

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	52
Program Memory Size	256KB (85.5K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	96К х 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-VQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj256gb206t-i-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.2 Power Supply Pins

2.2.1 DECOUPLING CAPACITORS

The use of decoupling capacitors on every pair of power supply pins, such as VDD, VSS, AVDD and AVSS is required.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: A 0.1 μ F (100 nF), 10-20V capacitor is recommended. The capacitor should be a low-ESR device with a resonance frequency in the range of 200 MHz and higher. Ceramic capacitors are recommended.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is no greater than 0.25 inch (6 mm).
- Handling high-frequency noise: If the board is experiencing high-frequency noise (upward of tens of MHz), add a second ceramic type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μ F to 0.001 μ F. Place this second capacitor next to each primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible (e.g., 0.1 μ F in parallel with 0.001 μ F).
- Maximizing performance: On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum, thereby reducing PCB trace inductance.

2.2.2 TANK CAPACITORS

On boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for integrated circuits including microcontrollers to supply a local power source. The value of the tank capacitor should be determined based on the trace resistance that connects the power supply source to the device, and the maximum current drawn by the device in the application. In other words, select the tank capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 4.7 μ F to 47 μ F.

2.3 Master Clear (MCLR) Pin

The MCLR pin provides two specific device functions: device Reset, and device programming and debugging. If programming and debugging are not required in the end application, a direct connection to VDD may be all that is required. The addition of other components, to help increase the application's resistance to spurious Resets from voltage sags, may be beneficial. A typical configuration is shown in Figure 2-1. Other circuit designs may be implemented, depending on the application's requirements.

During programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the $\overline{\text{MCLR}}$ pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R1 and C1 will need to be adjusted based on the application and PCB requirements. For example, it is recommended that the capacitor, C1, be isolated from the $\overline{\text{MCLR}}$ pin during programming and debugging operations by using a jumper (Figure 2-2). The jumper is replaced for normal run-time operations.

Any components associated with the $\overline{\text{MCLR}}$ pin should be placed within 0.25 inch (6 mm) of the pin.

FIGURE 2-2: EXAMPLE OF MCLR PIN CONNECTIONS

Overstress (EOS). Ensure that the MCLR pin

VIH and VIL specifications are met.

TABLE 4-15: PORTC REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4 ⁽¹⁾	Bit 3 ⁽¹⁾	Bit 2 ⁽¹⁾	Bit 1 ⁽¹⁾	Bit 0	All Resets
TRISC	02D0	TRISC15	TRISC14	TRISC13	TRISC12	_	_	_	—	_	—	_	TRISC4	TRISC3	TRISC2	TRISC1	—	F01E
PORTC	02D2	RC15 ^(2,3)	RC14	RC13	RC12 ⁽²⁾	_	_		_	_	_	_	RC4	RC3	RC2	RC1	_	xxxx
LATC	02D4	LATC15	LATC14	LATC13	LATC12	_	_	_	_	_	_	_	LATC4	LATC3	LATC2	LATC1	_	xxxx
ODCC	02D6	ODC15	ODC14	ODC13	ODC12	_	_	_	_	_	_	_	ODC4	ODC3	ODC2	ODC1	_	0000

Legend: - = unimplemented, read as '0'. Reset values are shown in hexadecimal. Reset values shown are for 100-pin devices.

Note 1: Bits are unimplemented in 64-pin devices; read as '0'.

RC12 and RC15 are only available when the primary oscillator is disabled or when EC mode is selected (POSCMD<1:0> Configuration bits = 11 or 00); otherwise read as '0'. RC15 is only available when the POSCMD<1:0> Configuration bits = 11 or 00 and the OSCIOFN Configuration bit = 1. 2:

3:

TABLE 4-16: PORTD REGISTER MAP

File Name	Addr	Bit 15 ⁽¹⁾	Bit 14 ⁽¹⁾	Bit 13 ⁽¹⁾	Bit 12 ⁽¹⁾	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISD	02D8	TRISD15	TRISD14	TRISD13	TRISD12	TRISD11	TRISD10	TRISD9	TRISD8	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	FFFF
PORTD	02DA	RD15	RD14	RD13	RD12	RD11	RD10	RD9	RD8	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	xxxx
LATD	02DC	LATD15	LATD14	LATD13	LATD12	LATD11	LATD10	LATD9	LATD8	LATD7	LATD6	LATD5	LATD4	LATD3	LATD2	LATD1	LATD0	xxxx
ODCD	02DE	ODD15	ODD14	ODD13	ODD12	ODD11	ODD10	ODD9	ODD8	ODD7	ODD6	ODD5	ODD4	ODD3	ODD2	ODD1	ODD0	0000

- = unimplemented, read as '0'. Reset values are shown in hexadecimal. Reset values shown are for 100-pin devices. Legend:

Note 1: Bits are unimplemented in 64-pin devices; read as '0'.

TABLE 4-17: PORTE REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9 ⁽¹⁾	Bit 8 ⁽¹⁾	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISE	02E0	-	_	—	_	_	_	TRISE9	TRISE8	TRISE7	TRISE6	TRISE5	TRISE4	TRISE3	TRISE2	TRISE1	TRISE0	03FF
PORTE	02E2	_	_	_	_	_	_	RE9	RE8	RE7	RE6	RE5	RE4	RE3	RE2	RE1	RE0	xxxx
LATE	02E4	_	_	_	—	_	_	LATE9	LATE8	LATE7	LATE6	LATE5	LATE4	LATE3	LATE2	LATE1	LATE0	xxxx
ODCE	02E6	_	_			_	_	ODE9	ODE8	ODE7	ODE6	ODE5	ODE4	ODE3	ODE2	ODE1	ODE0	0000

- = unimplemented, read as '0'. Reset values are shown in hexadecimal. Reset values shown are for 100-pin devices. Legend:

Note 1: Bits are unimplemented in 64-pin devices; read as '0'.

