = VIN + > V								
bit 7-6		EVPOL<1:0>: Trigger/Event/Interrupt Polarity Select bits							
	11 = Trigger/event/interrupt is generated on any change of the comparator output (while CEVT = 0)								
	10 = Trigger/event/interrupt is generated on transition of the comparator output: If CPOL = 0 (non-inverted polarity):								
	High-to-low transition only.								
	If CPOL = 1 (inverted polarity):								
	Low-to-high transition only.								
	01 = Trigger/event/interrupt is generated on transition of comparator output:								
		DL = 0 (non-inver							
		high transition c	-						
		<u>If CPOL = 1 (inverted polarity):</u> High-to-low transition only.							
	-	r/event/interrupt	-	lisabled					
bit 5		nted: Read as '0	-						

27.7 MPLAB SIM Software Simulator

The MPLAB SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC[®] DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB SIM Software Simulator fully supports symbolic debugging using the MPLAB C Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

27.8 MPLAB REAL ICE In-Circuit Emulator System

MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs PIC[®] Flash MCUs and dsPIC[®] Flash DSCs with the easy-to-use, powerful graphical user interface of the MPLAB Integrated Development Environment (IDE), included with each kit.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with in-circuit debugger systems (RJ11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB IDE. In upcoming releases of MPLAB IDE, new devices will be supported, and new features will be added. MPLAB REAL ICE offers significant advantages over competitive emulators including low-cost, full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, a ruggedized probe interface and long (up to three meters) interconnection cables.

27.9 MPLAB ICD 3 In-Circuit Debugger System

MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost effective high-speed hardware debugger/programmer for Microchip Flash Digital Signal Controller (DSC) and microcontroller (MCU) devices. It debugs and programs PIC[®] Flash microcontrollers and dsPIC[®] DSCs with the powerful, yet easy-to-use graphical user interface of MPLAB Integrated Development Environment (IDE).

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

27.10 PICkit 3 In-Circuit Debugger/Programmer and PICkit 3 Debug Express

The MPLAB PICkit 3 allows debugging and programming of PIC[®] and dsPIC[®] Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB Integrated Development Environment (IDE). The MPLAB PICkit 3 is connected to the design engineer's PC using a full speed USB interface and can be connected to the target via an Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the reset line to implement in-circuit debugging and In-Circuit Serial Programming[™].

The PICkit 3 Debug Express include the PICkit 3, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.