TABLE 4-23: USB OTG REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U1OTGIR ⁽²⁾	0480	—	_	_	—	—	—	—	—	IDIF	T1MSECIF	LSTATEIF	ACTVIF	SESVDIF	SESENDIF	-	VBUSVDIF	0000
U1OTGIE ⁽²⁾	0482	_	_	_	—	—		_	_	IDIE	T1MSECIE	LSTATEIE	ACTVIE	SESVDIE	SESENDIE	_	VBUSVDIE	0000
U1OTGSTAT ²⁾	0484	_	_	_	—	_	_	_	_	ID	_	LSTATE	_	SESVD	SESEND	-	VBUSVD	0000
U10TGCON ⁽²⁾	0486	_	_	_	—	_	_	_	_	DPPULUP	DMPULUP	DPPULDWN	DMPULDWN	VBUSON	OTGEN	VBUSCHG	VBUSDIS	0000
U1PWRC	0488	_			—	_		_	_	UACTPND	_	_	USLPGRD	_	_	USUSPND	USBPWR	0000
U1IR	048A ⁽¹⁾	_			—	_		_	_	STALLIF		RESUMEIF	IDLEIF	TRNIF	SOFIF	UERRIF	URSTIF	0000
		—			—	—		—	—	STALLIF	ATTACHIF ⁽¹⁾	RESUMEIF	IDLEIF	TRNIF	SOFIF	UERRIF	DETACHIF ⁽¹⁾	0000
U1IE	048C ⁽¹⁾	_			_	_		_	_	STALLIE		RESUMEIE	IDLEIE	TRNIE	SOFIE	UERRIE	URSTIE	0000
		_	-	_	_	_	-	_	_	STALLIE	ATTACHIE ⁽¹⁾	RESUMEIE	IDLEIE	TRNIE	SOFIE	UERRIE	DETACHIE ⁽¹⁾	0000
U1EIR	048E ⁽¹⁾	_	-	_	—	—	-	—	—	BTSEF	—	DMAEF	BTOEF	DFN8EF	CRC16EF	CRC5EF	PIDEF	0000
		_			_	_		_	_	BTSEF		DMAEF	BTOEF	DFN8EF	CRC16EF	EOFEF ⁽¹⁾	PIDEF	0000
U1EIE	0490 ⁽¹⁾	_	-	_	_	_	-	_	_	BTSEE	_	DMAEE	BTOEE	DFN8EE	CRC16EE	CRC5EE	PIDEE	0000
		—	-	_	—	—	-	—	—	BTSEE	—	DMAEE	BTOEE	DFN8EE	CRC16EE	EOFEE ⁽¹⁾	PIDEE	0000
U1STAT	0492	—	_	_	—	—	_	—	—	ENDPT3	ENDPT2	ENDPT1	ENDPT0	DIR	PPBI	—	—	0000
U1CON	0494 ⁽¹⁾	_	-	_	_	_	-	_	_	_	SE0	PKTDIS	_	HOSTEN	RESUME	PPBRST	USBEN	0000
		—	-	_	—	—	-	—	—	JSTATE ⁽¹⁾	SE0	TOKBUSY	USBRST	HOSTEN	RESUME	PPBRST	SOFEN ⁽¹⁾	0000
U1ADDR	0496	—	_	_	—	—	_	—	—	LSPDEN ⁽¹⁾			USB Device A	ddress (DEVA	DDR) Register		-	0000
U1BDTP1	0498	—	_	_	—	—	_	—	—		I	Buffer Descripto	or Table Base Ad	Idress Registe	er		—	0000
U1FRML	049A	—	_		—	—	_	—	—				Frame Count Re	egister Low By	te			0000
U1FRMH	049C	_	_		_	_	_		_	_	_	_	_	_	Frame C	Count Register	High Byte	0000
U1TOK ⁽²⁾	049E	—	_	_	—	—	_	—	—	PID3	PID2	PID1	PID0	EP3	EP2	EP1	EP0	0000
U1SOF ⁽²⁾	04A0	_	_	_	_	_	_		_				Start-of-Frame	Count Registe	er			0000
U1CNFG1	04A6	—	_	_	—	—	_	—	—	UTEYE	UOEMON	—	USBSIDL	—	_	PPB1	PPB0	0000
U1CNFG2	04A8	—	_	_	—	—	_	—	—	—	_	UVCMPSEL	PUVBUS	EXTI2CEN	UVBUSDIS	UVCMPDIS	UTRDIS	0000
U1EP0	04AA	_	-	_	_	_	-	_	_	LSPD ⁽¹⁾	RETRYDIS ⁽¹⁾	—	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
U1EP1	04AC	—	_	_	—	—	_	—	—	—	_	—	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
U1EP2	04AE	_	-	_	—	—	-	—	—	—	—	—	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
U1EP3	04B0	—	-	_	—	—	-	—	—	—	—	-	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
U1EP4	04B2	_	-	_	—	—	-	—	—	—	—	—	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
U1EP5	04B4	_	_	_	_	_	_	_	_	_	_	-	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
U1EP6	04B6	—	_	—	_	—	—	—	—	—	_	-	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
U1EP7	04B8	_	_	_	—	_	_	_	_	_	_	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
U1EP8	04BA	_	_	_	—	—	_	_	_	_	_	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
U1EP9	04BC	—	_	_	_	_	_	—	_	_	_	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000

PIC24FJ256GB210 FAMILY

 met: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.
 Alternate register or bit definitions when the module is operating in Host mode.
 This register is available in Host mode only. Legend: Note 1

TABLE 4-28: COMPARATORS REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CMSTAT	0630	CMIDL	_	_	_		C3EVT	C2EVT	C1EVT	_	_	_	_		C3OUT	C2OUT	C10UT	0000
CVRCON	0632	_	_	_	_		CVREFP	CVREFM1	CVREFM0	CVREN	CVROE	CVRR	CVRSS	CVR3	CVR2	CVR1	CVR0	0000
CM1CON	0634	CON	COE	CPOL	_	_	_	CEVT	COUT	EVPOL1	EVPOL0	_	CREF	_	_	CCH1	CCH0	0000
CM2CON	0636	CON	COE	CPOL	_		_	CEVT	COUT	EVPOL1	EVPOL0		CREF	_	_	CCH1	CCH0	0000
CM3CON	0638	CON	COE	CPOL	_		_	CEVT	COUT	EVPOL1	EVPOL0		CREF		_	CCH1	CCH0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-29: CRC REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CRCCON1	0640	CRCEN		CSIDL	VWORD4	VWORD3	VWORD2	VWORD1	VWORD0	CRCFUL	CRCMPT	CRCISEL	CRCGO	LENDIAN				0040
CRCCON2	0642	_	_	_	DWIDTH4	DWIDTH3	DWIDTH2	DWIDTH1	DWIDTH0	_	_	_	PLEN4	PLEN3	PLEN2	PLEN1	PLEN0	0000
CRCXORL	0644	X15	X14	X14 X13 X12 X11 X10 X9 X8 X7 X6 X5 X4 X3 X2 X1 — 000									0000					
CRCXORH	0646	X31	X30 X29 X28 X27 X26 X25 X24 X23 X22 X21 X20 X19 X18 X17 X16 0000										0000					
CRCDATL	0648								CRC Data Inp	out Register	Low							0000
CRCDATH	064A		CRC Data Input Register High 00								0000							
CRCWDATL	064C		CRC Result Register Low 0000									0000						
CRCWDATH	064E		CRC Result Register High 0000										0000					

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-30: PERIPHERAL PIN SELECT REGISTER MAP (CONTINUED)

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPOR0	06C0	_		RP1R5	RP1R4	RP1R3	RP1R2	RP1R1	RP1R0		_	RP0R5	RP0R4	RP0R3	RP0R2	RP0R1	RP0R0	0000
RPOR1	06C2	_	-	RP3R5	RP3R4	RP3R3	RP3R2	RP3R1	RP3R0	-	-	RP2R5	RP2R4	RP2R3	RP2R2	RP2R1	RP2R0	0000
RPOR2	06C4	_	_	RP5R5 ⁽¹⁾	RP5R4 ⁽¹⁾	RP5R3 ⁽¹⁾	RP5R2 ⁽¹⁾	RP5R1 ⁽¹⁾	RP5R0 ⁽¹⁾	_	_	RP4R5	RP4R4	RP4R3	RP4R2	RP4R1	RP4R0	0000
RPOR3	06C6	_		RP7R5	RP7R4	RP7R3	RP7R2	RP7R1	RP7R0			RP6R5	RP6R4	RP6R3	RP6R2	RP6R1	RP6R0	0000
RPOR4	06C8			RP9R5	RP9R4	RP9R3	RP9R2	RP9R1	RP9R0			RP8R5	RP8R4	RP8R3	RP8R2	RP8R1	RP8R0	0000
RPOR5	06CA	_	_	RP11R5	RP11R4	RP11R3	RP11R2	RP11R1	RP11R0	_	_	RP10R5	RP10R4	RP10R3	RP10R2	RP10R1	RP10R0	0000
RPOR6	06CC	_		RP13R5	RP13R4	RP13R3	RP13R2	RP13R1	RP13R0			RP12R5	RP12R4	RP12R3	RP12R2	RP12R1	RP12R0	0000
RPOR7	06CE	_	-	RP15R5 ⁽¹⁾	RP15R4 ⁽¹⁾	RP15R3 ⁽¹⁾	RP15R2 ⁽¹⁾	RP15R1 ⁽¹⁾	RP15R0 ⁽¹⁾	-	-	RP14R5	RP14R4	RP14R3	RP14R2	RP14R1	RP14R0	0000
RPOR8	06D0	_	_	RP17R5	RP17R4	RP17R3	RP17R2	RP17R1	RP17R0	_	_	RP16R5	RP16R4	RP16R3	RP16R2	RP16R1	RP16R0	0000
RPOR9	06D2	_		RP19R5	RP19R4	RP19R3	RP19R2	RP19R1	RP19R0			RP18R5	RP18R4	RP18R3	RP18R2	RP18R1	RP18R0	0000
RPOR10	06D4	_	_	RP21R5	RP21R4	RP21R3	RP21R2	RP21R1	RP21R0	_	_	RP20R5	RP20R4	RP20R3	RP20R2	RP20R1	RP20R0	0000
RPOR11	06D6	_	_	RP23R5	RP23R4	RP23R3	RP23R2	RP23R1	RP23R0	_	_	RP22R5	RP22R4	RP22R3	RP22R2	RP22R1	RP22R0	0000
RPOR12	06D8	_	_	RP25R5	RP25R4	RP25R3	RP25R2	RP25R1	RP25R0	_	_	RP24R5	RP24R4	RP24R3	RP24R2	RP24R1	RP24R0	0000
RPOR13	06DA	_	_	RP27R5	RP27R4	RP27R3	RP27R2	RP27R1	RP27R0	_	_	RP26R5	RP26R4	RP26R3	RP26R2	RP26R1	RP26R0	0000
RPOR14	06DC	_	_	RP29R5	RP29R4	RP29R3	RP29R2	RP29R1	RP29R0	_	_	RP28R5	RP28R4	RP28R3	RP28R2	RP28R1	RP28R0	0000
RPOR15 ⁽¹⁾	06DE	_	_	RP31R5 ⁽¹⁾	RP31R4 ⁽¹⁾	RP31R3 ⁽¹⁾	RP31R2 ⁽¹⁾	RP31R1 ⁽¹⁾	RP31R0 ⁽¹⁾	_	_	RP30R5 ⁽¹⁾	RP30R4 ⁽¹⁾	RP30R3 ⁽¹⁾	RP30R2 ⁽¹⁾	RP30R1 ⁽¹⁾	RP30R0 ⁽¹⁾	0000

 Legend:
 -- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

 Note
 1:
 Bits are unimplemented in 64-pin devices; read as '0'.

REGISTER 7-5: IFS0: INTERRUPT FLAG STATUS REGISTER 0

U-0	U-0	R/W-0, HS					
—	—	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPF1IF	T3IF
bit 15							bit 8

R/W-0, HS	R/W-0, HS	R/W-0, HS	U-0	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS
T2IF	OC2IF	IC2IF	—	T1IF	OC1IF	IC1IF	INT0IF
bit 7							bit 0

Legend:	HS	S = Hardware Settable bit		
R = Readable	e bit W	= Writable bit	U = Unimplemented bit, rea	ıd as '0'
-n = Value at	POR '1'	= Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 15-14	Unimplemented	: Read as '0'		
bit 13	AD1IF: A/D Conv	version Complete Interrupt	t Flag Status bit	
	1 = Interrupt requ	uest has occurred		
hit 12		Transmitter Interrunt Flag	Status bit	
511 12	1 = Interrupt reg	uest has occurred		
	0 = Interrupt requ	uest has not occurred		
bit 11	U1RXIF: UART1	Receiver Interrupt Flag St	tatus bit	
	1 = Interrupt requ	uest has occurred		
	0 = Interrupt requ	uest has not occurred		
bit 10	SPI1IF: SPI1 Eve	ent Interrupt Flag Status bi	it	
	1 = Interrupt requ	uest has occurred		
bit 9	SPF1IF: SPI1 Fa	ult Interrupt Flag Status bi	it	
bit o	1 = Interrupt real	uest has occurred		
	0 = Interrupt requ	uest has not occurred		
bit 8	T3IF: Timer3 Inte	rrupt Flag Status bit		
	1 = Interrupt requ	lest has occurred		
	0 = Interrupt requ	lest has not occurred		
bit 7	T2IF: Timer2 Inte	rrupt Flag Status bit		
	1 = Interrupt required	uest has occurred		
bit 6	OC2IF: Output C	ompare Channel 2 Interru	ot Flag Status bit	
	1 = Interrupt requ	lest has occurred		
	0 = Interrupt requ	lest has not occurred		
bit 5	IC2IF: Input Capt	ure Channel 2 Interrupt F	lag Status bit	
	1 = Interrupt requ	uest has occurred		
	0 = interrupt requ			
DIL 4	Unimplemented:	rrunt Flag Status hit		
DIL 3	1 = Interrupt reg	uest has occurred		
	0 = Interrupt requ	uest has not occurred		
bit 2	OC1IF: Output C	ompare Channel 1 Interru	pt Flag Status bit	
	1 = Interrupt requ	uest has occurred	· -	
	0 = Interrupt requ	uest has not occurred		

REGISTER 7-10: IFS5: INTERRUPT FLAG STATUS REGISTER 5 (CONTINUED)

bit 1	U3ERIF: UART3 Error Interrupt Flag Status bit
	 Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 0	Unimplemented: Read as '0'

REGISTER 7-11: IEC0: INTERRUPT ENABLE CONTROL REGISTER 0

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPF1IE	T3IE
bit 15							bit 8
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
T2IE	OC2IE	IC2IE		T1IE	OC1IE	IC1IE	INTOIE
bit 7							bit 0
Logond							
R - Readable	a hit	W = Writable	bit		nented hit read	1 26 '0'	
n = Value at		'1' = Bit is set	bit	$0^{\circ} = \text{Bit is clear}$	ared	v = Bitis unkn	own
	TOR				arco		0001
bit 15-14	Unimplemen	ted: Read as ')'				
bit 13	AD1IE: A/D C	Conversion Con	nplete Interrupt	Enable bit			
	1 = Interrupt	request is enat	bled				
	0 = Interrupt	request is not e	enabled				
bit 12	U1TXIE: UAR	RT1 Transmitter	Interrupt Enat	ole bit			
	1 = Interrupt	request is enab	bled				
bit 11		TT1 Pocoivor Ir	torrunt Enable	hit			
DICTI		request is enab		DI			
	0 = Interrupt	request is not e	enabled				
bit 10	SPI1IE: SPI1	Transfer Comp	olete Interrupt E	Enable bit			
	1 = Interrupt	request is enab	bled				
	0 = Interrupt	request is not e	enabled				
bit 9	SPF1IE: SPI1	Fault Interrup	t Enable bit				
	1 = Interrupt	request is enab	bled				
bit 8	T3IE: Timer3	Interrunt Enabl					
bit o	1 = Interrunt	request is enab	oled				
	0 = Interrupt	request is not e	enabled				
bit 7	T2IE: Timer2	Interrupt Enabl	e bit				
	1 = Interrupt	request is enat	bled				
	0 = Interrupt	request is not e	enabled				
bit 6	OC2IE: Output Compare Channel 2 Interrupt Enable bit						
	1 = Interrupt	request is enab	bled				
hit 5		anture Channe	al 2 Interrunt F	nahle hit			
	1 = nterrunt	request is enal	oled				
	0 = Interrupt	request is not e	enabled				
bit 4	Unimplemen	ted: Read as '	כי				

REGISTER 7-33: IPC18: INTERRUPT PRIORITY CONTROL REGISTER 18

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—		—		—
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
—	—	—	—	—	LVDIP2	LVDIP1	LVDIP0
bit 7							bit 0

Legend:

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-3 Unimplemented: Read as '0'

bit 2-0 LVDIP<2:0>: Low-Voltage Detect Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) . . 001 = Interrupt is priority 1 000 = Interrupt source is disabled

REGISTER 7-34: IPC19: INTERRUPT PRIORITY CONTROL REGISTER 19

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
_	CTMUIP2	CTMUIP1	CTMUIP0	—	—	—	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-7	Unimplemented: Read as '0'
bit 6-4	CTMUIP<2:0>: CTMU Interrupt Priority bits

```
111 = Interrupt is priority 7 (highest priority interrupt)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
```

10.0 I/O PORTS

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the *"PIC24F Family Reference Manual"*, Section 12. *"I/O Ports with Peripheral Pin Select (PPS)"* (DS39711). The information in this data sheet supersedes the information in the FRM.

All of the device pins (except VDD, VSS, MCLR and OSCI/CLKI) are shared between the peripherals and the parallel I/O ports. All I/O input ports feature Schmitt Trigger (ST) inputs for improved noise immunity.

10.1 Parallel I/O (PIO) Ports

A parallel I/O port that shares a pin with a peripheral is, in general, subservient to the peripheral. The peripheral's output buffer data and control signals are provided to a pair of multiplexers. The multiplexers select whether the peripheral or the associated port has ownership of the output data and control signals of the I/O pin. The logic also prevents "loop through", in which a port's digital output can drive the input of a peripheral that shares the same pin. Figure 10-1 shows how ports are shared with other peripherals and the associated I/O pin to which they are connected. When a peripheral is enabled and it is actively driving an associated pin, the use of the pin as a general purpose output pin is disabled. The I/O pin may be read, but the output driver for the parallel port bit will be disabled. If a peripheral is enabled, but it is not actively driving a pin, that pin may be driven by a port.

All port pins have three registers directly associated with their operation as digital I/O and one register associated with their operation as analog input. The Data Direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is a '1', then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the Output Latch register (LATx), read the latch; writes to the latch, write the latch. Reads from the port (PORTx), read the port pins; writes to the port pins, write to the latch.

Any bit and its associated data and control registers that are not valid for a particular device will be disabled. That means the corresponding LATx and TRISx registers, and the port pin will read as zeros.

When a pin is shared with another peripheral or function that is defined as an input only, it is regarded as a dedicated port because there is no other competing source of inputs.

© 2010 Microchip Technology Inc.

REGISTER 10-24: RPINR22: PERIPHERAL PIN SELECT INPUT REGISTER 22

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	SCK2R5	SCK2R4	SCK2R3	SCK2R2	SCK2R1	SCK2R0
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	SDI2R5	SDI2R4	SDI2R3	SDI2R2	SDI2R1	SDI2R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as 'O'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	SCK2R<5:0>: Assign SPI2 Clock Input (SCK2IN) to the Corresponding RPn or RPIn Pin bits
bit 7-6	Unimplemented: Read as '0'
bit 5-0	SDI2R<5:0>: Assign SPI2 Data Input (SDI2) to the Corresponding RPn or RPIn Pin bits

REGISTER 10-25: RPINR23: PERIPHERAL PIN SELECT INPUT REGISTER 23

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	SS2R5	SS2R4	SS2R3	SS2R2	SS2R1	SS2R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-6 Unimplemented: Read as '0'

bit 5-0 SS2R<5:0>: Assign SPI2 Slave Select Input (SS2IN) to the Corresponding RPn or RPIn Pin bits

16.0 INTER-INTEGRATED CIRCUIT™ (I²C™)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the *"PIC24F Family Reference Manual"*, Section 24. "Inter-Integrated Circuit™ (I²C™)" (DS39702). The information in this data sheet supersedes the information in the FRM.

The Inter-Integrated CircuitTM (I²CTM) module is a serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, display drivers, A/D Converters, etc.

The I²C module supports these features:

- Independent master and slave logic
- · 7-bit and 10-bit device addresses
- General call address, as defined in the I²C protocol
- Clock stretching to provide delays for the processor to respond to a slave data request
- Both 100 kHz and 400 kHz bus specifications
- · Configurable address masking
- Multi-Master modes to prevent loss of messages in arbitration
- Bus Repeater mode, allowing the acceptance of all messages as a slave regardless of the address
- Automatic SCL
- A block diagram of the module is shown in Figure 16-1.

16.1 Communicating as a Master in a Single Master Environment

The details of sending a message in Master mode depends on the communications protocol for the device being communicated with. Typically, the sequence of events is as follows:

- 1. Assert a Start condition on SDAx and SCLx.
- 2. Send the I²C device address byte to the slave with a write indication.
- 3. Wait for and verify an Acknowledge from the slave.
- 4. Send the first data byte (sometimes known as the command) to the slave.
- 5. Wait for and verify an Acknowledge from the slave.
- 6. Send the serial memory address low byte to the slave.
- 7. Repeat steps 4 and 5 until all data bytes are sent.
- 8. Assert a Repeated Start condition on SDAx and SCLx.
- 9. Send the device address byte to the slave with a read indication.
- 10. Wait for and verify an Acknowledge from the slave.
- 11. Enable master reception to receive serial memory data.
- 12. Generate an ACK or NACK condition at the end of a received byte of data.
- 13. Generate a Stop condition on SDAx and SCLx.

NOTES:

18.1 **Hardware Configuration**

18.1.1 DEVICE MODE

18.1.1.1 D+ Pull-up Resistor

PIC24FJ256GB210 family devices have a built-in 1.5 k Ω resistor on the D+ line that is available when the microcontroller is operating in Device mode. This is used to signal an external Host that the device is operating in Full-Speed Device mode. It is engaged by setting the USBEN bit (U1CON<0>). If the OTGEN bit (U1OTGCON<2>) is set, then the D+ pull-up is enabled through the DPPULUP bit (U1OTGCON<7>).

Alternatively, an external resistor may be used on D+, as shown in Figure 18-2.

FIGURE 18-2: EXTERNAL PULL-UP FOR FULL-SPEED DEVICE MODE

18.1.1.2 Power Modes

Many USB applications will likely have several different sets of power requirements and configuration. The most common power modes encountered are:

- · Bus Power Only mode
- Self-Power Only mode
- Dual Power with Self-Power Dominance

Bus Power Only mode (Figure 18-3) is effectively the simplest method. All power for the application is drawn from the USB.

To meet the inrush current requirements of the "USB 2.0 OTG Specification", the total effective capacitance appearing across VBUS and ground must be no more than 10 µF.

In the USB Suspend mode, devices must consume no more than 2.5 mA from the 5V VBUS line of the USB cable. During the USB Suspend mode, the D+ or Dpull-up resistor must remain active, which will consume some of the allowed suspend current.

In Self-Power Only mode (Figure 18-4), the USB application provides its own power, with very little power being pulled from the USB. Note that an attach indication is added to indicate when the USB has been connected and the host is actively powering VBUS.

To meet compliance specifications, the USB module (and the D+ or D- pull-up resistor) should not be enabled until the host actively drives VBUS high. One of the 5.5V tolerant I/O pins may be used for this purpose.

The application should never source any current onto the 5V VBUS pin of the USB cable.

The Dual Power mode with Self-Power Dominance (Figure 18-5) allows the application to use internal power primarily, but switch to power from the USB when no internal power is available. Dual power devices must also meet all of the special requirements for inrush current and Suspend mode current previously described, and must not enable the USB module until VBUS is driven high.

FIGURE 18-4:

SELF-POWER ONLY

18.4.2 RECEIVING AN IN TOKEN IN DEVICE MODE

- 1. Attach to a USB host and enumerate as described in Chapter 9 of the *"USB 2.0 Specification"*.
- 2. Create a data buffer and populate it with the data to send to the host.
- 3. In the appropriate (even or odd) TX BD for the desired endpoint:
 - a) Set up the status register (BDnSTAT) with the correct data toggle (DATA0/1) value and the byte count of the data buffer.
 - b) Set up the address register (BDnADR) with the starting address of the data buffer.
 - c) Set the UOWN bit of the status register to '1'.
- When the USB module receives an IN token, it automatically transmits the data in the buffer. Upon completion, the module updates the status register (BDnSTAT) and sets the Transfer Complete Interrupt Flag, TRNIF (U1IR<3>).

18.4.3 RECEIVING AN OUT TOKEN IN DEVICE MODE

- 1. Attach to a USB host and enumerate as described in Chapter 9 of the *"USB 2.0 Specification"*.
- 2. Create a data buffer with the amount of data you are expecting from the host.
- 3. In the appropriate (even or odd) TX BD for the desired endpoint:
 - a) Set up the status register (BDnSTAT) with the correct data toggle (DATA0/1) value and the byte count of the data buffer.
 - b) Set up the address register (BDnADR) with the starting address of the data buffer.
 - c) Set the UOWN bit of the status register to '1'.
- 4. When the USB module receives an OUT token, it automatically receives the data sent by the host to the buffer. Upon completion, the module updates the status register (BDnSTAT) and sets the Transfer Complete Interrupt Flag, TRNIF (U1IR<3>).

18.5 Host Mode Operation

The following sections describe how to perform common Host mode tasks. In Host mode, USB transfers are invoked explicitly by the host software. The host software is responsible for the Acknowledge portion of the transfer. Also, all transfers are performed using the Endpoint 0 Control register (U1EP0) and Buffer Descriptors.

18.5.1 ENABLE HOST MODE AND DISCOVER A CONNECTED DEVICE

- Enable Host mode by setting the HOSTEN bit (U1CON<3>). This causes the Host mode control bits in other USB OTG registers to become available.
- Enable the D+ and D- pull-down resistors by setting the DPPULDWN and DMPULDWN bits (U10TGCON<5:4>). Disable the D+ and Dpull-up resistors by clearing the DPPULUP and DMPULUP bits (U10TGCON<7:6>).
- At this point, SOF generation begins with the SOF counter loaded with 12,000. Eliminate noise on the USB by clearing the SOFEN bit (U1CON<0>) to disable Start-of-Frame packet generation.
- 4. Enable the device attached interrupt by setting the ATTACHIE bit (U1IE<6>).
- Wait for the device attached interrupt (U1IR<6> = 1). This is signaled by the USB device changing the state of D+ or D- from '0' to '1' (SE0 to J-state). After it occurs, wait 100 ms for the device power to stabilize.
- Check the state of the JSTATE and SE0 bits in U1CON. If the JSTATE bit (U1CON<7>) is '0', the connecting device is low speed. If the connecting device is low speed, set the low LSPDEN and LSPD bits (U1ADDR<7>, and U1EP0<7>) to enable low-speed operation.
- Reset the USB device by setting the USBRST bit (U1CON<4>) for at least 50 ms, sending Reset signaling on the bus. After 50 ms, terminate the Reset by clearing USBRST.
- In order to keep the connected device from going into suspend, enable the SOF packet generation by setting the SOFEN bit.
- 9. Wait 10 ms for the device to recover from Reset.
- 10. Perform enumeration as described by Chapter 9 of the "USB 2.0 Specification".

REGISTER 20-1: RCFGCAL: RTCC CALIBRATION AND CONFIGURATION REGISTER⁽¹⁾

bit 7-0	CAL<7:0>: RTC Drift Calibration bits							
	01111111 =	Maximum positive adjustment; adds 508 RTC clock pulses every one minute						
	:							
	11111111 = 00000001 = 00000000 =	Minimum negative adjustment; subtracts 4 RTC clock pulses every one minute Minimum positive adjustment; adds 4 RTC clock pulses every one minute No adjustment						
	:							
	10000000 =	Maximum negative adjustment; subtracts 512 RTC clock pulses every one minute						

- **Note 1:** The RCFGCAL register is only affected by a POR.
 - 2: A write to the RTCEN bit is only allowed when RTCWREN = 1.
 - 3: This bit is read-only. It is cleared to '0' on a write to the lower half of the MINSEC register.

REGISTER 20-2: PADCFG1: PAD CONFIGURATION CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
	_	—	—	—	—	—	_		
bit 15							bit 8		
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0		
	_	—	—	—	—	RTSECSEL ⁽¹⁾	PMPTTL		
bit 7							bit 0		
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'			
-n = Value at	POR	'1' = Bit is set	'0' = Bit is cleared			x = Bit is unknown			
bit 15-2	bit 15-2 Unimplemented: Read as '0'								

bit 1	RTSECSEL: RTCC Seconds Clock Output Select bit ⁽¹⁾
	 1 = RTCC seconds clock is selected for the RTCC pin 0 = RTCC alarm pulse is selected for the RTCC pin
bit 0	PMPTTL: EPMP Module TTL Input Buffer Select bit
	1 = EPMP module inputs (PMDx, PMCS1) use TTL input buffers 0 = EPMP module inputs use Schmitt Trigger input buffers

Note 1: To enable the actual RTCC output, the RTCOE (RCFGCAL<10>) bit must also be set.

25.0 CHARGE TIME MEASUREMENT UNIT (CTMU)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the associated "PIC24F Family Reference Manual", Section 11. "Charge Time Measurement Unit (CTMU)" (DS39724). The information in this data sheet supersedes the information in the FRM.

The Charge Time Measurement Unit (CTMU) is a flexible analog module that provides accurate differential time measurement between pulse sources, as well as asynchronous pulse generation. Its key features include:

- · Four edge input trigger sources
- Polarity control for each edge source
- Control of edge sequence
- · Control of response to edges
- Time measurement resolution of 1 nanosecond
- Accurate current source suitable for capacitive measurement

Together with other on-chip analog modules, the CTMU can be used to precisely measure time, measure capacitance, measure relative changes in capacitance or generate output pulses that are independent of the system clock. The CTMU module is ideal for interfacing with capacitive-based sensors.

The CTMU is controlled through two registers: CTMUCON and CTMUICON. CTMUCON enables the module, and controls edge source selection, edge source polarity selection, and edge sequencing. The CTMUICON register controls the selection and trim of the current source.

25.1 Measuring Capacitance

The CTMU module measures capacitance by generating an output pulse with a width equal to the time between edge events on two separate input channels. The pulse edge events to both input channels can be selected from four sources: two internal peripheral modules (OC1 and Timer1) and two external pins (CTEDG1 and CTEDG2). This pulse is used with the module's precision current source to calculate capacitance according to the relationship:

$$C = I \cdot \frac{dV}{dT}$$

For capacitance measurements, the A/D Converter samples an external capacitor (CAPP) on one of its input channels after the CTMU output's pulse. A precision resistor (RPR) provides current source calibration on a second A/D channel. After the pulse ends, the converter determines the voltage on the capacitor. The actual calculation of capacitance is performed in software by the application.

Figure 25-1 shows the external connections used for capacitance measurements, and how the CTMU and A/D modules are related in this application. This example also shows the edge events coming from Timer1, but other configurations using external edge sources are possible. A detailed discussion on measuring capacitance and time with the CTMU module is provided in the "*PIC24F Family Reference Manual*".

FIGURE 25-1: TYPICAL CONNECTIONS AND INTERNAL CONFIGURATION FOR CAPACITANCE MEASUREMENT

Assembly Mnemonic	Assembly Syntax		Description	# of Words	# of Cycles	Status Flags Affected
ADD	ADD	f	f = f + WREG	1	1	C, DC, N, OV, Z
	ADD f,WREG		WREG = f + WREG	1	1	C, DC, N, OV, Z
	ADD #lit10,Wn		Wd = lit10 + Wd	1	1	C, DC, N, OV, Z
	ADD	Wb,Ws,Wd	Wd = Wb + Ws	1	1	C, DC, N, OV, Z
	ADD	Wb,#lit5,Wd	Wd = Wb + lit5	1	1	C, DC, N, OV, Z
ADDC	ADDC	f	f = f + WREG + (C)	1	1	C, DC, N, OV, Z
	ADDC	f,WREG	WREG = f + WREG + (C)	1	1	C, DC, N, OV, Z
	ADDC	#lit10,Wn	Wd = lit10 + Wd + (C)	1	1	C, DC, N, OV, Z
	ADDC	Wb,Ws,Wd	Wd = Wb + Ws + (C)	1	1	C, DC, N, OV, Z
	ADDC	Wb,#lit5,Wd	Wd = Wb + lit5 + (C)	1	1	C, DC, N, OV, Z
AND	AND	f	f = f .AND. WREG	1	1	N, Z
	AND	f,WREG	WREG = f .AND. WREG	1	1	N, Z
	AND	#lit10,Wn	Wd = lit10 .AND. Wd	1	1	N, Z
	AND	Wb,Ws,Wd	Wd = Wb .AND. Ws	1	1	N, Z
	AND	Wb,#lit5,Wd	Wd = Wb .AND. lit5	1	1	N, Z
ASR	ASR	f	f = Arithmetic Right Shift f	1	1	C, N, OV, Z
	ASR	f,WREG	WREG = Arithmetic Right Shift f	1	1	C, N, OV, Z
	ASR	Ws,Wd	Wd = Arithmetic Right Shift Ws	1	1	C, N, OV, Z
	ASR	Wb,Wns,Wnd	Wnd = Arithmetic Right Shift Wb by Wns	1	1	N, Z
	ASR	Wb,#lit5,Wnd	Wnd = Arithmetic Right Shift Wb by lit5	1	1	N, Z
BCLR	BCLR	f,#bit4	Bit Clear f	1	1	None
	BCLR	Ws,#bit4	Bit Clear Ws	1	1	None
BRA	BRA	C,Expr	Branch if Carry	1	1 (2)	None
	BRA	GE, Expr	Branch if Greater than or Equal	1	1 (2)	None
	BRA	GEU, Expr	Branch if Unsigned Greater than or Equal	1	1 (2)	None
	BRA	GT,Expr	Branch if Greater than	1	1 (2)	None
	BRA	GTU, Expr	Branch if Unsigned Greater than	1	1 (2)	None
	BRA	LE, Expr	Branch if Less than or Equal	1	1 (2)	None
	BRA	LEU, Expr	Branch if Unsigned Less than or Equal	1	1 (2)	None
	BRA	LT,Expr	Branch if Less than	1	1 (2)	None
	BRA	LTU, Expr	Branch if Unsigned Less than	1	1 (2)	None
	BRA	N,Expr	Branch if Negative	1	1 (2)	None
	BRA	NC, Expr	Branch if Not Carry	1	1 (2)	None
	BRA	NN, Expr	Branch if Not Negative	1	1 (2)	None
	BRA	NOV, Expr	Branch if Not Overflow	1	1 (2)	None
	BRA	NZ,Expr	Branch if Not Zero	1	1 (2)	None
	BRA	OV,Expr	Branch if Overflow	1	1 (2)	None
	BRA	Expr	Branch Unconditionally	1	2	None
	BRA	Z,Expr	Branch if Zero	1	1 (2)	None
	BRA	Wn	Computed Branch	1	2	None
BSET	BSET	f,#bit4	Bit Set f	1	1	None
	BSET	Ws,#bit4	Bit Set Ws	1	1	None
BSW	BSW.C	Ws,Wb	Write C bit to Ws <wb></wb>	1	1	None
	BSW.Z	Ws,Wb	Write Z bit to Ws <wb></wb>	1	1	None
BTG	BTG	f,#bit4	Bit Toggle f	1	1	None
	BTG	Ws,#bit4	Bit Toggle Ws	1	1	None
BTSC	BTSC	f,#bit4	Bit Test f, Skip if Clear	1	1 (2 or 3)	None
	BTSC	Ws,#bit4	Bit Test Ws, Skip if Clear	1	1 (2 or 3)	None

TABLE 28-2:	INSTRUCTION SET	OVERVIEW

DC CHARACTERISTICS		Standard Operating Conditions: 2.2V to 3.6V (unless otherwise stated)					
	1		Operating tempe	-40°C ≤ T	C for Industrial		
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions
	VIL	Input Low Voltage ⁽³⁾					
DI10		I/O Pins with ST Buffer	Vss	—	0.2 Vdd	V	
DI11		I/O Pins with TTL Buffer	Vss	_	0.15 Vdd	V	
DI15		MCLR	Vss	_	0.2 VDD	V	
DI16		OSCI (XT mode)	Vss	_	0.2 VDD	V	
DI17		OSCI (HS mode)	Vss		0.2 VDD	V	
DI18		I/O Pins with I ² C™ Buffer:	Vss		0.3 VDD	V	
DI19		I/O Pins with SMBus Buffer:	Vss	_	0.8	V	SMBus enabled
	VIH	Input High Voltage ⁽³⁾					
DI20		I/O Pins with ST Buffer: with Analog Functions Digital Only	0.8 Vdd 0.8 Vdd		Vdd 5.5	V V	
DI21		I/O Pins with TTL Buffer: with Analog Functions Digital Only	0.25 VDD + 0.8 0.25 VDD + 0.8	_	Vdd 5.5	V V	
DI25		MCLR	0.8 VDD	_	Vdd	V	
DI26		OSCI (XT mode)	0.7 Vdd	_	Vdd	V	
DI27		OSCI (HS mode)	0.7 Vdd		Vdd	V	
DI28		I/O Pins with I ² C™ Buffer: with Analog Functions Digital Only	0.7 Vdd 0.7 Vdd		VDD 5.5	V V	
DI29		I/O Pins with SMBus Buffer: with Analog Functions Digital Only	2.1 2.1		Vdd 5.5	V V	$2.5V \le VPIN \le VDD$
DI30	ICNPU	CNxx Pull-up Current	15	70	150	μA	VDD = 3.3V, VPIN = VSS
DI30A	ICNPD	CNxx Pull-down Current	150	350	550	μA	VDD = 3.3V, VPIN = VDD
	lı∟	Input Leakage Current ⁽²⁾					
DI50		I/O Ports	_	_	<u>+</u> 1	μA	$Vss \le VPIN \le VDD,$ pin at high-impedance
DI51		Analog Input Pins	_	_	<u>+</u> 1	μA	$Vss \le VPIN \le VDD,$ pin at high-impedance
DI55		MCLR	—	—	<u>+</u> 1	μA	$Vss \leq V \text{PIN} \leq V \text{DD}$
DI56		OSCI/CLKI	_	—	<u>+</u> 1	μA	$\label{eq:VSS} \begin{split} &V{\sf SS} \leq V{\sf PIN} \leq V{\sf DD}, \\ &E{\sf C}, \; X{\sf T} \; \text{and} \; H{\sf S} \; \text{modes} \end{split}$

TABLE 29-7: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: Negative current is defined as current sourced by the pin.

3: Refer to Table 1-3 for I/O pins buffer types.

Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions
DO50	Cosco	OSCO/CLKO Pin	_	—	15	pF	In XT and HS modes when external clock is used to drive OSCI
DO56	Сю	All I/O Pins and OSCO	—	_	50	pF	EC mode
DO58	Св	SCLx, SDAx	—		400	pF	In I ² C™ mode

TABLE 29-12: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

FIGURE 29-3: EXTERNAL CLOCK TIMING

121-Lead Plastic Thin Profile Ball Grid Array (BG) - 10x10x1.10 mm Body [XBGA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension	MIN	NOM	MAX	
Contact Pitch			0.80 BSC	
Contact Pitch	E2		0.80 BSC	
Contact Pad Spacing	C1		8.00	
Contact Pad Spacing	C2		8.00	
Contact Pad Diameter (X121)	X			0.40

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2148A